第2课时函数的单调性与最值.docx

第2课时函数的单调性与最值.docx
第2课时函数的单调性与最值.docx

第2课时函数的单调性与最值

【A级】基础训练

1.(原创题)已知函数尸沧)满足/(?2)>A?i)/(?i)</(0),则下列结论正确的是()?

A.函数y=/(兀)在区间[-2,-1] h单调递减,在区间卜1,0]上单调递增

B.函数y=/U)在区间1-2,-1]±单调递增,在区间卜1,0]上单调递减

C.函数尹=心)在区间卜2,0]上最小值是/(-I)

D.以上的三个结论都不正确

2.(2014?吉林模拟)已知函数心)=(。>0,

且aHl)是R上的减函数,则a的取值范围是

().

A. (0,1)

3.(2014 ?江西模拟)函数J(x)=\x\和g(x)=x(2-x)的递增区间依次是().

A.(?8,0],(?oo,l]

B.(?8,0],[l,+8)

c. [0,+g),(gl]

D. [0,+g),[l,+g)

4.(2014 -河南模拟)已知定义在R上的函数./(x)是增函数,则满足Xx)</(2x-3)的x的取值范围

是_______ .

5.(2014?浙江模拟)已知.心)是定义在R上是奇函数,且当兀>0时金)*+a,若./?在R上是单调函数,则实数d的最小值是 _______ .

6.(2013 ?河南模拟)定义在R上的偶函数/(X)在[0,+oo)上是增函数,则方程.心)=/(2「3)的所有

实数根的和为________ .

/(JT)=丄—丄(d>0,JT>0)?

7.己知函数「 a X

(1)求证金)在(0, +oo)上是单调递增函数;

⑵若/(X)在上的值域是,求Q的值.

& (2014 ?太原模拟)函数/(x)对任意的加,都有/(〃?+〃)=/(〃)并且x>0时,恒有加>1.

(1)求证7U)在R上是增函数;

(2)若夬3)=4,解不等式加2+/5)V2.

【B级】能力提升

1.(2014 ?山东模拟)已知函数&)=,?2处+5在(?oo,2]上是减函数,且对任意的X]A2e[l^+l], 总有|心)介2)04,则实数G的取值范围为().

A.[l,4]

B. [2,3]

C.[2,5]

D. [3,+oo)

2.(2014 ?丹东模拟)若/(x)=-x2+2av与g(x)二在区间[1,2]上都是减函数,则a的取值范围是( )?

A. (-1,0)U(0,1)

B. (-l,0)U((),l]

C. (0,1)

D. (0,1]

3.(2014?陕西模拟)函数y=r-T x是().

A.奇两数,在区间(0,+oc)上单调递增

B.奇函数,在区间(0,+oo)上单调递减

C.偶函数,在区间(4,0)上单调递增

D.偶函数,在区间(a,0)上单调递减

4.(2014?山东模拟)已知一系列函数有如下性质:

函数jr+在(0,1)上是减函数,在[l,+oo)上是增函数;

函数y=x+在(0,)上是减函数,在[,+oo)上是增函数;

函数y=x+在((),)上是减函数,在[,+oo)上是增函数;

利用上面所提供的信息解决问题:

若函数尸x+(x>0)的值域是[6,+oo),则实数m的值是_________ .

5.(2014?北京模拟)函数.心)的定义域为力,若x}^A 11.彼)=心2)吋总有则称./W为

单函数例如:函数./(X)=2X+1(X GR)是单函数

術数A X)=X2(X丘R)是单函数;

參旨数函数,Ax)=2v(xeR)是单函数;

./(X)为单函数丸1卫丘力且X|工也,则代X1)工/(疋);

④住定义域上具有单调性的函数一定是单函数.

其中的真命题是_______ ?(写出所有真命题的编号)

6.(2014?上海模拟)设函数./U戶在区间(?2,+g)上是增函数,那么a的取值范围是_ .

7.(创新题)已知./(兀)是定义在[-1,1]上的奇函数,且如)=1,若必丘卜l,l],a+bH0时,有

弘工严)>0

d+b 成立.

(1)判断加:)在[?1,1]上的单调性,并证明它;

⑶若./U)w加2.2阿+1对所冇的GW卜1,1]恒成立,求实数加的取值范围.

