金属在土壤中的腐蚀

金属在土壤中的腐蚀
金属在土壤中的腐蚀

金属在土壤中的腐蚀

林清枝

金属在大自然中经常遭到的各种电化学腐蚀、如大气腐蚀、土壤腐蚀和海水腐蚀等。这些腐蚀有个共同特点,即主要是吸氧腐蚀(电化学腐蚀中,是氧分子接受电子),但它们又具有各自的规律。如今,随着现代比城乡建设,地下设施日益增多,金属构件遭到的腐蚀日趋严重,研究并了解土壤的腐浊规律显得有格外意义。由于土壤的组成及结构的复杂性,其腐蚀远比大气腐蚀复杂得多,本文仅就土壤的腐蚀类型作些分析。常见的土壤腐蚀有:

一、差异充气引起的腐蚀

由于氧气分布不均匀而引起的金属腐蚀,称为差异充气腐蚀。土壤的固体颗粒含有砂子、灰、泥渣和植物腐烂后形成的腐植土。在土壤的颗粒间又有许多弯曲的微孔(或称毛细管),土壤中的水分和空气可通过这些微孔而深入到土壤中的水分和空气可通过这些微孔而深入到土壤内部,土壤中的水分除了部分与土壤的组分结合在一起,部分粘附在土壤的颗粒表面,还有一部分可在土壤的微孔中流动。于是,土壤的盐类就溶解在这些水中,成为电解质溶液,因此,土壤湿度越大含盐量越多,土壤的导电性就越强。此外,土壤中的氧气部分溶解在水中,部分停留在土壤的缝隙内,土壤中的含氧量也与土壤的湿度、结构有密切关系,在干燥的砂土中,氧气容易通过,含氧量较高;在潮湿的砂土中, 氧气难以通过,含氧量较低.;在潮湿而又致密的粘士中,氧气的通过就更加困难,故含氧量最低。埋在地下的各种金属管道,如果通过结构和干湿程度不同的土壤将会引起差异充气腐蚀,假如,铁管部分埋在砂士中,另一部分埋在粘土中,由腐蚀电池阳极Fe-2e→Fe2+

阴极1

2

O2+H2O+2e→2OH-

不难看出,因砂土中氧的浓度大于粘士中氧的浓度,则在砂土中更容易进行还原反应,即在砂土中铁的电极电势高于在粘土中铁的电极电势,于是粘土中铁管便成了差异充气电池的阳极而遭到腐蚀。同理,埋在地下的金属构件,由于埋设的深度不同,也会造成差异充气腐蚀,其腐蚀往往发生在埋得深层的部位,因深层部位氧气难以到达,便成为差异充气电池的阳极,那些水平放置而直径较大的金属管,受腐蚀之处亦往往是管子的下部,这也是由差异充气所引起的腐蚀。

二、微生物引起的腐蚀

如果土壤中严重缺氧,又无其他杂散电流,按理是较难进行电化学腐蚀的,可是埋在地下了的金属构件照样遭到严重的破坏,有人曾在电子显微镜下观察被土壤腐蚀的金属,发现有种细菌,其形状为略带弯曲的圆拄体,长度约为 2 ×10-6m,并长有一根鞭毛。细菌依靠鞭毛的伸曲,使其躯体向前移动。由于它

依赖于硫酸盐还原反应而生存的,所以人们称它为硫酸盐还原菌。它对金属腐蚀作用的解释,率先由屈菲(Kuhv)提出,在缺氧条件下,金属虽然难以发生吸氧腐蚀,但可进行析氢腐蚀(电化学腐蚀中,有氢气放出)。只是因阴极上产生的原子态的氢未能及时变为氢气析出,而被吸附在阴极表面上,直接阻碍电极反应的进行,使腐蚀速率逐渐减慢。可是,多数的土壤中都含有硫酸盐。如果有硫酸盐还原菌存在,它将产生生物催化作用,使SO42-离子氧化被吸附的氢,从而促使析氢腐蚀顺利进行。整个过程的反应如下:

阳极4Fe-8e = 4Fe2+

阴极8H++8e=8H(吸附在铁表面上)

SO42-+8H还原菌

??S2-+4H2O

?→

Fe2++S2- = FeS(二次腐蚀产物)

+)3Fe2++6OH- = Fe(OH)2(二次腐蚀产物)

___________________________________________

总反应:4Fe+SO42-+4H2O = FeS+3Fe(OH)2+2OH-

其腐蚀特征是造成金属构件的局部损坏,并生成黑色而带有难闻气味的硫化物。硫酸盐还原菌便是依靠上述化学反应所释放出的能量进行繁殖的。

据目前研究,能参与金属腐蚀过程的细菌不止一种,它们并非本身使金属腐蚀,而是细菌生命活动的结果间接地对金属电化学腐蚀过程产生的影响。例如,有的细菌新陈代谢能产生某些具有腐蚀性的物质(如硫酸、有机酸和硫化氢等),从而改变了土壤中金属构件的环境;有的细菌能催化腐蚀产物离开电极的化学反应,致使腐蚀速率加快。此外,许多细菌还能分泌粘液,这些粘液与土壤中的土粒、矿物质、死亡细菌、藻类以及金属腐蚀产物等粘合并形成粘泥,覆盖在金属构件的表面,因局部缺氧成为差异充气电池的阳极,从而遭到严重的孔腐蚀。

腐蚀性细菌一般分为喜氧性菌(又称嗜氧性菌)和厌氧性菌两大类。增氧性菌必须在有游离氧的环境中生存,如喜氧性氧化铁杆菌,它依靠金属腐蚀过程中所产生的Fe2+氧化成Fe3+时所释放的能量来维持其新陈代谢,它存在于中性含有有机物和可溶性铁盐的水、土壤及锈层中,其生长温度为20-25℃,pH在7-7.4 之间。又如喜氧性排硫杆菌,能将土壤中的污物发醇所产生的硫代硫酸盐还原为硫元素;而喜氧性氧化硫杆菌又可把元素硫氧化为硫酸,从而加快金属的腐蚀。这类细菌常存在于土壤、污水及泥水中,其生长温度为28-30℃,PH为2.5-3.5。

厌氧性菌必须在缺乏游离氧的条件下才能生存,如硫酸盐还原菌是种常见的厌氧性菌.它是地球上最古老的微生物之一,其种类繁多,广泛存在于中性的土壤、河水、海水.油井、港湾及锈层中,它们的共同特点是把硫酸盐还原为硫化物,生长适宜温度为30℃,PH在7.2-7.5.

