Optics算法

1 什么是OPTICS算法

在前面介绍的DBSCAN算法中,有两个初始参数E(邻域半径)和minPts(E

邻域最小点数)需要用户手动设置输入,并且聚类的类簇结果对这两个参数的取值非常敏感,不同的取值将产生不同的聚类结果,其实这也是大多数其他需要初始化参数聚类算法的弊端。

为了克服DBSCAN算法这一缺点,提出了OPTICS算法(Ordering Points to identify the clustering structure)。OPTICS并不显示的产生结果类簇,而是为聚类分析生成一个增广的簇排序(比如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度的聚类结构。它包含的信息等价于从一个广泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。

2 OPTICS两个概念

核心距离:

对象p的核心距离是指是p成为核心对象的最小E’。如果p不是核心对象,那么p的核心距离没有任何意义。

可达距离:

对象q到对象p的可达距离是指p的核心距离和p与q之间欧几里得距离之间的较大值。如果p不是核心对象,p和q之间的可达距离没有意义。

例如:假设邻域半径E=2, minPts=3,存在点

A(2,3),B(2,4),C(1,4),D(1,3),E(2,2),F(3,2)

点A为核心对象,在A的E领域中有点{A,B,C,D,E,F},其中A的核心距离为E’=1,因为在点A的E’邻域中有点{A,B,D,E}>3;

点F到核心对象点A的可达距离为,因为A到F的欧几里得距离,大于点A的核心距离1.

3 算法描述

OPTICS算法额外存储了每个对象的核心距离和可达距离。基于OPTICS产生的排序信息来提取类簇。

算法描述如下:

算法:OPTICS

输入:样本集D, 邻域半径E, 给定点在E领域内成为核心对象的最小领域点数MinPts

输出:具有可达距离信息的样本点输出排序

方法:1 创建两个队列,有序队列和结果队列。(有序队列用来存储核心对象及其该核心对象的直接可达对象,并按可达距离升序排列;结果队列用来存储样本点的输出次序);

2 如果所有样本集D中所有点都处理完毕,则算法结束。否则,选择一个未

处理(即不在结果队列中)且为核心对象的样本点,找到其所有直接密度可达样本点,如过该样本点不存在于结果队列中,则将其放入有序队列中,并按可达距离排序;

3 如果有序队列为空,则跳至步骤2,否则,从有序队列中取出第一个样本点(即可达距离最小的样本点)进行拓展,并将取出的样本点保存至结果队列中,如果它不存在结果队列当中的话。

3.1 判断该拓展点是否是核心对象,如果不是,回到步骤3,否则找到该拓展点所有的直接密度可达点;

3.2 判断该直接密度可达样本点是否已经存在结果队列,是则不处理,否则下一步;

3.2 如果有序队列中已经存在该直接密度可达点,如果此时新的可达距离小于旧的可达距离,则用新可达距离取代旧可达距离,有序队列重新排序;

3.3 如果有序队列中不存在该直接密度可达样本点,则插入该点,并对有序队列重新排序;

4 算法结束,输出结果队列中的有序样本点。

大家或许会很疑惑,这里不也有输入参数E和MinPts吗?其实这里的E和MinPts只是起到算法辅助作用,也就是说E和MinPts的细微变化并不会影响到样本点的相对输出顺序,这对我们分析聚类结果是没有任何影响。

我们采用与先前DBSCAN相同的样本点集合,

对于样本点

a={2,3};b={2,4};c={1,4};d={1,3};e={2,2};f={3,2}; g={8,7};h={8,6};i={7,7};j={7,6};k={8,5};

l={100,2};//孤立点

m={8,20};n={8,19};o={7,18};p={7,17};q={8,21};

并且使用相同的E=2 MinPts=4时,输出序列为

1->a:1.0

2->e:1.0

3->b:1.0

4->d:1.0

5->c:1.4142135623730951

6->f:1.4142135623730951

------

7->g:1.4142135623730951

8->j:1.4142135623730951

9->k:1.4142135623730951

10->i:1.4142135623730951

11->h:1.4142135623730951

------

12->n:2.0

13->q:2.0

14->o:2.0

15->m:2.0

如图,按照算法,分三个阶段输出了三波值

{a,e,b,d,c,f} ,{g,j,k,I,h},{n,q,o,m}

这和DBSCAN的类簇结果是一样的。不仅如此,我们通过分析有序图还能直接得到当参数E=1.5,minPts=4时DBSCAN的类簇结果,只要在坐标图中找到Y 值小于1.5的样本点即可,只有两类{a,e,b,d,c,f} ,{g,j,k,I,h},其他点被认为是孤立点,和DBSCAN聚类算法取E=1.5,minPts=4时的结果一致。

所以说,这个OPTICS聚类算法所得的簇排序信息等价于一个广泛的参数设置所获得的基于密度的聚类结果。

具体实现算法如下:

package com.optics;

public class DataPoint {

private String name; // 样本点名

private double dimensioin[]; // 样本点的维度

private double coreDistance; //核心距离,如果该点不是核心对象,则距离为-1

private double reachableDistance; //可达距离

public DataPoint(){

}

public DataPoint(DataPoint e){

https://www.360docs.net/doc/4a9934081.html,=https://www.360docs.net/doc/4a9934081.html,;

this.dimensioin=e.dimensioin;

this.coreDistance=e.coreDistance;

this.reachableDistance=e.reachableDistance;