参考答案与解析

【A 级】

1. D

2. B

3.C

4. (3,+s)

5. -1

6. 4

7. (1)设孔 >乂1 >0,则孔—力1 >0,乂[孔>0 9 因为/a )ra )=(+—+) — (?—+)

务,2]上单调递增, 所以,( + )=*/⑵=2. 所以易得a = -l-

?

8.

(1 )设 Q <乂2 空

所以乂2 —〉0?

当工>0时,/(x)>b

所以/(X2 一才1 )>1?

/(^2)=/[(.r 2—^1)+心]=/(工2—工1)+于(心)—1, 所以 f (X2)—

/(工1 ) = / (心—)— 1 >0*/(冲)< / (力2)? 所以于(工)在R 上为增函数.

(2)因为m 皿W R 9不妨设〃2 = " = 19

所以 /(1 + 1) = /(1) + /(1)-1^>/(2) = 2/( 1)-1,

/(3) = 4^>/(2 + 1)=4^>/(2)+/(1)-1 = 4^>3/(1)-2 = 4. 所以 /(1) = 2,/(2) = 2X2-1 = 3.

所以 /(u 2+u-5)<2 = /(l)?

因为于(小在R 上为增函数,

所以 a 2 ~\~a — 5< 1亠一3

【B 级】

1 1 工

2 _

XI X2 XI

所以 /(JT2)>/(J1).

所以*刃在(O.+x )上是单调递增的. },2]上的值域是[ (2)因为心在

—>0, b 2

又心)在

l.B 2.D 3. A 4.2 S ②③④ 6. [l,+oo)

7.

(1 )任取JC\ 9 =2 & [— 1 ? 1 ]■且Xl <工2,则一vTz G C — 1 9 叮. 因为*乂)为奇函数,

7CrL\t Z(?(口―工所以/(XI )= /(O-1)+/( - J2)=

2),

.ri 十(一X2)

由已他,得- >0"1 —口<0 ,

乂1 十(—JC2)

所以f(X\ )—/(工2)<0.即 / ( 乂1 )

(2)因为心在[—1,1]上单调递增,

所以

1冬乂+ 9冬1,

V

1勺一0

所以一—1.

(3)因为久1)=1金)在卜1,1]上单调递增.

所以在卜1,1]上金)W1.

问题转化为加2.2伽+1 $ 1,即加2.2加?$0,对aG [-1,1]成立.

卜?而來求m的取值范围.

设g(a)=?2〃??

(D^i加=(),贝|J g(Q)=()20,对0丘卜1,1]恒成立.

②若加H0贝J g⑷为a的一次函数,若g(d)$o,对67^1-1,1]恒成立,必须g(?l)20,H. g(l)20,

所以mW?2,或m22.

所以tn的取值范围是m=0或加22或W?2.

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

《函数的单调性与导数》教学设计(最新整理)

《函数的单调性与导数》教学设计 教材分析 1、内容分析 导数是微积分的核心概念之一,是高中数学教材新增知识,在研究函数性质时有独到之处,体现了现代数学思想.本节的教学内容属导数的应用,是在学习了导数的概念、运算和几何意义的基础上学习的内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打下了基础. 由于学生在高一已经掌握了函数单调性的定义,并会用定义判定函数在给定区间上的单调性.通过本节课的学习应使学生体验到,用导数判断函数的单调性比用定义要简捷的多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分展示了导数的优越性. 2、学情分析 在必修一中,学生学习了单调函数的定义,并会用定义判断或证明函数在给定区间上的单调性,在前几节,学生学习了导数的概念、几何意义及运算法则,已经掌握了利用导数研究函数单调性的必备知识. 用定义证明函数在给定区间的单调性的方法是作差、变形、判断符号.而对大部分函数而言,变形环节是非常繁琐,甚至是无法做到的,并且不清楚“给定区间”是如何给出的,这就要求同学们积极探索更好的方法来判断函数的单调性和探求函数的单调区间,以此来激发学生的学习兴趣. 教学目标 依据新课标纲要和学生已有的认知基础和本节的知识特点,我制定了以下教学目标: 1、知识与技能目标: 借助于函数的图象了解函数的单调性与导数的关系;培养学生的观察能力、归纳能力,增强数形结合的思维意识. 2、过程与方法目标:

