金属的断裂韧性

金属的断裂韧性
金属的断裂韧性

第四章金属的断裂韧性

断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。

1.强度储备法,许用应力,强度储备系数(安全系数)

按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。而[σ],对塑性材料[σ]=σs/n,对脆性材料[σ]=σb/n,其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。

2.低应力脆性断裂(低应力脆断):高强度机件及中低强度大型件。

3.裂纹体:传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。

4.人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。断裂力学,建立了材料性质、裂纹尺寸和工作应力之间的关系。

5.断裂韧性,断裂韧度

§4.1 线弹性条件下的断裂韧性

断口分析表明,金属机件的低应力脆断断口没有宏观塑性变形痕迹,可以应用线弹性断裂力学。两种分析方法:(1)应力场强度分析方法;(2)能量分析方法。

一、裂纹扩展的基本形式

根据外加应力与裂纹扩展面间的取向关系,裂纹主要有三种基本形式:

张开型(I型),滑开型(II型)、撕开型(III型)。

二、应力场强度因子K I及断裂韧性K IC

1. 裂纹尖端应力应变场分析

)23sin 2sin 1(2cos 2θθθπσ-=r

K I x )23sin 2sin 1(2cos 2θθθπσ+=r

K I y 23cos 2cos 2sin 2θθθπτr K I

xy = 0=z σ (平面应力)

)(y x z σσνσ+= (平面应变)

适用于r<

x 轴上,拉应力最大,切应力为零,为裂纹最易扩展方向。

2. 应力场强度因子K I

K I 表示I 型裂纹尖端应力场的强弱程度。

线弹性断裂力学并不象传统力学那样,单纯用应力大小来描述裂纹尖端的应力场,而是同时考虑应力与裂纹形状及尺寸的综合影响。

由公式可知,当时,此时裂纹尖端处的应力趋于无穷大,这表明裂纹尖端处应力是奇点,应力场具有r -1/2阶奇异性。

002lim =→?=θσπy r I r K

一般地说,应力强度因子K 1可表达为K 1=Yσ(a)1/2,式中Y 是形状系数为裂纹形状和位置的函数,无量纲,一般取1一2;K I 单位MPa ?m 1/2。

(1)对无限大平板中心有穿透裂纹,如图3-4(a),

(2)对无限大平板,板的一侧有单边裂纹,如图3-4(b),

(3)对有限宽平板,中心有穿透裂纹,如图3-4(c),

Y 是2a /w 的函数,可由图中实线所示查出。

(4)对有限宽平板,板的两侧有双边裂纹,如图3-4(c),其K1的表达式

Y 也是2a/w 的函数,但由图中虚线所查出。 (5)对有限宽平板,板的一侧有单边裂纹,如图3-4(f),

,Y 也是a/w 的

函数,其函数曲线可按图3-4(f)查找。 (6)对圆柱形试样上有环形裂纹,如图3-4(d),试样外径为D,d 为试样净截面直径,D-d/2为缺口和引发的疲劳裂纹长度。

,Y为D/d的函数,已作出图解,可由图3-4(d)查出。应该指出,圆柱试样带环形裂纹,在裂纹尖端附近存在三向应力,不存在无应力的自由表面。即使试样尺寸较小,也能满足平面应变条件,因此可用这种试样,测定材料的断裂韧性。

(7)对三点弯曲试样,在缺口尖端引发疲劳裂纹,如图3-4(e),,Y

是a/w的函数,可由图中所示的曲线查出。用三点弯曲试样是测定材料断裂韧性的简便方法。

(8)对无限大体内的椭圆形裂纹,如图3-4(h)和图3-4(j)中所示。椭圆上任一点P 的位置由角而定,椭圆的长半轴为c,短半轴为a,KP的表达式为

式中之Q为裂纹形状系数,取决于a/2c及σ/σys,可由图3-4(h)中查出。椭圆裂纹上各处的应力强度因子是不同的,在短半轴上最大,在长半轴上最小。圆形裂纹是椭

圆裂纹的特殊情况,这时,,。

(9)当板厚为无限大,表面有半椭圆的裂纹时,也如图3-4(h),实际上这是工程结构件最常见的缺陷形式,例如压力容器与管道,其脆性破坏大多是从表面缺陷处开始的。但表面裂纹与穿透裂纹不同,它是一个三维问题而不是一个二维问题,这在数