喜氧性菌和厌氧性菌虽然生存条件截然不同,但往往在喜氧性菌腐蚀产物所造成的局部缺氧的环境中,厌氧性菌亦可以得到繁殖的机会,这种不同性质细菌的联合腐蚀常发生于水管内壁,在那里,首先是氧化铁杆菌将水管腐蚀溶解下来的Fe3+,并形成Fe(OH)3沉淀,其沉淀附着在水管内壁生成硬壳状的锈瘤。瘤下的金属表面缺氧,恰好为硫酸盐还原菌提供生存与繁殖的场所。这样,两类细菌相辅相成,更加快了瘤下金属的溶解。有人取下锈瘤,经分析发现其中的腐蚀产物含有1.5%-2.5%的硫化物,每克腐蚀产物中约含有1000条硫酸盐还原菌。

此外,还有一些腐蚀性细菌不论有氧或无氧的环境中均能生存,如硝酸盐还原菌,能把土壤中的硝酸盐还原为亚硝酸盐和氨。它的生长温度为27℃,pH为

5.5-8.5。

如今发现,由微生物引起的腐蚀广泛地存在于地下管道、矿井、海港、水坝以及循环冷却系统的金属构件和设备中,给冶金、电力、航海、石油及化工等行业带来极大的损失.因此,近十多年来,对如何控制微生物腐蚀的研究日益引起有关部门的高度重视,越来越多的人从事这方面的考察与研究,已取得了可喜的进展。

三、杂散电流引起的腐蚀

由于某种原因,一部分电流离开了指定的导体,而在原来不该有电流的导体内流动,这一部分电流,称为杂散电流。它主要来自于电气火车、直流电焊、地下铁道及电解槽等电源的漏电。由杂散电流引起的腐蚀,如在金属制作的电解槽中进行电解时,正常情况下电流应从正极通过电解液流向负极。但也有可能有部分电流先从正极流向靠近正极的金属槽壁,然后从靠近负极的电解壁流出,并通过溶液回到负极.这样,电流在从金属电解槽壁流出之处便成为阳极而遭到腐蚀.又如电气火车顶上有根架空线,其作用是接受从电站正极输入的直流电,经过车厢后从地面铁轨回到电站的负极。如果各段铁轨间连接良好,则大部分电流能通过路轨回到电站.要是路面不平,路轨间连接又不好,而地面又潮湿,这时将有部分电流流入地下,通过埋在路轨下的金属管道或其他金属设施,最后返回路轨到电站的负极。这时,路轨下出现两个串联的大电解池。根据电流的流动方向,一个电解池的阳极是铁轨,阴极是地下管线;另一电解池的阳极是地下管线,阴极是路轨。前者腐蚀的是路轨,暴露在地面上,易被发现,维修也方便;后者腐蚀的是地下管线,不易被发现,且维修也不便,问题更为严重。此外,杂散电流也能引起钢筋混凝土结构的腐蚀,尤其冬季施工,为了防冻而在混凝土中加入氯化物(如NaCl、CaC12),其腐蚀就更为严重。

可见,土壤腐蚀同样既广泛又严重,研究并了解各类土壤的腐蚀规律,其目的在于防腐。

大气腐蚀环境分类

大气腐蚀环境分类 材料在不同大气环境中的腐蚀破坏程度差异很大,例如,距海24.3米处的钢腐蚀速度为距海243.8米处的大约12倍。试验表明,若以Q235钢板在我国拉萨市大气腐蚀速率为1,则青海察尔汉盐湖大气腐蚀速率为4.3,广州城市为23.9,湛江海边为29.4,相差近30倍。因此,在防腐蚀工程设计和制定产品环境适应性指标时,均需按大气腐蚀环境分类进行。 大气环境分类一般有两种方法,一种是按气候特征划分,即自然环境分类;另一种是按环境腐蚀严酷性划分。后者更接近于应用实际而被普遍采用。国际标准ISO9223~9226便是根据金属标准试片在环境中自然暴露试验获得的腐蚀速率及综合环境中大气污染物浓度和金属表面润湿时间进行分类。将大气按腐蚀性高低分为5类,即: C1:很低 C2:低 C3: 中 C4:高 C5:很高 在涂料界,国际标准化组织又颁布了更有针对性的标准:ISO12944-1~ 8:1998 《色漆和清漆─保护漆体系对钢结构的防腐保护》(Paints and varnishes ─ Corrosion protection of steel structures by protective paint systems)[。这是一部在国际防腐界通行的、权威的防护涂料与涂装技术指导性国际标准。目前,在国内涂料、涂装行业、腐蚀与防护行业及相关设计研究院所、高等学校,在重大防腐工程设计、招投标及施工过程中都使用到这一综合性标准。标准共分八个部分: 第1部分总则 第2部分环境分类 第3部分设计上的考虑 第4部分表面类型与表面处理 第5部分保护漆体系、 第6部分试验方法 第7部分涂漆工艺 第8部分新工程和维护工作规范的制定。

大气腐蚀环境分类OK

1. 大气腐蚀环境分类:乡村大气、城市大气、工业大气、海洋大气。 ①乡村大气的腐蚀性通常情况下是最小的,正常情况下也不含化学污染物,但的确包含有机物和无机物颗粒,其主要的腐蚀性来源是水分,氧气和二氧化碳。干旱和热带大气是乡村大气中的特殊情况。①②③④⑤⑥⑦ ②城市大气与乡村大气类似,因为很少有工业活动,其主要腐蚀源是机动车排放和民用燃料排放所产生的硫化物和氮化物类污染物。 ③工业大气通常具有较强的腐蚀性,但与石化工业、重工业等工厂区排放物的类型和浓度有关,其主要污染和腐蚀性物质是不同浓度的二氧化硫、氯化物、磷酸盐和硝酸盐等。工业大气环境下通常会形成酸雨,使其腐蚀环境区域扩大化。 ④海洋大气通常具有高度的腐蚀性,而且其腐蚀性与距离海岸的远近和朝向、风向和风速、所处气候带和纬度等有关,其腐蚀性来源是海风卷着海水中的氯化物粒子并沉积到基材表面 2. 一般来说,钢铁的腐蚀是一种电化学腐蚀。水和氧是钢铁产生腐蚀的两个必要条件。 3. 大气腐蚀的关键因素:湿润时间、环境温度、大气污染物。(1)二氧化硫(2)氯化物(3)其他大气污染物 4. 防止海洋腐蚀的措施:除正确设计金属构件、合理选材外,通常有以下几种:(1)采用阳极性金属热喷涂层或复合涂层(2)采用厚浆型重防腐涂料;(3)根据电化学腐蚀原理,采用牺牲阳极(4)对重点部件采用耐腐蚀材料包套(5)设计构件时要考虑到足够的腐蚀裕量。 5. 只有热喷涂才是最有效的长效防腐方法 6. 一般来说,重防腐涂料由底漆、中间漆、面漆等三部分组成,除了防腐性和要求各层之间具有良好的相容性、附着力和干燥时间外,各部分涂料因为所处位置不同要求也各不相同。如底漆需要与基材有良好的,中间层主要起增加厚度和提供柔韧性作用,面漆需要抵抗腐蚀介质和耐候性等。 7. 涂层体系特点:①重防腐涂料体系的配套具有差异性②重防腐涂料对钢铁的保护不能一劳永逸③重防腐蚀涂装的初期投资少但后期维护费用高④重防腐涂料高压无气喷涂施工效益高⑤无机富锌底漆表面处理要求高及需要涂装后保养 8. 热喷涂技术是指利用不同的热源来加热各种被喷涂的材料至熔融状态,并借助于雾化气流的加速使其形成"微粒雾流",高速喷射到经过表面预处理的工件上,形成与基体紧密结合的堆积状喷涂层的技术。 9. 电弧喷涂是利用燃烧于两根连续送进的被喷涂金属线材之间的电弧作为热源来使金属线材熔化,用高速气流把熔化的金属雾化成微粒,并使雾化金属粒子加速,雾化粒子射流高速沉积到工件表面形成涂层的技术。 10. 电弧喷涂层大多是均匀腐蚀,涂层的厚度与防腐蚀寿命大致成正比例关系。所以涂层厚度的选择至关重要。 11. 由电弧喷涂金属涂层和有机封闭涂层组合在一起的防护涂层体系就成为电弧喷涂复合涂层体系。它是由阳极性金属喷涂层+涂料封闭底层+涂料封闭中间层+涂料封闭面层组成。涂料封闭底层主要起封孔作用,应与金属喷涂层有良好的相容性,能充分渗透并填充金属喷涂层的孔隙并良好附着。涂料封闭中间层是封闭和隔离层,耐蚀性好。涂料封闭面层应对腐蚀环境有适应性,能耐腐蚀和耐大气老化。 12. 桥梁钢结构其他防护技术:①电镀锌及锌合金涂层技术②热镀锌涂层技术③冷镀锌涂层技术④阴极保护技术 13. 热镀锌图层技术:是将除锈后的钢件侵入熔化的锌液中,铁与熔融锌反应生成一层合金化的锌层,附着在钢件表面,从而起到防腐的目的。这是一种有效的金属防腐蚀方式,主要