习引入 则 =因为x 1x 2,, 当时; 当时 所以函数在区间上单调递减,在区 间 上单调递增 解法二:图像法 (2)“图象法” 探求新知形成概念 问题:如何确定函数f(x)=2x 3-6x 2+7的单调区间? 导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么能否用导数来研究函数的单调性呢? 前面我们用定义和图像已经知道 二次函数的单调性及单调区间,下面我用几何画板来展示曲线上任何一点的导数的变化。切线的方程.rar 一般的,函数的单调性与其导函数的正负有如下的关系:让学生在短时间内尝试完成,结果发现用 “定义法”作差后判断正负很麻烦,而用“图象法”时,图象又很难画出. 教师对具体例子进行动态演示,学生对一般情况进行实验验 证。由观察、猜想到归纳、总结,

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分) 1.函数2()log f x x =在区间[1,2]上的最小值是( ) A.1- B.0 C.1 D.2 2.已知212()log (2)f x x x =-的单调递增区间是( ) A.(1,)+∞ B.(2,)+∞ C.(,0)-∞ D .(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有 ()()0f a f b a b ->-成立, 则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 4.若在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2) ? B. [1,2] ? C. [1,+∞)???D. [2,+∞) 5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A.﹣1 B.0 C.1 D.2 6.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有 2121()(()())0x x f x f x -->.则满足(21)f x -<1()3 f 的x 取值范围是( ) A.(12,23) B.[13,23) C. (13,23) D.[12,23 ) 7.已知(x)=???≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a的取值范围是( ) A.(0,1) B .(0,31 ) C.[71,31) D.[71,1) 8.函数22log (23)y x x =+-的单调递减区间为( ) A.(-∞,-3) B .(-∞,-1) C.(1,+∞) D .(-3,-1) 9.已知函数()f x 是定义在[0,) +∞的增函数,则满足(21)f x -<1()3f 的x 取值范围是( ) (A )(∞-,23) (B )[13,23) (C)(12,∞+) (D)[12,23 ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2x y = B.1y x = C.2y x = D .tan y x =

2019精品教育4.示范教案(2.1函数的概念第1课时)

1.2 函数及其表示 1.2.1 函数的概念 整体设计 教学分析 函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高. 在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念. 三维目标 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识. 2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性. 重点难点 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数. 教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值. 课时安排 2课时 教学过程 第1课时函数的概念 导入新课 思路1.北京时间2005年10月12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题. 思路2.问题:已知函数y=1,x请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题. 推进新课 新知探究 提出问题 (1)给出下列三种对应:(幻灯片) ①一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2. 时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应 f:t→h=130t-5t2,t∈A,h∈B. ②近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1991~2001年的变化情况.

人教版必修1函数的概念教案(第一课时)

1.2.1 函数的概念 第一课时 一,教材的地位与作用 函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言来刻画函数,函数的思想方法将贯穿于高中数学课程的始终。 函数的概念是抽象概括出的概念,通过大量的实例,培养学生从“特殊到一般”的综合归纳的能力,培养学生分析问题的能力,引导学生如何发现事物的本质,如何找到问题的突破口来解决问题。 二,教学目标 1,知识与技能: (1)理解函数的概念及其符号表示,能够辨别函数的例证和反例 (2)会求简单函数的定义域与值域 (3)掌握构成函数的三要素,学会判别两个函数是否相等,理解函数的整体性 2,过程与方法: (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)通过函数概念学习的过程,培养学生从“特殊到一般”的分析问题能力以及抽象概括能力 3,情感态度与价值观 让学生体会现实世界充满变化,感受数学的抽象概括之美。 三,教学重点与难点 1,教学重点:函数的概念,构成函数的三要素 2,教学难点:函数符号y=f(x)的理解 四,教学方法分析 1,教法分析: 遵循建构主义观点的教学方式,即通过大量实例,按照从“特殊到一般”的认识规律,提出问题,大胆猜想,确定方向分组研究尝试验证,归纳总结,通过搭建新概念与学生原有认识结构间的桥梁,使学生在心理上得到认同,建立新的认识结构。 2,学法分析: 倡议学生主动观察,积极思考,提出问题,大胆猜测,从而自主归纳小结。在学习中培养自我的从“特殊到一般”的分析问题能力,感受数学的抽象概括之美。 五、教学过程 1,复习回顾 回顾初中所学函数(如一次函数y=ax+b a≠0等)及函数的概念:(传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量);指出用函数可以描述变量之间的依赖关系;强调函数是