学上处理起来非常困难,所以目前只有近似解法。,Q值仍由图3-4(h)所示曲线中查得。

图3-4 几种形状试样的应力强度因子

3. 断裂韧性K IC 及断裂K 判据

K I 达到临界值时,裂纹进入失稳扩展阶段,这个临界值,称为断裂韧性,记为K IC 。

断裂韧性的大小,表示材料抵抗裂纹失稳扩展的能力。

K IC ,平面应变条件,K C ,平面应力条件。

由于平面应变条件是比平面应力条件硬的应力状态,所以材料的K C >K IC 。 C C IC a Y K σ= σC 临界应力,a C 临界裂纹尺寸。

断裂K 判剧:K I >=K IC 。

三点应用:

4. 裂纹尖端塑性区及K I 的修正

小范围屈服

1) 塑性区的尺寸

屈服判剧

2

021???? ??=s I K r σπ

(平面应力) ()2202121νσπ-???? ??=s I K r (平面应变) 应力松弛:R 0=2r 0

2) 等效裂纹及K I 的修正。

y I r a Y K +=σ

等效裂纹修正值r y 为应力松弛后塑性区宽度的一半。

三、 裂纹扩展能量释放率G I 及断裂韧性G IC

1. 裂纹扩展时能量的转化关系

A U W s p e ?+=?-?)2(γγ

左端是裂纹扩展动力,右端是裂纹扩展阻力。

2. 裂纹扩展能量释放率G I

U=Ue-W ,为系统势能。

裂纹扩展单位面积时,系统释放的势能数值,称为裂纹扩展能量释放率,记为G I 。

A U G I ??-= ,单位厚度时,a U G I ??-=,表示使裂纹扩展单位长度的原动力。 单位MPa ?m 。

E

a

G I 2πσ= (平面应力) ()E a G I 2

21πσν-= (平面应变)

3. 断裂韧性G IC 和断裂G 判据

G I 达到临界值时,裂纹进入失稳扩展阶段,这个临界值,称为断裂韧性,记为G IC 。

裂纹失稳扩展阻力(γp +2γs )

断裂G 判剧:G I >=G IC 。

4. G IC 和K IC 的关系

平面应变条件下,

a K I πσ=

()E

a

G I 221πσν-= 所以有 22

1I I K E G ν-= ,22

1IC IC K E G ν-=

5. 裂纹扩展阻力曲线及断裂判据

裂纹扩展阻力R=γp +2γs R-a 曲线,阻力曲线。

裂纹扩展动力G I =Y 2σ2a/E ’ G I -a 曲线,动力曲线。 裂纹失稳扩展的断裂判剧:

a R a G I ??≥??

§4.2 影响断裂韧性的因素

一、 材料成分、组织结构的影响

1. 细化晶粒的合金元素提高K IC

2. 强烈固溶强化的合金元素降低K IC

3. 以第二相析出的合金元素降低K IC

二、 特殊热处理的影响

1. 高温形变热处理可细化奥氏体亚结构、增加位错密度、促进合金碳化物弥散

沉淀而提高KIC 。

2. 亚温淬火和超高温淬火均可提高K IC 。

三、 外界因素的影响

1. 温度 温度降低,韧性降低。

2. 应变速率 应变速率增加,韧性降低。

§4.3 断裂韧性的测试

一、 试样形状、尺寸及制备

三点弯曲试样和紧凑拉伸(CT )试样

二、 测试方法

§4.4 断裂韧性在工程中的应用

一、 高压容器承载能力的计算

二、 高压壳体材料的正确选择

三、 大型转轴断裂分析

四、钢铁材料的脆性评定

1.超高强度钢(σ0.2≥1400MPa)

2.中、低强度钢(σ0.2≤800MPa)

3.高强度钢(σ0.2=800~1200MPa)

4.球墨铸铁

金属材料-准静态断裂韧性测试的方法

ICS 77.040.10 Ref. No. ISO 12135:2002/Cor.1:2008(E) ? ISO 2008 – All rights reserved Published in Switzerland INTERNATIONAL STANDARD ISO 12135:2002 TECHNICAL CORRIGENDUM 1 Published 2008-06-01 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ? МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ? ORGANISATION INTERNATIONALE DE NORMALISATION Metallic materials — Unified method of test for the determination of quasistatic fracture toughness TECHNICAL CORRIGENDUM 1 Matériaux métalliques — Méthode unifiée d'essai pour la détermination de la ténacité quasi statique RECTIFICATIF TECHNIQUE 1 Technical Corrigendum 1 to ISO 12135:2002 was prepared by Technical Committee ISO/TC 164, Mechanical testing of metals , Subcommittee SC 4, Toughness testing — Fracture (F), Pendulum (P), Tear (T). Page 1, Clause 2 Replace the reference to ISO 7500-1:— with the following: ISO 7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system Delete the reference to Footnote 1) and the footnote “To be published. (Revision of ISO 7500-1:1999)”. Page 13, Figure 6 Add “(not to scale)”. Move the note from under the title of Figure 6 to above the title. Page 16, Figure 9, Footnote d) Replace “on” with “or” to give d Edge of bend or straight compact specimen.