材料腐蚀与防护试题

吸氧腐蚀:是指金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜中而发生的电化学腐蚀。 第一章金属与合金的高温氧化 1、金属氧化膜具有保护作用的的充分条件与必要条件充分条件:膜要致密、连续、无孔洞,晶体缺陷少;稳定性好,蒸汽压低,熔点高;膜与基体的附着能力强,不易脱落;生长内应力小;与金属基体具有相近热膨胀系数;膜的自愈能力强。必要条件:氧化时生成的金属氧化膜的体积与生成这些氧化膜所消耗的金属的体积之比必须大于1,即PBR值大于1. 2、说出几种主要的恒温氧化动力学规律,并分别说明其意义。(1)直线规律:符合这种规律的金属在氧化时,氧化膜疏松,易脱落,即不具有保护性,或者在反应期间生成气相或者液相产物离开了金属表面,或者在氧化初期氧化膜很薄时,其氧化速度直线由形成氧化物的化学反应速度决定,因此其氧化速度恒定不变,符合直线规律。(2)抛物线规律:许多金属或者合金在较高的高温氧化时,其表面可形成致密的固态氧化物膜,氧化速度与膜的厚度成反比,即其氧化动力学符合这种规律。(3)立方规律:在一定温度范围内,一些金属的氧化物膜符合这种规律。(4)对数和反对数规律:许多金属在温度低于300-400摄氏度氧化时,其反应一开始很快,但是随后就降到了氧化速度可以忽略的

程度,该行为符合对数或反对数规律。 3、说出三种以上能提高钢抗高温氧化的元素镍,铝,钛 4.、纯NI在1000摄氏度氧气氛中遵循抛物线氧化规律,常数k=39X10-12cm2/s,如果这种关系不受氧化膜厚度的影响,试计算使0.1cm厚镍板全部氧化所需的时间。解:由抛物线规律可知:厚度y与时间t存在如下关系:y2=kt,t=y2/k=2.56x108s 5哈菲价法则:当基体氧化膜为P型半导体时,往基体中加入比基体原子低价的合金元素,使离子空穴浓度降低,提高电子浓度,结果导致电导率增加,而氧化速率降低,往基体中比此基体原子高价的合金元素,使离子空穴浓度提高,降低电子浓度,结果导致电导率降低,而氧化速度提高。当基体氧化膜为n型半导体时,往基体中加入比基体原子低价的合金元素,使电子浓度降低,电导率降低,而基体离子浓度增加,氧化速度增加,往基体中加入比基体原子高价的合金元素,使电子浓度增加,电导率增加,而基体离子浓度降低,氧化速度降低。以上合金元素对氧化物晶体缺陷的影响规律成为控制合金氧化的原子价规律,简称哈菲原子价法则。 第二章金属的电化学腐蚀 1、解释下列词语

腐蚀环境种类

环境种类 大气腐蚀环境 1.农村大气农村大气是最洁净的大气,空气中不含强烈的化学污染,主要含有有机物和无机物尘埃等。影响腐蚀的因素主要是相对湿度、温度和温差. 2.城市大气城市大气的主要污染物主要是城市居民生活所造成的大气污染,如汽车尾气、锅炉排放的SO2等。实际上,很多大城市往往也是工业城市,或者是海滨城市,所以大气环境污染的相当复杂。 3.工业生产区大气工业生产区所排放的污染物含有大量的SO2、H2S等含硫化合物,所以工业大气环境最大的特征是含有硫化物。他们易溶于水,形成的水膜成为强腐蚀介质,加速金属的腐蚀。随着大气相对湿度和温差的变化,这种腐蚀作用更强。很多石化企业和钢铁企业往往非常大,可以形成一个中等城市规模,大气质量相当差,对工业设备和居民生活造成的污染极其严重。 4.海洋大气其特点是空气湿度大,含盐分多。暴露在海洋大气中的金属表面有细小盐粒子的沉降。海盐粒子吸收空气中的水分后很容易在金属表面形成液膜,引起腐蚀。在季节或昼夜变化气温达到露点是尤为明显。同时尘埃、微生物在金属表面的沉积,会增强环境的腐蚀性。所以海洋大气对金属结构的腐蚀性比内陆大气,包括乡村大气和城市大气要严重的多.海洋的风浪条件、离海面的高度等都会影响到海洋大气腐蚀性。风浪大时,大气中的水分含盐量高,腐蚀性增加。据研究,离海平面7~8m处的腐蚀最强,在此之上越高腐蚀性越弱。雨量的大小也会影响腐蚀,频繁的降雨会冲刷掉金属表面的沉积物,腐蚀会减轻。相对湿度升高会使海洋大气腐蚀加剧。一般热带腐蚀性最强,温带次之,两级最弱。中国最典型的处于海洋腐蚀环境中的是杭州湾跨海大桥,地处亚热带海洋性季风气候。 5.处于海滨的工业大气环境,属于海洋性工业大气,这种大气中既含有化学腐蚀污染的有害物质,又含有海洋环境的海盐粒子。2种腐蚀介质的相互作用对混凝土的危害更大。 淡水腐蚀环境 混凝土碳化模型 国内外学者提出了许多混凝土碳化深度预测模型,这些模型大致可分为两类:一类是基于试验数据或实际结构的碳化深度实测值,采用数学统计或神经网络等方法拟合得到的经验模型;另一类为基于碳化反应过程的定量分析建立的理论模型。 灰色理论 它是一门研究信息部分清楚、部分不清楚并带有不确定性现象的应用数学学科。传统的系统理论,大部研究那些信息比较充分的系统。对一些信息比较贫乏的系统.利用黑箱的方法,也取得了较为成功的经验。但是,对一些内部信息部分确知、部分信息不确知的系统,却研究得很不充分。这一空白区便成为灰色系统理论的诞生地。在客观世界中,大量存在的不是白色系统(信息完全明确)也不是黑色系统(信息完全不明确),而是灰色系统。因此灰色系统理论以这种大量存在的灰色系统为研究而获得进一步发展。 基本观点 (1)灰色系统理论认为,系统是否会出现信息不完全的情况、取决于认识的层次、信息的层次和决策的层次,低层次系统的不确定量是相当的高层次系统的确定量,要充分利用已知的信息去揭示系统的规律。灰色系统理论在相对高层次上处理问题,其视野较为宽广; (2)应从事物的内部,从系统内部结构和参数去研究系统。灰色系统的内涵更为明确具体;