}

public DataPoint(double dimensioin[],String name){

https://www.360docs.net/doc/4a9934081.html,=name;

this.dimensioin=dimensioin;

this.coreDistance=-1;

this.reachableDistance=-1;

}

public String getName() {

return name;

}

public void setName(String name) {

https://www.360docs.net/doc/4a9934081.html, = name;

}

public double[] getDimensioin() {

return dimensioin;

}

public void setDimensioin(double[] dimensioin) {

this.dimensioin = dimensioin;

}

public double getCoreDistance() {

return coreDistance;

}

public void setCoreDistance(double coreDistance) {

this.coreDistance = coreDistance;

}

public double getReachableDistance() {

return reachableDistance;

}

public void setReachableDistance(double reachableDistance) {

this.reachableDistance = reachableDistance;

}

}

package com.optics;

import java.util.ArrayList;

import java.util.Collections;

import https://www.360docs.net/doc/4a9934081.html,parator;

import java.util.List;

public class ClusterAnalysis {

class ComparatorDp implements Comparator{

public int compare(DataPoint arg0, DataPoint arg1) {

double

temp=arg0.getReachableDistance()-arg1.getReachableDistance(); int a = 0;

if (temp < 0) {

a = -1;

} else {

a = 1;

}

return a;

}

}

public List startAnalysis(List dataPoints, double radius, int ObjectNum) {

List dpList = new ArrayList();

List dpQue = new ArrayList();

int total = 0;

while (total < dataPoints.size()) {

if (isContainedInList(dataPoints.get(total), dpList) == -1 ) { List tmpDpList =

isKeyAndReturnObjects(dataPoints.get(total),

dataPoints, radius, ObjectNum);

if(tmpDpList != null && tmpDpList.size() > 0){

DataPoint newDataPoint=new DataPoint(dataPoints.get(total)); dpQue.add(newDataPoint);

}

}

while (!dpQue.isEmpty()) {

DataPoint tempDpfromQ = dpQue.remove(0);

DataPoint newDataPoint=new DataPoint(tempDpfromQ);

dpList.add(newDataPoint);

List tempDpList =

isKeyAndReturnObjects(tempDpfromQ,

dataPoints, radius, ObjectNum);

System.out.println(newDataPoint.getName()+":"+newDataPoint.getR eachableDistance());

if (tempDpList != null && tempDpList.size() > 0) {

for (int i = 0; i < tempDpList.size(); i++) {

DataPoint tempDpfromList = tempDpList.get(i);

int indexInList = isContainedInList(tempDpfromList,

dpList);

int indexInQ = isContainedInList(tempDpfromList, dpQue);

if (indexInList == -1) {

if (indexInQ > -1) {

int index = -1;

for (DataPoint dataPoint : dpQue) {

index++;

if (index == indexInQ) {

if (dataPoint.getReachableDistance() > tempDpfromList

.getReachableDistance()) {

dataPoint

.setReachableDistance(tempDpfromList

.getReachableDistance());

}

}

}

} else {

dpQue.add(new DataPoint(tempDpfromList));

}

}

}

// TODO:对Q进行重新排序

Collections.sort(dpQue, new ComparatorDp());

}

}

System.out.println("------");

total++;

}

return dpList;

}

public void displayDataPoints(List dps){

for(DataPoint dp: dps){

System.out.println(dp.getName()+":"+dp.getReachableDistance());

}

}

private int isContainedInList(DataPoint dp, List dpList) {

int index = -1;

for (DataPoint dataPoint : dpList) {

index++;

if (dataPoint.getName().equals(dp.getName())) {

return index;

}

}

return -1;

}

private List isKeyAndReturnObjects(DataPoint

dataPoint,List dataPoints,double radius,int ObjectNum){

List arrivableObjects=new ArrayList(); //用来存储所有直接密度可达对象

List distances=new ArrayList(); //欧几里得距离

double coreDistance; //核心距离

for (int i = 0; i < dataPoints.size(); i++) {

DataPoint dp = dataPoints.get(i);

double distance = getDistance(dataPoint, dp);

if (distance <= radius) {

distances.add(distance);

arrivableObjects.add(dp);

}

}

if(arrivableObjects.size()>=ObjectNum){

List newDistances=new ArrayList(distances);

Collections.sort(distances);

coreDistance=distances.get(ObjectNum-1);

for(int j=0;j

if (coreDistance > newDistances.get(j)) {

if(newDistances.get(j)==0){

dataPoint.setReachableDistance(coreDistance);

}

arrivableObjects.get(j).setReachableDistance(coreDistance);

}else{

arrivableObjects.get(j).setReachableDistance(newDistances.get(j ));

}

}

return arrivableObjects;

}

return null;

}

private double getDistance(DataPoint dp1,DataPoint dp2){

double distance=0.0;

double[] dim1=dp1.getDimensioin();

double[] dim2=dp2.getDimensioin();

if(dim1.length==dim2.length){

for(int i=0;i

double temp=Math.pow((dim1[i]-dim2[i]), 2);

distance=distance+temp;

}

distance=Math.pow(distance, 0.5);

return distance;

}

return distance;