断裂韧性实验报告

断裂韧性测试实验报告 随着断裂力学得发展,相继提出了材料得、、等一些新得力学性能指标,弥补了常规试验方法得不足,为工程应用提供了可靠得断裂判据与设计依据。下面介绍下这几种方法得测试原理及试验方法。 1、三种断裂韧性参数得测试方法简介 1、1平面应变断裂韧度得测试 对于线弹性或小范围得型裂纹试样,裂纹尖端附近得应力应变状态完全由应力强度因子所决定。就是外载荷,裂纹长度及试样几何形状得函数。在平面应变状态下,当与得某一组合使=,裂纹开始失稳扩展。得临界值就是一材料常数,称为平面应变断裂韧度。测试保持裂纹长度a为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时得、代入所用试样得表达式即可求得。 得试验步骤一般包括: (1)试样得选择与准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等); (2)断裂试验; (3)试验结果得处理(包括裂纹长度得测量、条件临界荷载得确定、实验测试值得计算及有效性得判断)。 1、2延性断裂韧度得测试 积分延性断裂韧度就是弹塑性裂纹试样受型载荷时,裂纹端点附近区域应力应变场强度力学参量积分得某些特征值。测试积分得根据就是积分与形变功之间得关系: (1-1) 其中为外界对试样所作形变功,包括弹性功与塑性功两部分,为裂纹长度,为试样厚度。

积分测试有单试样法与多试验法之分,其中多试样法又分为柔度标定法与阻力曲线法。但无论就是单试样法还就是多试样柔度标定法,都须先确定启裂点,而困难正在于此。因此,我国GB2038-80标准中规定采用绘制阻力曲线来确定金属材料得延性断裂韧度。这就是一种多试样法,其优点就是无须判定启裂点,且能达到较高得试验精度。这种方法能同时得到几个积分值,满足工程实际得不同需要。 所谓阻力曲线,就是指相应于某一裂纹真实扩展量得积分值与该真实裂纹扩展量得关系曲线。标准规定测定一条阻力曲线至少需要5个有效试验点,故一般要5 8件试样。把按规定加工并预制裂纹得试样加载,记录曲线,并适当掌握停机点以使各试样产生不同得裂纹扩展量(但最大扩展量不超过0、5mm)。测试各试样裂纹扩展量,计算相应得积分,对试验数据作回归处理得到曲线。阻力曲线得位置高低与斜率大小代表了材料对于启裂与亚临界扩展得抗力强弱。 阻力曲线法测试步骤一般包括: (1)试样准备 ①试样尺寸得选择原则: 1)平面应变条件:标准规定 (1-2)其中 2)积分有效性条件 一般,当不易估计时,可用求出得估计值 ②疲劳预制裂纹:

金属材料的断裂认识

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析 脆性断裂有以下特征: (1)脆断都是属于低应力破坏,其破坏应力往往远低于材料的屈服极限。(2)一般都发生在较低的温度,通常发生脆断时的材料的温度均在室温以下20℃。(3)脆断发生前,无预兆,开裂速度快,为音速的1/3。(4)发生脆断的裂纹源是构件中的应力集中处。