课件腐蚀案例个人整理版(仅供参考)

应力腐蚀实例: 实例1:北方一条公路下蒸气冷凝回流管原用碳钢制造,由于冷凝液的腐蚀发生破坏,便用304型不锈钢(0Cr18Ni9)管更换。使用不到两年出现泄漏,检查管道外表面发生穿晶型应力腐蚀破裂。 答:在北方冬季公路上撒盐作防冻剂,盐渗入土壤使公路两侧的土壤中氯化钠的含量大大提高,而选材者却不了解没有对土壤腐蚀做过分析。就决定更换不锈钢管。将奥氏体不锈钢用在这种含有很多氯化钠的潮湿土壤中,不锈钢肯定表现不佳,也需还不如碳钢呢。 防护措施: 实例2:某化工厂生产氯化钾的车间,一台SS-800型三足式离心机转鼓突然发生断裂,转鼓材质为1Cr18Ni9Ti。经鉴定为应力腐蚀破裂。(P224) 答:在氯化钾生产中选用1cr18Ni9Ti 这种奥氏体不锈钢转鼓是不当的。氯化钾溶液是通过离心机转鼓过滤的。氯化钾浓度为28°Bé,氯离子含量远远超过了发生应力腐蚀破裂所需的临界氯离子的浓度,溶液pH 值在中性范围内。加之设备间断运行,溶液与空气的氧气能充分接触,这就是奥氏体不锈钢发生应力腐蚀破裂提供特定的氯化物的环境。 保护措施:停用期间使之完全浸与水中,与空气隔离;定期冲洗去掉表面氯化物等,尽量减轻发生应力破裂的环境条件,以延长使用寿命,不过,发生这种转鼓断裂飞出的恶性事故可能有一定的偶然性,但这种普通的奥氏体不锈钢用于这种高浓度氯化物环境,即使不发生这种恶性事故,其寿命也不长,因为除应力腐蚀还有,孔蚀,缝隙腐蚀等。 实例3:CO2压缩机一段、二段和三段中间冷却器为304L(00Cr19Ni10)型不锈钢制造。投产一年多相继发生泄漏。经检查,裂纹主要发生在高温端水侧管子与管板结合部位。所用冷却水含氯化物0.002%~0.004%。(P225) 答:这里考虑奥氏体不锈钢的氯化物溶液中的scc,冷却水中氯化物含量控制很低,但仍然发生了scc 破坏。 设备为热交换器,结构为管壳式。工艺介质走管程,水走壳程,进行热交换。因此,不锈钢管子外面接触的的介质都是水而不是氯化物溶液。水中所含氯化物只是一种杂质,其含量是很低的。应该不会发生scc 的。问题主要发生在氯化

金属腐蚀与防护论文

金属在土壤中的腐蚀 陈晓燕 (湖南大学化学化工学院 湖南长沙) 摘要:金属在大自然中经常遭到的各种电化学腐蚀、如大气腐蚀、土壤腐蚀和海 水腐蚀等。这些腐蚀有个共同特点,即主要是吸氧腐蚀(电化学腐蚀中,是氧分 子接受电子),但它们又具有各自的规律。如今,随着现代比城乡建设,地下设 施日益增多,金属构件遭到的腐蚀日趋严重,研究并了解土壤的腐浊规律显得有 格外意义。由于土壤的组成及结构的复杂性,其腐蚀远比大气腐蚀复杂得多,本 文仅就土壤的腐蚀类型作些分析。 关键词:金属 土壤 腐蚀 1、引 言 当金属和周围气态或液态介质接触时常常由于发生化学作用或电化学作用而逐 渐损坏的过程成为金属腐蚀。所谓化学腐蚀就是金属直接与介质起化学反应而引 起的腐蚀,在这种情况下金属表面上会生成相应的化合物,如氧化物及硫化物等, 它们通常形成一层薄膜,膜的性质对金属进一步腐蚀有很大影响。所谓电化学腐 蚀就是金属和外界介质的电化学反应而产生的腐蚀,也就是在发生化学反应的过 程中有电流产生,形成了原电池,所以又叫原电池作用。金属在大自然中经常遭 到的各种电化学腐蚀,如大气腐蚀、土壤腐蚀和海水腐蚀等,这些腐蚀的共同点 即主要是吸氧腐蚀。电化学腐蚀中是氧分子接受电子,但它们又具有各自 的规律。随着现代化城乡建设,地下设施日益增多金属构件遭到的腐蚀日趋严重, 研究并了解土壤的腐蚀规律显得格外意义。由于土壤的组成及结构的复杂性,其 腐蚀远比大气腐蚀复杂得多本文仅就土壤的腐蚀类型作些分析。 2、土壤腐蚀类型及原因: ①差异充气引起的腐蚀 由于氧气分布不均匀而引起的金属腐蚀,称为差异充气腐蚀。土壤的固体颗粒含 有砂子、灰、泥渣和植物腐烂后形成的腐植土。在土壤的颗粒间又有许多弯曲的 微孔(或称毛细管),土壤中的水分和空气可通过这些微孔而深入到土 壤中的 水分和空气可通过这些微孔而深入到土壤内部,土壤中的水分除了部分与土壤的 组分结合在一起,部分粘附在土壤的颗粒表面,还有一部分可在土壤的微孔中流 动。于是,土壤的盐类就溶解在这些水中,成为电解质溶液,因此,土壤湿度越 大含盐量越多,土壤的导电性就越强。此外,土壤中的氧气部分溶解在水中,部 分停留在土壤的缝隙内,土壤中的含氧量也与土壤的湿度、结构有密切关系,在 干燥的砂土中,氧气容易通过,含氧量较高;在潮湿的砂土中, 氧气难以通过, 含氧量较低.;在潮湿而又致密的粘士中,氧气的通过就更加困难,故含氧量最 低。埋在地下的各种金属管道,如果通过结构和干湿程度不同的土壤将会引起差 异充气腐蚀,假如,铁管部分埋在砂士中,另一部分埋在粘土中,由腐蚀电 池: 阳极 +→-22Fe e Fe 阴极 -→++OH e O H O 222 122