}

public static void main(String[] args){

ArrayList dpoints = new ArrayList();

double[] a={2,3};

double[] b={2,4};

double[] c={1,4};

double[] d={1,3};

double[] e={2,2};

double[] f={3,2};

double[] g={8,7};

double[] h={8,6};

double[] i={7,7};

double[] j={7,6};

double[] k={8,5};

double[] l={100,2};//孤立点

double[] m={8,20};

double[] n={8,19};

double[] o={7,18};

double[] p={7,17};

double[] q={8,21};

dpoints.add(new DataPoint(a,"a"));

dpoints.add(new DataPoint(b,"b"));

dpoints.add(new DataPoint(c,"c"));

dpoints.add(new DataPoint(d,"d"));

dpoints.add(new DataPoint(e,"e"));

dpoints.add(new DataPoint(f,"f"));

dpoints.add(new DataPoint(g,"g"));

dpoints.add(new DataPoint(h,"h"));

dpoints.add(new DataPoint(i,"i"));

dpoints.add(new DataPoint(j,"j"));

dpoints.add(new DataPoint(k,"k"));

dpoints.add(new DataPoint(l,"l"));

dpoints.add(new DataPoint(m,"m"));

dpoints.add(new DataPoint(n,"n"));

dpoints.add(new DataPoint(o,"o"));

dpoints.add(new DataPoint(p,"p"));

dpoints.add(new DataPoint(q,"q"));

ClusterAnalysis ca=new ClusterAnalysis();

List dps=ca.startAnalysis(dpoints, 2, 4); ca.displayDataPoints(dps);

}

}

Optics 光学元件

Optics 光学元件 Optical lenses 透镜 Optical mirror 反射镜 Windows or diffusers 窗口片或扩散片 Prisms 棱镜 Polarizer 偏振镜 Deamsplitter 分束镜 Diffracting grating 衍射光栅 Optic assemblies 光学装配件 UV(ultraviolet) or IR(infrared radiation) optics 光学产品 Laser optics 激光片 Fresnel Reflection 菲涅尔反射 Refractive index 折射率 Optical components 光学元件 使用偏光滤镜,刚可以一定程度上消除反射、提高对比度;调整偏光滤镜直到得到您想要的效果。 Use a polarizing filter to eliminate some of the reflection and increase contrast; rotate it until you have the effect you want. Contrast ratio 对比度 Spectral range 光谱范围 Coating 镀膜 band pass filters(BPF) 带通滤波器 edge filters 截止滤光器(边缘滤光器) beam splitters(BS) 分光器(光束分离器)dichroic color filters 二色性颜色滤光器 anti reflection(AR)coatings 防反(射)涂层 mirrors(R-max coatings) 反射镜(反射最大化涂层) special coatings 特殊涂层optical designs 光学设计 optical modules 光学模块(组件) precision tooling(Dicing&Centering)精密工具(划片和定中心用) wavelength shift 波长位移波长偏移 laser diode 二极管

光学发展史

光学发展史 光科1001班曲东雪 10272017 摘要:光学的主要光学(optics)是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。光学的起源在西方很早就有光学知识的记载,但是光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起。其发展主要经历了萌芽时期,几何光学时期,波动光学时期和量子光学时期四个阶段。人们通常把光学分成几何光学、物理光学和量子光学来研究。 关键词:光学的定义;光学的历史发展;光学研究内容 Optical Development History Abstract: optical main optical ( Optics ) is the study of light ( electromagnetic waves) behavior and properties, as well as the interaction of light with matter of physics. Optics origin in the West have long optical knowledge records, but the optical true to form a science, should from build reflection law and refraction law era. Its development mainly experienced budding period, geometrical optics, wave optics and quantum optics in four stages: the period of. People usually put on optical geometric optics, physical optics and quantum optics research. Key words: optical definition; optical historical development; optical research content 光学定义 光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。光学既是物理学中最古老的一个基础学科,有事当前科学研究中最活跃的前沿阵地,具有强大的生命力和不可估量的前途。光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾和克服矛盾、从不完全和不确切的认识总部走向较完善和较确切认识的过程。它的不少规律和理论是直接从欧美和生产实践中总结出来的,也有相当多的发现来自长期的系统的科学实验。光学的发展为生产技术提供了许多精密、快速、的衡东的实验手段和重要的理论依据;而圣餐技术的发展,又反过来不断向光学提出许多要求解决的新课题,并为进一步深入研究光学准备了物质条件。 光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元