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

《变量与函数》第2课时 教学设计

《变量与函数》教学设计 第2课时 进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念. 1.进一步体会运动变化过程中的数量变化; 2.从典型实例中抽象概括出函数的概念,了解函数的概念. 概括并理解函数概念中的对应关系. 多媒体:PPT课件、电子白板. 一、观察思考,分析变化 问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系? (1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km; (2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元; (3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ; (4)用10 m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y. [活动说明与建议]说明:本问题主要是给出具体事例让学生认识并抽象得到函数的概◆教材分析 ◆教学目标 ◆教学重难点 ◆ ◆课前准备 ◆ ◆教学过程

念,函数概念的抽象应循序渐进,首先让学生知道这些事例是一个变换的过程,其次这些变换过程中都含有两个变量,这两个变量之间存在着某种联系,最后由教师引导通过具体的数据,发现当给定一个变量的值时,有唯一的另一个变量的值与之对应,这种对应关系每个问题都不同. 建议:在教师的引导下,充分的让学生通过实例感知函数,感知这种对应关系. 【归纳】上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一的值与之对应. 二、观察思考,再次概括 问题2:一些用图或表格表达的问题中,也能看到两个变量之间存在上面那样的关系. (1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数y 吗? (2)如图是北京某天的气温变化图,你能根据图象说出某一时刻的气温吗? 问题3:综合以上这些现象,你能再次归纳出上面所有事例的变量之间关系的共同特点吗?函数的定义: 一般地,在一个变化过程中,如果有两个变量x 与y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.如果当 x =a 时,对应的 y =b,那么 b 叫做当自变量的值为 a 时的函数值. 三、初步应用,巩固知识:

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

函数单调性与最值讲义及练习题.docx

函数的单调性与最值 基础梳理 1.函数的单调性 (1) 单调函数的定义 增函数减函数 一般地,设函数 f ( x) 的定义域为 I . 如果对于定义域I 内某个区间 D 上的任意两个自变量的值x1,x2 定义当x1<x2时,都有 f ( x1 ) 当x1<x2时,都有 f ( x1) <f ( x2) ,那么就 >f ( x2 ) ,那么就说函数f 说函数 f ( x) 在区间 D 上是增函数 ( x ) 在区间 D上是减函数 图象 描述 自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义 若函数 f ( x) 在区间 D上是增函数或减函数,则称函数 f ( x) 在这一区间上具有 ( 严格的 ) 单调性,区间 D 叫做 f ( x) 的单调区间. 2.函数的最值 前提 设函数 y=f ( x) 的定义域为 I ,如果存在实数 M 满足 ①对于任意 x∈ I ,都①对于任意 x∈I ,都有 条件有 f ( x) ≤ M; f ( x) ≥ M; .②存在 x0∈ I ,使得②存在 x0∈ I ,使得 f ( x0 ) f ( x0 ) = M M = . 结论M为最大值M为最小值注意:

一个防范 1 函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y=x分别在 ( -∞, 0) ,(0 ,+∞ ) 内都是单调递减的,但不能说它在整个定义域即 ( -∞,0) ∪(0 ,+∞ ) 内单调递减,只能分开写,即函数的单调减区间为 ( -∞,0) 和(0 ,+∞ ) ,不能用“∪”连 接.两种形式 设任意 x1,x2∈[ a, b] 且 x1<x2,那么 f x1-f x2 f x1-f x2 ①> 0? f ( x) 在 [ a,b] 上是增函数;<0? f ( x) x1-x2x1-x2 在 [ a,b] 上是减函数. ②( x1- x2 )[ f ( x1) -f ( x2)] >0? f ( x) 在[ a,b] 上是增函数;( x1-x2)[ f ( x1) -f ( x2)] <0? f ( x) 在 [ a,b] 上是减函 数.两条结论 (1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最 值一定在端点取到. (2)开区间上的“单峰”函数一定存在最大 ( 小 ) 值. 四种方法 函数单调性的判断 (1)定义法:取值、作差、变形、定号、下结论. (2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函 数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性. 单调性与最大(小)值同步练习 一、选择题 1、下列函数中,在 (0 ,2) 上为增函数的是 ( )