大气腐蚀环境分类之令狐文艳创作

大气腐蚀环境分类 令狐文艳 材料在不同大气环境中的腐蚀破坏程度差异很大,例如,距海24.3米处的钢腐蚀速度为距海243.8米处的大约12倍。试验表明,若以Q235钢板在我国拉萨市大气腐蚀速率为1,则青海察尔汉盐湖大气腐蚀速率为4.3,广州城市为23.9,湛江海边为29.4,相差近30倍。因此,在防腐蚀工程设计和制定产品环境适应性指标时,均需按大气腐蚀环境分类进行。 大气环境分类一般有两种方法,一种是按气候特征划分,即自然环境分类;另一种是按环境腐蚀严酷性划分。后者更接近于应用实际而被普遍采用。国际标准ISO9223~9226便是根据金属标准试片在环境中自然暴露试验获得的腐蚀速率及综合环境中大气污染物浓度和金属表面润湿时间进行分类。将大气按腐蚀性高低分为5类,即: C1:很低 C2:低 C3: 中 C4:高 C5:很高 在涂料界,国际标准化组织又颁布了更有针对性的标准:ISO12944-1~8:1998 《色漆和清漆─保护漆体系对钢结构的防腐保护》(Paints and varnishes ─ Corrosion

protection of steel structures by protective paint systems)[。这是一部在国际防腐界通行的、权威的防护涂料与涂装技术指导性国际标准。目前,在国内涂料、涂装行业、腐蚀与防护行业及相关设计研究院所、高等学校,在重大防腐工程设计、招投标及施工过程中都使用到这一综合性标准。标准共分八个部分: 第1部分总则 第2部分环境分类 第3部分设计上的考虑 第4部分表面类型与表面处理 第5部分保护漆体系、 第6部分试验方法 第7部分涂漆工艺 第8部分新工程和维护工作规范的制定。 其中第2部分系统地介绍了大气腐蚀环境分类。而导致腐蚀产生的环境因素主要有大气、各类水质和土壤三方面,所以标准规定了大气腐蚀环境级别和钢结构在水下和土壤中的腐蚀环境分类。参照ISO12944-5,就可以针对某种腐蚀环境设计涂装系统。其中,该标准根据不同大气环境的腐蚀性及其特征污染物质的污染程度,将涂料产品面对的大气环境大致分为乡村大气、城市大气、工业大气和海洋大气四种类型。 表-1 ISO 12944-2对于大气腐蚀环境的分类以及典型环境的举例

换热器管束腐蚀案例分析及预防

换热器管束腐蚀案例分析及预防 发表时间:2020-01-18T09:19:09.970Z 来源:《基层建设》2019年第28期作者:盛洁 [导读] 摘要:管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。 国核电力规划设计研究院有限公司北京市 1000095 摘要:管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。换热器是化工装置中重要的设备之一。换热器工作原理是由管壳程中两种不同介质再在换热管壁两侧进行流动,达到动态平衡来起到冷热介质热量交换的作用。常用的换热管尺寸为Φ19x2和Φ25x2.5。常规化工设备,碳钢设备腐蚀量取2mm到2.5mm,设备壁厚最薄取8mm,所以与其他化工设备相比较换热管的壁厚特别薄,容易进行产生腐蚀穿透的现象。一旦换热管发生腐蚀穿透现象,换热器中压力高侧介质会流入压力低侧介质,破坏压力平衡,物料平衡和温度平衡状态。介质泄露会引发下游物料被掺混、催化剂中毒、计划外停产检修的事故。对于泄露的管束,一般无法进行更换,通常采用的维修方法为通过对壳程打压的方式找出泄露的换热管,将泄露的换热管两端用管堵堵住。堵住以后此换热管封闭,换热器面积会减小。当换热器管热面积小到无法满足换热性能要求,则需要更换换热器。文章以某工厂为例,对其换热器管束腐蚀情况进行了详细的分析,希望能够给相关人士提供重要的参考价值。 关键词:换热器;管束;防腐蚀 引言:合理设置换热器结构,规避不必要的腐蚀,决定着化工生产装置长期稳定的运行及安全的生产。换热器作为化工生产装置中重要部分,对换热器结构设计提出了特殊的要求。设计人员需要储备扎实的基础知识和丰富的工程经验,设计前充分考虑各种影响因素,设计出满足长期运行的换热器设备。 1.换热器目前的运行工况 某工厂甲醇-凝结水换热器1190-E1102A/B管束与管板自2017年4月份以来连续泄漏5次,泄漏频率明显提高,严重制约生产,烯烃中心申请质量技术部委托设计院,对此换热器的材质和工况进行重新核准,核准此管板和管束材质能否长期满足此工况运行,如果材质比较低,请给出升级后的材质建议,便于中心立刻上报采购计划,解决换热器泄漏的难题。管程:介质凝结水,出入口工作温度120/162℃,工作压力0.3MPa。壳程:介质甲醇,出入口工作温度76/100℃,工作压力0.8MPa。 2.换热器目前材质 规格型号BJS1300-2.5-465-6/25-41,管板材质16MnIII,换热管材质10#钢,每台管束共有1024根换热管,4管程,单台换热面积为467.1平方,上下重叠式安装。管程介质凝结水,壳程介质甲醇。 3.腐蚀介质的影响 换热器管程介质为加氢反应流出物,管程操作温度为240~260℃,操作压力为3.5MPa,该环境下加氢反应流出物中的腐蚀介质硫化氢、氨、水、氯化氢、氢均呈气相存在,可能对管束造成硫化氢+氢气腐蚀和氢损伤,而管束材质选用了耐硫化氢+氢气腐蚀和氢损伤的0Crr18ni10Ti奥氏体不锈钢,因此,其腐蚀轻微。腐蚀介质中虽含有氯元素,但其以气相化合物的形式存在,不可能导致管束性氯化物应力腐蚀开裂。因此,管程腐蚀介质不是导致管束开裂的主要影响因素。换热器壳程介质为冷低分油,操作温度为144~219℃,操作压力为0.6MPa,该环境下冷低分油中存在液相水,部分腐蚀介质溶于水中形成电化学腐蚀溶液,对换热管造成腐蚀。该冷凝水ph值为9.12,呈碱性,硫化氢含量较高,氯离子及铁离子含量较低。碳钢和低合金钢对硫化物应力腐蚀开裂比较敏感,而0Crr18ni10Ti奥氏体不锈钢对氯化物应力腐蚀开裂比较敏感,因此,冷低分油中的腐蚀介质氯化物给换热管的应力腐蚀开裂提供了腐蚀环境。 4.换热器目前泄漏维修状况 自2017年4月至今,共计检修5次。累计A台堵管70根,B台堵管120根。其中B台凝结水出口管程已经堵漏1/3,对工艺生产造成重大影响,能耗增加。 案例分析:(1)从腐蚀方面考量:本换热器管壳程介质为凝结水和甲醇,碳钢材质对此介质均有良好内腐蚀性,且从业主拍的换热器截面图片看,管束一侧有较多的管子腐蚀,说明不属于腐蚀导致管子泄露。如果是因为介质腐蚀导致管子泄露,则会均匀的有泄露换热管存在,不会集中在换热器某一区域。(2)从冲刷方面考量:本换热器壳程流量为236842kg/h密度741.06~711.25kg/m3入口管为DN300,出口管线为两个DN250。入口流量ρv2为1193.67kg(m.s2)因为壳程含有0.0015%酸值壳程介质为有腐蚀液体,在流速ρv2>740kg/(m.s2)会产生冲刷腐蚀情况。本设备壳程一个入口两个出口,入口DN300,出口DN250。DN300管口流通截面积为0.07065m2,一个出口流通截面积为0.049m2,两个出口流通截面积合计为0.098m2。在不介质密度影响不大的状态下壳程介质由壳程入口进入换热器,自设备出口流出时,换热器出口截面积大于入口截面积,壳程介质流体流速会更低一些[1]。如果由于两个出口由于配管等因素,压力降不同会导致在此换热器中壳程介质会发生壳程流体流向压力低侧,即绝大部分壳程流体流向一端出口。则可能会在壳程出口处出现流速激增,加重冲刷腐蚀现象。(3)从折流板方面考量:换热器壳体内有折流板以引导壳程流体在壳程中穿行。因为折流板与壳程流体垂直,且同一块折流板有死区,有缺口,所以在壳程流体冲击情况下会产生振动。换热管穿过折流板但并没有焊接,所以折流板如果发生振动,会对换热管产生割锯作用。如果折流板一端振动,振动区域附近换热管均会受此影响。换热器管束腐蚀预防:在重新设计换热器时,要采取相应