基于划分方法的聚类分析

南京信息工程大学滨江学院实验(实习)报告 实验(实习)名称基于划分方法的聚类分析实验(实习)日期 2011.6.10 指导教师闫雷鸣 专业软工(动画)年级 2008 班次(1)班姓名王圆媛学号 20082358002 得分 一、实验目的 (1)学习聚类分析的基本概念、各种数据类型、聚类方法的分类。 (2)学会典型的划分方法K均值和K中心点算法的基本原理、特点、优缺点。 (3)应用Weka软件,学会导入数据文件,并对数据文件进行预处理。 (4)学会并应用划分方法中K均值和K中心点算法对数据集进行聚类分析。 二、实验准备: Bank-data 三、实验要求: 用划分方法中K均值和K中心点算法对数据集进行聚类分析 四、实验内容: 4.1 相关知识 聚类分析中的“类”(cluster)和前面分类的“类”(class)是不同的,对cluster更加准确的翻译应该是“簇”。聚类的任务是把所有的实例分配到若干的簇,使得同一个簇的实例聚集在一个簇中心的周围,它们之间距离的比较近;而不同簇实例之间的距离比较远。对于由数值型属性刻画的实例来说,这个距离通常指欧氏距离。聚类分析中使用最常见的K均值(K-means)算法。 K均值聚类方法的步骤如下。 (1)K均值算法首先随机的指定K个簇中心。 (2)将每个实例分配到距它最近的簇中心,得到K个簇; (3)计分别计算各簇中所有实例的均值,把它们作为各簇新的簇中心。重复(2)和(3),直到K个簇中心的位置都固定,簇的分配也固定。 上述K均值算法只能处理数值型的属性,遇到分类型的属性时要把它变为若干个取值0和1的属性。WEKA将自动实施这个分类型到数值型的变换,而且Weka会自动对数值型的数据作标准化。 Weka中列出了很多聚类算法。对于EM实现,用户可指定需要产生多少聚类,否则所用的算法可通过交叉验证来决定,在这种情况下,折的数量固定为10(除非训练实例小于10个)。用户可指定循环次数的最大值,并且为正常的密度计算设定可允许的最小标准差。SimpleKMeans使用k均值来聚类数据;聚类的数量通过一个参数设定。Cobweb实现了用于名词属性的Cobweb算法和用于数值性属性的Classit算法。FarthestFirst实现Hochbaum 和Shmoys远端优先遍历算法。MakeDensityBaseCluster是一个元聚类器,它包装一个聚类算法,使其返回一个概率分布和密度。它为每个聚类拟合一个离散分布,或一个对称的正态

聚类分析的案例分析(推荐文档)

《应用多元统计分析》 ——报告 班级: 学号: 姓名:

聚类分析的案例分析 摘要 本文主要用SPSS软件对实验数据运用系统聚类法和K均值聚类法进行聚类分析,从而实现聚类分析及其运用。利用聚类分析研究某化工厂周围的几个地区的 气体浓度的情况,从而判断出这几个地区的污染程度。 经过聚类分析可以得到,样本6这一地区的气体浓度值最高,污染程度是最严重的,样本3和样本4气体浓度较高,污染程度也比较严重,因此要给予及时的控制和改善。 关键词:SPSS软件聚类分析学生成绩

一、数学模型 聚类分析的基本思想是认为各个样本与所选择的指标之间存在着不同程度的相 似性。可以根据这些相似性把相似程度较高的归为一类,从而对其总体进行分析和总结,判断其之间的差距。 系统聚类法的基本思想是在这几个样本之间定义其之间的距离,在多个变量之间定义其相似系数,距离或者相似系数代表着样本或者变量之间的相似程度。根据相似程度的不同大小,将样本进行归类,将关系较为密切的归为一类,关系较为疏远的后归为一类,用不同的方法将所有的样本都聚到合适的类中,这里我们用的是最近距离法,形成一个聚类树形图,可据此清楚的看出样本的分类情况。 K 均值法是将每个样品分配给最近中心的类中,只产生指定类数的聚类结果。 二、数据来源 《应用多元统计分析》第一版164 页第6 题 我国山区有一某大型化工厂,在该厂区的邻近地区中挑选其中最具有代表性的 8 个大气取样点,在固定的时间点每日 4 次抽取6 种大气样本,测定其中包含的8 个取样点中每种气体的平均浓度,数据如下表。试用聚类分析方法对取样点及 大气污染气体进行分类。 三、建立数学模型 一、运行过程

基于划分的聚类算法

- 文献阅读报告 课程名称:《模式识别》课程编号:题目: 基于划分的聚类算法 研究生: 学号: 论文评语: 成绩: 任课教师: 评阅日期:

基于划分的聚类算法 2016-11-20 摘要: 聚类分析是数据挖掘的一个重要研究分支,已经提出了许多聚类算法,划分方法是其中之一。基于划分的聚类算法就是用统计分析的方法研究分类问题。本文介绍了聚类的定义以及聚类算法的种类,详细阐述了K 均值聚类算法和K中心点聚类算法的基本原理并对他们的性能进行分析,对近年来各学者对基于划分的聚类算法的研究现状进行梳理,对其具体应用实例作简要介绍。 关键字:数据挖掘;聚类;K 均值聚类算法;K 中心点聚类算法;K众数算法;k多层次聚类算法 Partitional clustering algorithms Abstract:Clustering analysis is an important branch of data mining, many clustering algorithms have been proposed, the dividing method is one of them. Based on the clustering algorithm is divided into classification problems using the method of statistical analysis. In this paper,we introduces the definition of clustering and type of clustering algorithm,the basic principle of k-means clustering algorithm and K-center clustering algorithm are expounded in detail,we also analyze their performance,the scholars in recent years the study of the clustering algorithm based on partitioning present situation has carried on the comb,make a brief introduction to its specific application instance. Key words:Data mining;clustering;k-means clustering algorithms;k-medoids clustering algorithms;k-modes clustering algorithms ;k-prototype clustering algorithms 1.引言 把单个的数据对象的集合划分为相类似的样本组成的多个簇或多个类的过程,这就叫聚类[1]。在无监督的情况下,具有独立的学习能力,这就是聚类。将数据空间中的所有数据点分别划分到不同的类中,相近距离的划分到相同类,较远距离的划分到不同类,这就是聚类的目的.聚类分析常作为一种数据的预处理过程被用于许多应用当中,它是更深一步分析数据、处理数据的基础。人们通过聚类分析这一最有效的手段来认识事物、探索事物之间的在联系,而且,关联规则等分析算法的预处理步骤也可以用它。现在,在气象分析中,在图像处理时,在模式识别领域,在食品检验过程中,都有用到它。随着现代科技水平的不断提高、网络的迅猛发展、计算机技术的不断改革和创新,大批量的数据不断涌现。怎样从这些数据中提取有意义的信息成为人们关注的问题。这对聚类分析技术来说无疑是个巨大的挑战。只有具有处理高维的数据的能力的聚类算法才能解决该问题. 研究者们开始设计各种聚类算法,于是,基于划分的聚类算法便应运而生,而且,取得了很好的效果。 2.正文 1 聚类概述