金属材料的断裂韧性

金属材料的断裂韧性 摘要不同的金属材料的断裂韧性是不一样的,对不同金属材料的断裂韧性进行研究并找出影响的因素对提高金属材料断裂韧性具有非常重要的意义。根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 关键词金属材料;失效;断裂韧性;影响因素 0引言 随着现代社会经济的不断发展,对金属材料的使用也大大的增加,在工程构件设计和使用的过程中,最为严重的就是金属材料的断裂,金属材料一旦发生断裂就会发生生产安全事故,同时也会造成一定的经济损失。通过对以往发生的大量的金属材料的断裂事件的分析,得出构件的低应力脆断是由宏观裂纹扩展引起的,其中最为主要的是金属材料的断裂纹,裂纹一般是在金属加工和生产的过程中引起的[1]。 根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 1影响金属材料断裂韧性的外部因素 1.1几何因素的影响 几何因素是影响金属材料断裂韧性的一个最为重要的外部因素。几何因素主要包括两个方面的内容,分别是试样厚度和试样取向等因素,下面对这两个因素进行分析: 1)试样厚度 目前在对金属材料的断裂韧性进行研究的过程中发现,不同厚度的金属材料会对会对裂纹前端的应力约束产生较大的影响,同样也会对金属材料的断裂韧性有一定的影响,所以我们分别用不同厚度的同一个金属材料进行断裂韧性的实验,在实验的过程中发现厚试样的断裂韧性值明显的比薄试样的断裂韧性值要低,换而言之,不同厚度的金属材料,其自身的断裂韧性也不同,厚度也是影响金属材料断裂韧性的一个重要的因素[2]。 2)试样的取向 在对金属材料进行取样测试的时候,试样的去向业余金属材料的断裂韧性之

金属断裂机理完整版

金属断裂机理 1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

材料力学 论金属的断裂

工程材料力学期中作业 班级成型2班 姓名陶帅 学号20113650

论述金属的断裂 一、基本介绍 概念:金属材料在外力作用下断裂成两部分的现象。 磨损、腐蚀和断裂是机件的三种主要失效形式,其中以断裂的危害最大。在应力作用下(有时还兼有热及介的共同作用),金属材料被分成两个或几个部分,称为完全断裂;内部存在裂纹,则为不完全断裂。实践证明,大多数金属材料的断裂过程都包括裂纹形成与扩展两个阶段。对于不同的断裂类型,这两个阶段的机理与特征并不相同。 二、断裂的基本类型 弹性变形→塑性变形→断裂 1,根据材料断裂前产生的宏观塑性变形量的大小来确定断裂类型,可分为韧性断裂和脆性断裂。 2,多晶体金属断裂时,按裂纹扩展路径可以分为穿晶断裂和沿晶断裂。 3,根据应力类型可分为纯剪切断裂和微孔聚集型断裂、解理断裂。 三、具体分析 1,韧性断裂 韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量。韧性断裂的断裂面一

般平行于最大切应力并与主应力成45o角。用肉眼或放大镜观察时,端口呈纤维状,灰暗色。纤维状是苏醒变形过程中微裂纹不断扩展和相连造成的,灰暗色则是纤维断口表面对光反射能力很弱所致。 中、低强度钢的光滑圆柱试样在室温下的静拉伸断裂是典型的韧性断裂,其宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。 当光滑圆柱拉伸试样受拉伸力作用,在试验力达到拉伸力-伸长曲线最高点时,便在试样局部区域产生缩颈,同时试样的应力状态也由单向变为三向,且中心轴向应力最大。在中心三向拉应力作用下,塑性变形难于进行,致使试样中心部分的夹杂物或第二相质点本身碎裂,或使夹杂物质点与基体界面脱离而形成微孔。微孔不断长大和聚合就形成显微裂纹。早期形成的显微裂纹,其端部产生较大塑性变形,且集中于极窄的高变形带内。这些剪切变形带从宏观上看大致与径向呈50o~60o角。新的微孔就在变形带内成核、长大和聚合,当其与裂纹连接时,裂纹便向前扩展了一段距离。这样的过程重复进行就形成锯齿

金属的断裂韧性

第四章金属的断裂韧性 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。 1.强度储备法,许用应力,强度储备系数(安全系数) 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。而[σ],对塑性材料[σ]=σs/n,对脆性材料[σ]=σb/n,其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。 2.低应力脆性断裂(低应力脆断):高强度机件及中低强度大型件。 3.裂纹体:传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 4.人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。断裂力学,建立了材料性质、裂纹尺寸和工作应力之间的关系。 5.断裂韧性,断裂韧度 §4.1 线弹性条件下的断裂韧性 断口分析表明,金属机件的低应力脆断断口没有宏观塑性变形痕迹,可以应用线弹性断裂力学。两种分析方法:(1)应力场强度分析方法;(2)能量分析方法。 一、裂纹扩展的基本形式 根据外加应力与裂纹扩展面间的取向关系,裂纹主要有三种基本形式: 张开型(I型),滑开型(II型)、撕开型(III型)。 二、应力场强度因子K I及断裂韧性K IC

断裂力学和断裂韧性

断裂力学与断裂韧性 3.1 概述 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧! 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ], 就被认为是安全的了。而[σ],对塑性材料[σ]=σ s /n,对脆性材料[σ]=σ b /n, 其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。 3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度