腐蚀事例分析及防护方法

腐蚀实例分析及防护方法 (应力腐蚀实例) 【1】北方一条公路下蒸气冷凝回流管原用碳钢制造,由于冷凝液的腐蚀发生破坏,便用304型不锈钢(0Cr18Ni9)管更换。使用不到两年出现泄漏,检查管道外表面发生穿晶型应力腐蚀破裂。 分析:北方冬季在公路上撒盐作为防冻剂,盐渗入土壤使公路两侧的土壤中的氯化钠的含量大大增加,奥氏体不锈钢在这种含有很多氯化物的潮湿土壤中,为奥氏体不锈钢发生应力腐蚀破裂提供特定的氯化物的环境,从而发生应力腐蚀。 防护措施:1、把奥氏体不锈钢管换成碳钢管 【2】某化工厂生产氯化钾的车间,一台SS-800型三足式离心机转鼓突然发生断裂,转鼓材质为1Cr18Ni9Ti。经鉴定为应力腐蚀破裂。 分析:氯化钾溶液经过离心转鼓过滤后,氯化钾浓度升高。然而离心转鼓的材质为(1Cr18Ni9Ti)奥氏体不锈钢。而氯离子的含量远远超过发生应力腐蚀的临界氯离子浓度,为奥氏体不锈钢发生应力腐蚀破裂提供特定的氯化物的环境。所以转鼓会发生应力腐蚀从而发生断裂。 防护措施:1、更换转鼓的材质 定期清洗表面的氯化物 【3】 CO2压缩机一段、二段和三段中间冷却器为304L(00Cr19Ni10)型不锈钢制造。投产一年多相继发生泄漏。经检查,裂纹主要发生在高温端水侧管子与管板结合部位。所用冷却水含氯化物0.002%~0.004%。分析:管与管板连接形成的缝隙区。由于闭塞条件使物质迁移困难,容易形成盐垢,造成氯离子浓度增高。高温端冷却水强烈汽化,在缝隙区形成水垢使氯化物浓缩。 防护措施:1、改进管与管板的联接结构,消除缝隙。 2、立式换热器的结构改进,提高壳程水位,使管束完全被水浸没。 3、管板采用不锈钢—碳钢复合板,以碳钢为牺牲阳极 【4】一高压釜用18-8不锈钢制造,釜外用碳钢夹套通水冷却。冷却水为优质自来水,含氯化物量很低。高压釜进行间歇操作,每次使用后,将夹套中的水排放掉。仅操作了几次,高压釜体外表面上形成大量裂纹。 分析:操作时高压釜外表面被冷却水浸没,停运时夹套中的水被放掉。反应釜表面还是会留下小液滴,小液滴变干,氯化物就会浓缩。从而造成反应釜表面发生腐蚀。

防腐蚀讲义f第四章金属在自然环境中的腐蚀与防护

第四章金属在自然环境中的腐蚀与防护 本章主要讨论金属在大气、海水、土壤这三种主要的自然环境中金属腐蚀的特征、规律、影响因素以及防护方法等有关内容。 第一节大气腐蚀 一、大气腐蚀的概念及研究意义 金属在常温大气中,由于空气中的水和氧等的化学和电化学作用而引起的腐蚀称为大气腐蚀。大气腐蚀是一种常见的腐蚀现象,如钢铁在空气中的生锈即属于此类腐蚀。在大气中使用的钢材量一般超过全世界钢产量的60%,厂房的钢梁、桥梁、钢轨、各种机械设备、车辆、电工产品、石油石化中的大部分生产设备以及武器装备等金属材料都是在大气环境下使用的。据估计因大气腐蚀损失的金属约占总的腐蚀损失量的一半以上。因此研究大气腐蚀的现象和规律,了解大气腐蚀的机理和影响因素,以及金属材料的耐大气腐蚀性能以及防止大气腐蚀的方法,都对节省能源、保护资源等具有重要的意义。 二、大气腐蚀分类 ㈠大气腐蚀的相关概念 1.大气及其组成 地球表面上自然状态的空气称为大气。大气是组成复杂的混合物,其主要成分见表4-1。 表4-1 大气的基本组成(不包括杂质,10℃)

2.绝对湿度和相对湿度 参与金属大气腐蚀过程的主要组成是氧和水蒸汽。二氧化碳虽参与锌和铁等某些金属的腐蚀过程,形成腐蚀产物的碳酸盐,但它的作用是次要的。 氧在大气腐蚀中主要是参与电化学腐蚀过程。空气中的氧溶于金属表面存在的电解液薄层中作为阴极去极化剂,而金属表面的电解液层由大气中的水蒸汽所形成。大气中的水分常用湿度来表示: ①绝对湿度:一立方米大气中的水汽含量(g/m3);一定温度下大气的最高绝对湿度叫做大气的饱和水蒸汽量。 ②相对湿度(RH):大气中的绝对湿度与同温度下的饱和水蒸汽量之比。 ㈡大气腐蚀的分类 按照金属表面的潮湿度不同,也就是按照电解液膜层的存在和状态不同,可把大气腐蚀分为三类: 1. 干大气腐蚀 在干燥大气中(通常RH< 60%--80%)金属表面不存在液膜时的腐蚀,这种腐蚀属于化学腐蚀中的常温氧化。其特点是金属表面形成不可见的保护膜。某些金属,如铜、银等非铁金属,在被硫化物所污染了的空气中产生的失泽作用就是一个例子。 2. 潮大气腐蚀 在相对湿度足够高,60%—80%< RH <100%,?金属表面存在肉眼看不见的极薄水膜时发生的大气腐蚀。例如铁在没有雨雪淋到时的生锈即属于此。 3. 湿大气腐蚀 当金属表面存在肉眼可见的凝结水膜时发生的大气腐蚀。也就是说,当空气湿度接近100%,以及当水分以雨、雪、水沫等形式直接落在金属表面上时所发生的腐蚀。 ㈢大气腐蚀速度与液膜厚度的关系 可以定性地用图4-1来表示大气腐蚀速度与金属表面上膜层