聚类分析实例分析题

5.2酿酒葡萄的等级划分 5.2.1葡萄酒的质量分类 由问题1中我们得知,第二组评酒员的的评价结果更为可信,所以我们通过第二组评酒员对于酒的评分做出处理。我们通过excel计算出每位评酒员对每支酒的总分,然后计算出每支酒的10个分数的平均值,作为总的对于这支酒的等级评价。 通过国际酿酒工会对于葡萄酒的分级,以百分制标准评级,总共评出了六个级别(见表5)。 在问题2的计算中,我们求出了各支酒的分数,考虑到所有分数在区间[61.6,81.5]波动,以原等级表分级,结果将会很模糊,不能分得比较清晰。为此我们需要进一步细化等级。为此我们重新细化出5个等级,为了方便计算,我们还对等级进行降序数字等级(见表6)。 通过对数据的预处理,我们得到了一个新的关于葡萄酒的分级表格(见表7):

考虑到葡萄酒的质量与酿酒葡萄间有比较之间的关系,我们将保留葡萄酒质量对于酿酒葡萄的影响,先单纯从酿酒葡萄的理化指标对酿酒葡萄进行分类,然后在通过葡萄酒质量对酿酒葡萄质量的优劣进一步进行划分。 5.2.2建立模型 在通过酿酒葡萄的理化指标对酿酒葡萄分类的过程,我们用到了聚类分析方法中的ward 最小方差法,又叫做离差平方和法。 聚类分析是研究分类问题的一种多元统计方法。所谓类,通俗地说,就是指相似元素的集合。为了将样品进行分类,就需要研究样品之间关系。这里的最小方差法的基本思想就是将一个样品看作P 维空间的一个点,并在空间的定义距离,距离较近的点归为一类;距离较远的点归为不同的类。面对现在的问题,我们不知道元素的分类,连要分成几类都不知道。现在我们将用SAS 系统里面的stepdisc 和cluster 过程完成判别分析和聚类分析,最终确定元素对象的分类问题。 建立数据阵,具体数学表示为: 1111...............m n nm X X X X X ????=?????? (5.2.1) 式中,行向量1(,...,)i i im X x x =表示第i 个样品; 列向量1(,...,)'j j nj X x x =’,表示第j 项指标。(i=1,2,…,n;j=1,2,…m) 接下来我们将要对数据进行变化,以便于我们比较和消除纲量。在此我们用了使用最广范的方法,ward 最小方差法。其中用到了类间距离来进行比较,定义为: 2||||/(1/1/)kl k l k l D X X n n =-+ (5.2.2) Ward 方法并类时总是使得并类导致的类内离差平方和增量最小。 系统聚类数的确定。在聚类分析中,系统聚类最终得到的一个聚类树,如何确定类的个数,这是一个十分困难但又必须解决的问题;因为分类本身就没有一定标准,人们可以从不同的角度给出不同的分类。在实际应用中常使用下面几种方法确定类的个数。由适当的阀值确定,此处阀值为kl D 。

SPSS教程-聚类分析-附实例操作

各地区各行业工资水平的分析(2009年数据) 小组成员:张艺伟、赵月、陈媛、邹莉、朱海龙、曾磊、胡瑛、候银萍 1.研究背景及意义 1.1 研究背景 工资水平是指一定区域和一定时间内劳动者平均收入的高低程度。生产决定分配,只有经济发展才能提供更多的可分配的社会产品,因此一个地区的工资水平在一定程度上反映了其经济发展的水平。 1.2 研究意义 1. 通过多元统计分析方法,探究一个地区的工资水平与其经济发展水平之间的内在联系。 2. 将平均工资水平划分为3类,分析哪些地区、哪些行业的工资水平较高,可以为大学生就业提供宏观上的方向指引。 2.数据来源与描述 2.1 数据来源——《中国劳动统计年鉴─2010》 (URL:https://www.360docs.net/doc/4a9934081.html,/Navi/YearBook.aspx?id=N2011010069&floor=1###) 主编单位:国家统计局人口和就业统计司,人力资源和社会保障部规划财务司 出版社:中国统计出版社 简介:《中国劳动统计年鉴─2010》是一部全面反映中华人民共和国劳动经济情况的资料性年刊。本刊收集了2009年全国和各省、自治区、直辖市、香港特别行政区、澳门特别行政区的有关劳动统计数据。本书资料的取得形式主要有国家和部门的报表统计、行政记录和抽样调查。 2.2 数据描述 本数据集记录了全国31个省市(港、澳、台除外)的工资状况,各省市分别记录了其23个主要行业的平均工资水平,这23个主要行业包括:企业、事业、机关、金融业、制造业、建筑业、房地产业、农林牧渔业等等,具体数据格式参见图-0。