三角函数的单调性和最值

三角函数的单调性和最值问题 例1已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间. 解(I)1cos 23(1cos 2)()sin 21sin 2cos 222sin(2)224 x x f x x x x x π-+=++=++=++ ∴当2242x k π ππ+=+,即()8x k k Z π π=+∈时, ()f x 取得最大值22+. 函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+ ∈. (II) ()22sin(2)4f x x π=++ 由题意得: 222()242k x k k Z πππππ- ≤+≤+∈ 即: 3()88 k x k k Z ππππ-≤≤+∈ 因此函数()f x 的单调增区间为3[,]()88 k k k Z ππππ- +∈. 例2 已知函数f (x )=π2sin 24x ??-+ ???+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期; (2)求f (x )在区间π0,2 ?? ???? 上的最大值和最小值. (3)求f (x )在区间π0,2?????? 的单调区间和值域。 解:(1)f (x )=2-sin 2x ·ππcos 2cos 2sin 44 x -?+3sin 2x -cos 2x =2sin 2x -2cos 2x =π22sin 24x ??- ?? ?. 所以,f (x )的最小正周期T =2π2 =π. (2)因为f (x )在区间3π0,8??????上是增函数,在区间3ππ,82?????? 上是减函数.又f (0)=-2,3π228f ??= ???,π22f ??= ???,故函数f (x )在区间π0,2??????上的最大值为22,最小值为-2.

【教学设计】函数的单调性与最大(小)值第2课时_数学

函数的最大(小)值教学设计 【课标解读】 1.知识目标:理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质.2.能力目标:理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质.培养学生自主学习的能力,以及勇于探索、严谨求学的科学态度。3.情感目标:利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 【教材分析】 《函数的最值》是高中数学必修一第一章第三节的内容。在此之前,学生已学习了利用定义证明函数的单调性,这为过渡到本节的学习起着铺垫作用。本节内容是高中数学中相当重要的一个基础知识点,是求函数值域,解决恒成立问题的基础。重点是利用函数单调性求函数最值,以及与二次函数有关的最值的求解及应用。难点是有关求最值时的分类讨论问题。 【学情分析】 在教学过程中,教师创设情景,揭示课题,质疑答辩,排难解惑,通过教师的启发点拨,学生的不断探索,逐步解决求函数的最值问题。整个教学过程使学生主动参与、积极思考、探索尝试;让学生体验到了学习数学的乐趣,培养学生自主学习的能力以及严谨的科学态度,养成勇于探索、乐于实践的学风。 【教学目标】 知识与技能: 1.通过生活中的例子帮助学生理解函数最值的定义及其几何意义。 2.学会应用函数的单调性求解函数的最值或值域。 过程与方法: 1.通过本节课的教学,渗透数形结合、分类讨论的数学思想,对学生进行辩证唯物主义的教育。 2.通过探究与活动,培养学生合作探究、自主学习的能力。 情感与态度: 1.通过本节课的教学,使学生能结合函数的单调性求函数的最值。

2.通过生活实例感受函数单调性对函数最值的影响,培养 学生的识图能力和分类讨论的能力,养成科学严谨的求学态度,使之成为一种习惯。 【教学过程】 (一)问题情境. 1.引入: 喷泉喷出的抛物线型水柱到达“最高点”后 便下落,经历了先“增”后“减”的过程,从中我们发现单调性与函数的最值之间似乎有着某种“联系”,让我们来研究——函数的最大值与最小值。 2.课堂探究: 探究点1 函数的最大值: 观察下列两个函数图象: 思考1 高点B,也就是说,这两个函数的图象都有最高点. 思考2 设函数y=f(x)图象上最高点的纵坐标为M,则对函数 定义域内任意自变量x,f(x)与M 的大小关系如何?(学生回答) 【解答】 f(x)≤M (二)深入学习 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实 数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值 y 图2