铁金属腐蚀及防腐处理

铁金属在大气中的腐蚀及原理

铁金属在大气中的腐蚀及原理 摘要:本文根据铁的化学性质、大气的成分,结合所学的化学知识,分析了铁在空气中氧化腐蚀过程和原理,探讨了在大气中影响铁及合金的主要因素。 关键词:铁金属氧化腐蚀大气 1 引言 众所周知,各种金属工程材料都有一定的使用寿命。这是由于它们在使用或存放的过程中都会受到不同形式的直接或间接的损坏,如最常见的氧化腐蚀现象。 金属腐蚀是多种多样的,习惯上把金属或合金在大气中由于氧、水分及其他物质的作用而发生的腐蚀或变色称为锈蚀,这种腐蚀产物称为“锈”。例如钢铁在潮湿的大气中与氧作用腐蚀生成棕褐色的铁锈,它是一种含水的Fe2O3和FeO的化合物,其化学成份一般式可用χFe2O3?yFeO?zH2O表示。铜氧化腐蚀后表面变绿即铜锈,如青铜器博物馆出土的青铜器,经过2500多年的氧化腐蚀,表面形成的翠绿色物质。 铁及其合金是我们日常生活和建筑工程中使用量最大的金属材料,研究铁在大气环境中氧化腐蚀是铁金属及其合金腐蚀的重要形式,十分必要。 2 大气中的成分 铁容易腐蚀主要因为它是非常活泼的金属元素,易与其他元素反应形成化合物,纯金属铁遇到大气中的氧更容易发生氧化腐蚀,所以我们平常见到的铁制品基本上是褐色。

铁金属氧化的确切定义,可分为狭义氧化和广义氧化两种。 狭义氧化,是指铁与氧气反应生成氧化物的过程。广义氧化,是指铁与含氧、含硫、含卤素、含碳、含氮等其他气体反应生成相应的氧化物、硫化物、卤化物、碳化物、氮化物等化合物的过程。 铁及其合金材料在大气环境中氧化腐蚀的外在因素主要包括以下几个方面: (1)大气环境介质组分:如气相中的O2、H2O、CO、CO2、H2、N2、NH3、H2S、HCl等。 (2)大气环境介质的状态因素:气体分压、流速、温度、压力、冷热循环等。 (3)氧化—还原循环。 (4)燃烧物与附着物:燃灰等积灰物。 地球表面自然状态的空气叫做大气。大气中的主要成分是氮气、氧气、少量其他气体和一定量的水分。在典型的农村环境中,大气成分接近于自然大气的成分;而在城镇工业环境中还有SO2、H2S、酸、碱、盐挥发物以及粉尘等。 铁金属、合金钢及其构筑物,在其加工制造、贮运和使用过程中都处于大气环境之下。这些铁金属或构筑物在大气环境下发生的氧化腐蚀现象,就叫做大气氧化腐蚀。 3 铁金属在大气环境中氧化腐蚀的历程 铁金属在大气中氧化腐蚀是一个复杂的过程。这里只探讨狭义的铁金属大气氧化腐蚀历程,按其化学反应、电化学反应和扩

腐蚀环境与腐蚀失效类型间的关系

腐蚀失效事故类型 1.局部腐蚀 1.1应力腐蚀 1.2孔腐 1.3间隙腐蚀 1.4晶间腐蚀 1.5选择性腐蚀 1.6其他 2.全面腐蚀 3.失效类型,产生条件,特征,实例 3.1 全面腐蚀 产生条件:金属材料的表面状态,化学成分以及组织结构基本上是均匀的,不能形成局部的腐蚀电池而是构成了无数的为电 池。 特征:腐蚀减薄均匀,面积大 实例:暴露在大气中的碳钢和低合金钢,锌在稀硫酸中的溶解等。 3.2 电偶腐蚀 产生条件:在电解质溶液中,两种电位不同的金属相接触或者通过结构中的导体构成回路形成宏观的腐蚀电池。 特征:在电位交底的金属接触面周围出现沟槽和凹坑等局部腐蚀现象,而电位较高的金属受到保护没有腐蚀。

实例:泵轴和泵杆与石墨密封想接触,金属杆轴被腐蚀。 3.3 晶间腐蚀 产生条件:由于晶界和晶内存在电位差而在晶界上产生选择性溶解而腐蚀。 特征:晶间腐蚀不引起金属外形尺寸变化,但强度和塑性下降,出现微裂纹,晶相检查裂纹沿晶界扩展。 实例:奥氏体不锈钢敏化处理后或者焊接的热影响区在腐蚀溶液中均可发生。 3.4 点腐蚀 产生条件:金属表面不均匀性如表面缺陷,夹杂或划痕等是点腐蚀的发源地,介质中的卤族元素和氧化剂同时存在有利于点腐 蚀的形成和发展。点腐蚀易于在介质停留的区域发展。特征:点腐蚀的孔径小,但向深度发展直至设备穿孔。介质中含有Clˉ往往有自催化作用,多发生在沉积的垢下和腐蚀产 物下。 实例:不锈钢和铝合金等材料在介质中含有Clˉ时容易产生点腐蚀。如换热器管的腐蚀穿孔等。 3.5 缝隙腐蚀 产生条件:设备构件金属之间或与非金属之间存在间隙,范围在几十微米时形成了溶液即可进入又处于滞留状态,促使Clˉ等 浓缩而导致金属活化-钝化腐蚀。 特征:缝隙内局部加速腐蚀形成麻坑的形式。缝隙外无腐蚀或腐

金属大气腐蚀

金属防锈知识 1 金属的大气腐蚀 罗永秀 (武汉材料保护研究所 430030) 1.1 金属的腐蚀 金属腐蚀是一门专门的学科。金属材料与周围介质接触发生化学或电化学作用而产生的破坏现象叫金属的腐蚀。腐蚀产物因金属种类和接触介质的不同而异,对于钢铁的腐蚀产物,人们习惯称其为锈,锈蚀的过程叫生锈。 金属的腐蚀是其在热力学上不稳定这一固有特性所决定的,是不需外力作用的自发过程。以铁为例:铁从还原态到氧化态,其自由能是减小的,变化过程是自发的,即金属铁在大气条件下成为氧化铁(锈)的过程是一种自然过程。 除了金、铂等贵金属在自然界中以原子态存在外,大多数工业上常用的金属如铁、铝、镁、钠等均以离子态存在,它们的原子态不稳定,在自然条件下会发生锈蚀。 1.2 金属的化学腐蚀 金属与周围介质直接的化学作用,不伴随电流发生的腐蚀叫化学腐蚀。金属制品在干燥的大气中与空气中的O 2、H 2S 等起化学作用,在金属表面形成一层金属氧化物:如 Fe → Fe 2O 3 Al → Al 2O 3 Cu → CuS 通常情况下,这是一层极薄的不可见的膜,若这层膜牢牢地吸附在金属表面,并且是完整致密的,则它将减缓或阻止氧等的侵入,使腐蚀速度迅速降低,如铝在空气中的氧化就属于这一类。若空气中有硫化物,由于金属硫化物的导电性比其氧化物好,因此,形成的膜会较厚, 但随着膜层的变厚,腐蚀也很快就减慢,因此,化学腐蚀对于金属在大气中的腐蚀而