图-0 3.分析方法及原理 3.1 通过描述统计分析方法,判断哪些行业平均工资水平较高 描述统计分析方法主要是从基本统计量(诸如均值、方差、标准差、极大/小值、偏度、峰度等)的计算和描述开始的,并辅助于SPSS提供的图形功能,能够把握数据的基本特征和整体的分布特征。 在本案例中,通过比较不同行业(诸如企业、事业、机关、建筑业、制造业……)工资的均值、极大/小值,可以从总体上判断哪些行业的平均工资水平较高,哪些行业的较低。 3.2 通过聚类分析方法,判断哪些地区平均工资水平较高 聚类分析是依据研究对象的个体特征,对其进行分类的方法,分类在经济、管理、社会学、医学等领域,都有广泛的应用。聚类分析能够将一批样本(或变量)数据根据其诸多特征,按照在性质上的亲疏程度在没有先验知识的情况下进行自动分类,产生多个分类结果。类内部个体特征之间具有相似性,不同类间个体特征的差异性较大。 在本案例中,我们将采用两种方法进行聚类分析:一种是系统聚类法,另一种是K-均值法(快速聚类法)。 3.2.1系统聚类法 系统聚类法的基本原理:首先将一定数量的样本或指标各自看成一类,然后根据样本(或指标)的亲疏程度,将亲疏程度最高的两类进行合并,然后考虑合并后的类与其他类之间的亲疏程度,再进行合并。重复这一过程,直到将所有的样本(或指标)合并为一类。 系统聚类分为Q型聚类和R型聚类两种:Q型聚类是对样本进行聚类,它使具有相似特征的样本聚集在一起,使差异性大的样本分离开来;R型聚类是对变量进行聚类,它使差异性大的变量分离开来,相似的变量聚集在一起,这样就可以在相似变量中选择少数具有代表性的变量参与其他分析,实现减少变量个数、降低变量维度的目的。 在本例中进行的是Q型聚类。 类与类之间距离的计算方法主要有以下几种: (1)最短距离法(Nearest Neighbor),是指两类之间每个个体距离的最小值; (2)最长距离法(Farthest Neighbor),是指两类之间每个个体距离的最大值; (3)组间联接法(Between-groups Linkage),是指两类之间个体之间距离的平均值;

基于划分的聚类算法

文献阅读报告 课程名称:《模式识别》课程编号:题目: 基于划分的聚类算法 研究生姓名: 学号: 论文评语: 成绩: 任课教师: 评阅日期:

基于划分的聚类算法 2016-11-20 摘要: 聚类分析是数据挖掘的一个重要研究分支,已经提出了许多聚类算法,划分方法是其中之一。基于划分的聚类算法就是用统计分析的方法研究分类问题。本文介绍了聚类的定义以及聚类算法的种类,详细阐述了K 均值聚类算法和K中心点聚类算法的基本原理并对他们的性能进行分析,对近年来各学者对基于划分的聚类算法的研究现状进行梳理,对其具体应用实例作简要介绍。 关键字:数据挖掘;聚类;K 均值聚类算法;K 中心点聚类算法;K众数算法;k多层次聚类算法 Partitional clustering algorithms Abstract:Clustering analysis is an important branch of data mining, many clustering algorithms have been proposed, the dividing method is one of them. Based on the clustering algorithm is divided into classification problems using the method of statistical analysis. In this paper,we introduces the definition of clustering and type of clustering algorithm,the basic principle of k-means clustering algorithm and K-center clustering algorithm are expounded in detail,we also analyze their performance,the scholars in recent years the study of the clustering algorithm based on partitioning present situation has carried on the comb,make a brief introduction to its specific application instance. Key words:Data mining;clustering;k-means clustering algorithms;k-medoids clustering algorithms;k-modes clustering algorithms ;k-prototype clustering algorithms 1.引言 把单个的数据对象的集合划分为相类似的样本组成的多个簇或多个类的过程,这就叫聚类[1]。在无监督的情况下,具有独立的学习能力,这就是聚类。将数据空间中的所有数据点分别划分到不同的类中,相近距离的划分到相同类,较远距离的划分到不同类,这就是聚类的目的.聚类分析常作为一种数据的预处理过程被用于许多应用当中,它是更深一步分析数据、处理数据的基础。人们通过聚类分析这一最有效的手段来认识事物、探索事物之间的内在联系,而且,关联规则等分析算法的预处理步骤也可以用它。现在,在气象分析中,在图像处理时,在模式识别领域,在食品检验过程中,都有用到它。随着现代科技水平的不断提高、网络的迅猛发展、计算机技术的不断改革和创新,大批量的数据不断涌现。怎样从这些数据中提取有意义的信息成为人们关注的问题。这对聚类分析技术来说无疑是个巨大的挑战。只有具有处理高维的数据的能力的聚类算法才能解决该问题. 研究者们开始设计各种聚类算法,于是,基于划分的聚类算法便应运而生,而且,取得了很好的效果。 2.正文 1 聚类概述