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

2013函数的单调性及最值⑵

函数的单调性及最值之二 一、例题讲解 例1.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例2、已知函数32()(3)x f x x x ax b e -=+++ (1)如3a b ==-,求()f x 的单调区间; (1)若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明: βα-<6. 例3.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例4.已知a 是实数,函数())f x x a =-。 (Ⅰ)求函数()f x 的单调区间;Ⅱ)设)(a g 为()f x 在区间[]2,0上的最小值。 (i )写出)(a g 的表达式;(ii )求a 的取值范围,使得2)(6-≤≤-a g 。 二、课后作业 1.(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 2.(2009天津重点学校二模)已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立, 若)3(33.03.0f a =,),3(log )3(log ππf b = )9 1(log )91(log 33f c =,则c b a ,,的大小关系是 ( )A .c b a >> B .a b c >> C .c a b >> D .b c a >> 3.(2009浙江文)若函数2()()a f x x a x =+∈R ,则下列结论正确的是 ( ) A.a ?∈R ,()f x 在(0,)+∞上是增函数 B.a ?∈R ,()f x 在(0,)+∞上是减函数 C.a ?∈R ,()f x 是偶函数 D.a ?∈R ,()f x 是奇函数 4.(2007年福建理11文)已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x > 时,()0()0f x g x ''>>,,则0x <时 ( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 5.( 08年湖北卷)若21()ln(2)2 f x x b x =-++∞在(-1,+)上是减函数,则b 的取值 范围是 ( ) A . [1,)-+∞ B . (1,)-+∞ C . (,1]-∞- D . (,1)-∞- 6(2009辽宁卷文)若函数2()1 x a f x x +=+在1x =处取极值,则a = 7.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为 .

高中数学第三章函数的概念与性质3.1函数的概念及其表示3.1.2第2课时分段函数分层演练

第2课时分段函数 分层演练 综合提升 A 级 基础巩固 1.德国数学家狄利克雷在数学上有着重大贡献,函数D (x )={0,x ?Q ,1,x ∈Q 是以他的名字命名的函数,则D (D (π))= ( ) A.1 B.0 C.π D.-1 答案:A 2.若f (x )={2x ,x >0, f (x +1),x ≤0,则f (43)+f (-43)= ( ) A.-2 B.4 C.2 D.-4 答案:B 3.若函数f (x )={1-x 2,x ≤1,x 2+x -2,x >1,则f (1 f (2))的值为 ( ) A.1516 B.-2716 C.89 D.18 答案:A 4.函数f (x )={x 2-x +1,x <1, 1x ,x >1的值域是 ( ) A .34,+∞ B .(0,1) C .3 4,1 D .(0,+∞) 答案:D 5.已知函数f (x )={x +2,x <0, x 2,0≤x <2, 12x ,x ≥2. (1)求f (f (f (-1 2)))的值; (2)若f (x )=2,求x 的值. 解:(1)因为f (-12)=-12+2=3 2, 所以f (f (-12))=f (32)=(32)2=9 4, 所以f (f (f (-1 2)))=f (94)=12×94=9 8. (2)当f (x )=x +2=2时,解得x =0,不符合题意,舍去;

当f (x )=x 2 =2时,解得x =±√2,其中x =√2符合要求; 当f (x )=12x =2时,解得x =4,符合要求. 综上,x 的值是√2或4. B 级 能力提升 6.某市出租车起步价为5元(起步价内行驶里程为3 km),以后每增加1 km,加收1.8元(不足1 km 按1 km 计价),则乘坐出租车的费用y (单位:元)与行驶的里程x (单位:km)之间的函数图象大致为下图中的 ( ) A B C D 解析:由已知得y ={5,03 = {5,00时,1-a <1,1+a >1,所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去). 当a <0时,1-a >1,1+a <1,所以-1+a -2a =2+2a +a ,解得a =-34. 8.如图,△OAB 是边长为2的等边三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ),试求函数f (t )的解析式. 解:过点B 作BE 垂直x 轴于点E ,可得OE =12OA =1,BE =√3. 当0

相关文档
最新文档