言并非主要的。 1.3 金属的电化学腐蚀 金属与周围介质作用,同时伴随有电流发生的腐蚀叫金属的电化学腐蚀。金属的电化学腐蚀过程与原电池的作用相似。 在原电池模型中,由两种不同的纯金属构成电极对,两种金属的电位差为电子的流动提供了动力,而在现实中,金属在大气条件下的腐蚀大多是单金属的,它的腐蚀是怎样进行的?下面仍以铁为例加以分析: ⑴钢铁并非纯铁,其中有渗碳体和石墨,不同的成分其电极电位不同,金属材料晶格缺陷和应力分布不均等都会带来电位的差别,这就为电子流动提供了动力。 ⑵嵌在钢铁中的石墨、渗碳体、晶格缺陷等与本体紧密相连,为电子运动提供了通路。 ⑶在大气条件下,雨水、凝露和雾霜及空气中的水分等均会在钢铁制品表面形成一层水膜,空气中的氧、二氧化碳及其它物质会溶入或混入其中,这就构成了电解质。 分析表明:钢铁在大气条件下,其表面具备构成电池的条件,由于所含的渗碳体和石墨等作为阴极的区域均很小,也称为微阴极,构成的腐蚀电池也叫微电池,因此,金属在大气条件下的腐蚀也叫金属的微电池腐蚀,它是在大气条件下,金属腐蚀损坏的主要原因。 阻止或减缓金属腐蚀的微电池过程即可阻止或减缓金属的大气腐蚀。 1.4 金属大气腐蚀的特点 在潮湿的大气中,金属表面会形成一层水膜,空气中的CO 2、O 2、SO 2等气体的溶入,使之成为电解液,为金属的腐蚀提供了条件,通常这层水膜极薄,因此金属在大气条件下的腐蚀是在极薄液膜下的电化学腐蚀。 由于这层液膜通常是接近中性的,氢离子浓度很低,在微电池的阴极通常是氧的还原过程。 阳极: +→2Fe 2e -e F 阴极: -→++OH O H 22e O 2122 阴极和阳极产物结合:↓→+-+22)(2e OH Fe HO F 产物进一步与氧作用:3222e(OH)42)(4F O H O OH Fe →++ 我们实际看到的铁锈是铁的各种氧化物和氢氧化物的混合物,呈褐色疏松状态。

腐蚀环境下锈层的成分及分类

腐蚀环境下锈层的成分及分类 摘要 伴随着经济技术的发展,对钢材的耐蚀性要求不断提高。在不同的环境下,碳钢的腐蚀速率都有不同的变化。在大气环境,海洋环境等不同的环境下,影响腐蚀的因素不同,生成的腐蚀产物也有不同的变化,内外锈层的成分也在改变。大气环境下内锈层的成分主要以α-FeOOH和Fe3O4为主,外锈层为γ-FeOOH。海洋环境下,腐蚀产物有Fe3O4、γ-Fe2O3、α-Fe2O3、α-FeOOH、β-FeOOH、γ-FeOOH、FeOCl、GR*(1)。 1前言 随着经济技术的发展,钢材被大量的应用于生活,工业中,但由于钢材在环境中的腐蚀,造成大量的损失,每年在大气环境下,有大量的材料遭到破坏。根据《2009年中国海洋经济统计公报》,2009年我国海洋生产总值31964亿元,腐蚀损失占生产总值5%计算,那么每年海洋损失达到1.598亿元。实际损失量远远大于这个数值。许多人对于碳钢腐蚀进行研究,此次对各种环境下的锈层成分成分进行总结。 2 大气腐蚀产物 对于腐蚀初期过程的锈层演化研究表明:碳钢的锈层的常见成分含有Fe2O3、α-FeOOH、γ-FeOOH、非晶的FeOOH和Fe3O4。铁锈的发展是一个极其复杂的过程,在最初的阶段内可以形成绿锈,即铁的二价氧化物,三价氧化物,和氢氧化物的混合物,但此阶段锈层极不稳定,随着腐蚀的进行,锈层的主要成分转化为γ-FeOOH和非晶FeOOH,同时有少量的α-FeOOH生成,从而形成早期稳定的锈层结构。据有些学者证实[],在长

期的大气暴晒过程中,金属材料的内外锈层组成会发生变化,内锈层会更加致密,主要由α-FeOOH组成(此前的主要成分为非晶的FeOOH),外锈层疏松,主要为γ-FeOOH组成。 Oh S J等人通过对放置在乡村大气,海滨大气,环境下环境下长达16年之久的6种碳钢表面形成的锈层进行研究发现,所有碳钢表面的锈层都分为内外两层,内层主要有α-FeOOH和Fe3O4。外层则为γ-FeOOH和少量的α-FeOOH。 汪轩义根据我国自然环境大气腐蚀网站多年积累的数据,包括气象因素,环境因素以及材料的腐蚀参数进行等运用统计和回归等数学方法,反应了大气环境对材料腐蚀的综合评价因子。 王振尧通过对A3钢和10CrNiCuP进行大气腐蚀发现腐蚀过程中腐蚀产物为α-FeOOH、Fe3O4、γ-FeOOH和Fe2O3。在腐蚀进行的各个阶段他们的成分基本不变,但在腐蚀过程中,含量不断的发生改变。疏松多孔的γ-FeOOH向稳定的α-FeOOH转变。 张琳,王振尧等通过对3.5%的NaCl的腐蚀加速实验中发现Q235的腐蚀产物主要为α-FeOOH、γ-FeOOH、Fe3O4、β-FeOOH。耐候钢的主要成分主要为α-FeOOH、γ-FeOOH和Fe3O4,认为耐候钢中含有的合金元素对β-FeOOH的生成有阻碍作用。但整体来耐候钢相比于Q235钢材优势不明显,不适合于海洋大气环境。 3.海洋环境腐蚀产物 海洋环境中腐蚀最为严重的区域是浪花飞溅区。浪花飞溅区位于海气交界面上,经常处于潮湿多氧的状态,还有较强而频繁的海浪冲击,钢结构在浪花飞溅区处于干湿交替的状态,在加上高含氧量,海浪冲击,供氧充足,日照充足,温度上升这些因素,导致钢结构在浪花飞溅区的腐蚀最为严重。钢结构在浪花飞溅区平均腐蚀速率为0.3~0.5mm/a,同一种钢材

相关文档
最新文档