聚类分析案例

SPSS软件操作实例——某移动公司客户细分模型 数据准备:数据来源于telco.sav,如图1所示,Customer_ID表示客户编号,Peak_mins表示工作日上班时期电话时长,OffPeak_mins表示工作日下班时期电话时长等。 图1 telco.sav数据 分析目的:对移动手机用户进行细分,了解不同用户群体的消费习惯,以更好的对其进行定制性的业务推销,所以需要运用聚类分析。 操作步骤: 1,从菜单中选择【文件】——【打开】——【数据】,在打开数据窗口中选择数据位置以及文件类型,将数据telco.sav导入SPSS软件中,如图2所示。 图2 打开数据菜单选项 2,从菜单中选择【分析】——【描述统计】——【描述】,然后在描述性窗口中,将需要标准化的变量选到右边的“变量列表”,勾选“将标准化得分另存为变量”,点确定,如图3所示。

图3 数据标准化 3,从菜单中选择【分析】——【分类】——【K-均值聚类】,在K-均值聚类分析窗口中将标准化之后的结果选入右边“变量列表”,客户编号选入“个案标记依据”,聚类数改为5。点击迭代按钮,在迭代窗口将最大迭代次数改为100,点击继续。点击保存按钮,在保存窗口勾选“聚类成员”、“与聚类中心的距离”,点击继续。点击选项按钮,在选项窗口勾选“ANOV A表”、“每个个案的聚类信息”,点击继续。点击确定按钮,运行聚类分析,如图4所示。 图4 聚类分析操作

由最终聚类中心表可得最终分成的5个类它们各自的均值。 第一类:依据总通话时间长,上班通话时间长,国际通话时间长等特征,将第一类命名为高端商用客户。 第二类:依据其在各项指标中均较低,将第二类命名为不常使用客户。 第三类:依据总通话和上班通话时间居中等特征,将第三类命名为中端商用客户。第四类:依据下班通话时间最长等特征,将第四类命名为日常客户。 第五类:依据平均每次通话时间最长等特征,将第五类命名为长聊客户。 由ANOVA表可根据F值大小近似得到哪些变量对聚类有贡献,本例题中重要程度排序为:总通话时长>工作日上班时期电话时长>工作日下班时期电话时

模版-Template Optics Letters

Template for preparing an article for submission to the journal Optics Letters: template designed to assist with length estimate Author One,1 Author Two,1 Author Three,1 Author Four,1 Author Five,2 Author Six,2 Author Seven,1 Author Eight,3 and Author Nine3,* 1Publications Department, OSA—The Optical Society, 2010 Massachusetts Avenue N.W., Washington, D.C. 20036 2College of Physics, Jilin University, Changchun 130012, China 3Institute of Applied Physics, Friedrich-Schiller-University Jena, Albert-Einstein-Strasse 15, 07745 Jena, Germany *Corresponding author: author_nine@uni-jena.de Received Month X, XXXX; revised Month X, XXXX; accepted Month X, XXXX; posted Month X, XXXX (Doc. ID XXXXX); published Month X, XXXX Optics Letters(OL) is a journal from OSA—The Optical Society that imposes a three-page limitation on article length. Articles prepared for submission to OL should be prepared with this template to help with length estimate. Note that the template provides an approximation only and that article length will ultimately be affected by sizing and placement of figures, tables, and equations as well as the composition software used to prepare file articles. Authors should also consult the OSA Author Style Guide for general information about manuscript preparation. ? 2010 Optical Society of America OCIS Codes: 000.0000, 999.9999 To use this template, you will need to (1) apply the embedded Optics Letters (OL) styles to each paragraph-level item in your manuscript or (2) use the specifications shown in Table 1 to format your manuscript, with this template as a visual guide. Using the Word styles. In this template, styles such as “01 Title” for OL appear in the MS Word Styles ribbon (or toolbar for older versions of Word). Apply the appropriate style before typing or apply it to existing text. It is possible to paste manuscript text into this template or attach this template to an existing manuscript. One- and two-column text.To create two-column text for the manuscript body, use the option Page Layout, Columns, Two. Set the spacing to 0.25" between the two columns. Within the body, apply one-column formatting to any figures, tables, or equations that must span columns. Front matter.The title should be formatted in an hourglass style; the first line longer than the second, the second line shorter than the third. Use numerical superscript callouts as shown in this template to link authors with their affiliations. Corresponding author should be denoted with an asterisk as shown. To help with length assessment, include two lines of text above the abstract as a placeholder for manuscript history information. Paragraphs. Body paragraphs should be indented (only the opening paragraph is flush left) and have no extra space in between. All paragraph text within the body should be set in two columns. Equations.Display equations should be broken and aligned for two-column display unless spanning across two columns is essential. Equations should be centered with equation numbers set flush right. If using MathType, use the Format Equations feature to format all equations as Times + Symbol 10. 2 x a =(1) Tables. Styles for table title, table head, and table text are provided. Tables should be set in one column wherever possible and be placed near their first mention in the body. Tables and figures do not need to be placed on separate pages at the back of the manuscript. Figures. As with tables and equations, figures should be set in one column possible unless two-column display is essential. Figure captions should have approximately 6 points above and below. Before the figures are dropped into the template, the main text and references in the the template should be set to one column (Page Layout, Columns, One) and should be accurately sized (a maximum of 3.5 inches wide for one column, 7 inches for two), and the caption should be added by right-clicking on the image and choosing Insert Caption. Then the figure and its caption can be selected and dropped into the template at the end of the paper (following the references but before the “Information Page” that contains the full references). References. Set references at the back of the manuscript. OL uses an abbreviated reference style; full references (to aid the reviewer) must be included as well on a fourth page that will not count against page length. Please note that certain types of references do require full titles among the regular reference list: patents, papers in production, dissertations/theses, and papers presented at conferences (but not published). The Citation style uses automatic numbering. To turn off automatic numbering (e.g., if you have numbered reference items manually), simply click the numbering icon in Word’s paragraph toolbar. Fourth page.Include a fourth page with full citation listings. This page will not count against manuscript length.

聚类算法比较

聚类算法: 1. 划分法:K-MEANS算法、K-M EDOIDS算法、CLARANS算法; 1)K-means 算法: 基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止 下图展示了对n个样本点进行K-means聚类的效果,这里k取2: (a)未聚类的初始点集 (b)随机选取两个点作为聚类中心 (c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 (e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 优点: 1.算法快速、简单; 2.对大数据集有较高的效率并且是可伸缩性的; 3.时间复杂度近于线性,而且适合挖掘大规模数据集。 缺点: 1. 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。 2. 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响。

5聚类之层次聚类基于划分的聚类(k

5 聚类之层次聚类基于划分的聚类(k 、层次聚类 1、层次聚类的原理及分类1)层次法(Hierarchicalmethods )先计算样本之间的距离。 每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并, 直到合成了一个类。其中类与类的距离的计算方法有:最短 距离法,最长距离法,中间距离法,类平均法等。比如最短 距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法 agglomerative 和divisive ),也可以理解为自下而上法 bottom-up )和自上而下法(top-down )。自下而上法就是 开始每个个体(object )都是一个类,然后根据linkage 寻找同类,最后形成一个“类” 。自上而下法就是反过来, 开始所有个体都属于一个“类”,然后根据linkage 排除异己,劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。 最后每个个体都成为一个“类” 。这两种路方法没有孰优孰 至于根据Linkage 判断“类”的方法就是最短距离法、最长

距离法、中间距离法、类平均法等等(其中类平均法往往被 认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods 中比较新的算法有BIRCH( Balanced Iterative Reducingand Clustering Using Hierarchies 利用层次方 法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical 。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化; ROCK ( A Hierarchical ClusteringAlgorithm for Categorical Attributes )主要用在categorical 的数据类型上;Chameleon(A Hierarchical Clustering AlgorithmUsing Dynamic Modeling )里用到的linkage 是kNN (k-nearest-neighbor)算法,并以此构建一个graph,Chameleon 的聚类效果被认为非常强大,比BIRCH 好用,但运算复杂度很高,0(22)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚

聚类分析方法应用举例

刘向民物流工程 S11085240007 聚类分析方法应用举例 多元统计,是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科。多元统计所包括的内容很多.但在实际统计分析中,聚类分析是应用最广泛的方法之一。聚类分析(cluste:Analysis),是研究分类问题的一种多元统计分析方法社会经济统计的分类问题,过去在传统方法上,主要是结合一定的专业知识进行定性分类处理。由于定性分类主要是靠经验完成,因而其结论难免带有较多的主观性和随意性,故不能很好地揭示客观事物内在的本质差别和联系。而聚类分析能带来定量上的分析可以解决这个问题,下面通过一些实例来描述聚类分析方法在应用上的体现; 1 基于聚类分析的安徽省物流需求研究 选取了分行业统计的年产值类指标构建物流需求指标体系(X组),具体指标包括:农业总产值(万元)(X1)、工业总产值(亿元)(X2)、建筑业总产值(万元)(X3)、社会消费零售总额(万元)(X4)、亿元商品市场成交额(万元)(X5)、进出口总额(万美元)(X6)。该指标体系通过农业、工业、建筑业、批发业、零售业及国际贸易的发生额较全面地反映了地区的物流需求情况。 2 研究方法 分类问题一般的解决法是聚类分析或者因子分析基础上的聚类分析。由于本文最终期望得安徽省地级市物流需求分类情况,无需了解各个指标体系的内在系统结构,故选择聚类分析方法更简明。进行聚类分析时,本文采用的是基于样本聚类的Q型系统聚类方法。 3研究过程和结果 3.1地区物流需求指标的聚类分析 由分析软件输出的聚类过程统计量如表1所示。可以看出,伪F统计量在归为4类及7类

时较大,说明归为4类及7类时较好;伪T2统计量在1类、2类、3类时较大,由于伪T2大说明上一次归类效果较好,所以归为4类、3类、2类效果较好。而R2的值在由4类归为3类、由3类归为2类以及由2类归为1类时都有较大的减小,说明归类为2类、3类和4类都是比较好的。半偏R2统计量的值越大,则上一步聚类效果更好,所以归为4类、3 类、2类效果都较好。综合考虑四个统计量的值,并考虑分类的实用性,本文认为归为4类比较合适。聚类图见图1。 由软件分析得的聚类过程得到每一类的各个指标的平均值如表2所示。可以看出,四类地区的区分明显,各种产值指标依次递减。依据四类地区物流需求情况可将安徽省的17个地级市分为物流需求旺盛的省会经济圈、需求较大的马铜芜地区;物流需求量小的两淮和皖南山物流需求量小的两淮和皖南山区以及物流需求较小的第三类地区。

相关文档
最新文档