金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。图中纵坐标表示原子间结合力,纵轴上方 为吸引力下方为斥力,当两原子间 距为a即点阵常数时,原子处于平 衡位置,原子间的作用力为零。如 金属受拉伸离开平衡位置,位移越 大需克服的引力越大,引力和位移 的关系如以正弦函数关系表示,当 位移达到X m 时吸力最大以σ c 表示, 拉力超过此值以后,引力逐渐减小, 在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏, 达到完全分离的程度。可见理论断裂强度即相当于克服最大引力σ c 。该力和位移的关系为 图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。分离后形成两个新表面,表面能为。 可得出。 若以=,=代入,可算出。 3.2.2 格里菲斯(Griffith)断裂理论 金属的实际断裂强度要比理论计算的断裂强度低得多,粗略言之,至少 低一个数量级,即 。 陶瓷、玻璃的实际断裂强度则更低。

陶瓷材料断裂韧性的测定(优选材料)

实验陶瓷材料断裂韧性的测定 一、前言 脆性材料的破坏往往是破坏性的,即材料中裂纹一旦扩展到一定程度,就会立即达到失稳态,之后裂纹迅速扩展。材料的断裂韧性可以用来衡量它抵抗裂纹扩展的能力,亦即抵抗脆性破坏的能力。它是材料塑性优劣的一种体现,是材料的固有属性。裂纹扩展有三种形式:掰开型(I型)、错开型(II型)、撕开型(III型),其中掰开型是最为苛刻的一种形式,所以通常采用这种方式来测量材料的断裂韧性,此时的测量值称作K IC。在平面应变状态下材料K IC 值不受裂纹和几何形状的影响。因此,K IC值对了解陶瓷这一多裂纹材料的本质属性,具有非常重要的意义。 目前,断裂韧性的测试方法多种多样,如:单边切口梁法(SENB)、双扭法(DT)、山形切口劈裂法、压痕法、压痕断裂法等。其中,有些方法技术难度较高,不太容易实现大规模实用化;有些方法会出现较大测量误差,应用起来存在一定困难。相对而言,比较普遍采用的SENB法,该方法试样加工较简单,裂纹的引入也较容易。 本实验采用SENB法进行。但是,这种方法存在裂纹尖端钝化、预制裂纹宽度不易做得很窄等缺陷;另外,它适用于粗晶陶瓷材料,对细晶陶瓷其所测的K IC值偏大。 二、仪器 测试断裂韧性所需仪器如下: 1.材料实验机 对测试材料施加载荷,应保证一定的位移加载速度,国标规定断裂韧性测试加载速度为0.05mm/min。 2.内圆切割机 用于试样预制裂纹,金刚石锯片厚度不应超过0.20mm。 3.载荷输出记录仪 输出并记录材料破坏时的最大载荷,负荷示值相对误差不大于1。本实验在材料实验机上配置了量程为980N的称重传感器输出载荷,采用电子记录仪记录断裂载荷。 4.夹具 保证在规定的几何位置上对试样施加载荷,试样支座和压头在测试过程中不发生塑性变形,材料的弹性模量不低于200GPa。支座和压头应有与试样尺寸相配合的曲率半径,长度应大于试样的宽度,与试样接触部分的表面粗糙度R a(根据规定不大于1.6μm)。试样支座为两根二硅化钼发热体的小圆柱,置于底座两个凹槽上。压头固定在材料实验机的横梁上。 5.量具 测量试样的几何尺寸和预制裂纹深度,精度为0.0lmm,需使用游标卡尺和读数显微镜。 三、试样的要求 试样的形状是截面为矩形的长条,试样表面要经过磨平、抛光处理,对横截面垂直度有一定的要求,边棱应作倒角。在试样中部垂直引入裂纹,深度大约为试样高度的一半,宽度应小于0.2mm。试样尺寸比例为: c/W=0.4~0.6 L/W=4 B≈W/2 式中:c-裂纹深度;

断裂分类

断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是

第四章金属的断裂韧性

第四章 金属的断裂韧性 1. 名词解释: ⑴ 低应力脆断;⑵ 张开型(Ⅰ型)裂纹;⑶ 应力场强度因子 (4)裂纹扩展K 判据;(5) 裂纹扩展能量释放率;(6) 裂纹扩展G 判据 (7)小范围屈服;(8) 塑性区;(9) 有效屈服应力;(10)等效裂纹; 2. 传统强度设计与线弹性断裂力学性能设计的基本思路有何差异?它们在实 零件设计中的应用各有何局限性? 3. 何谓“低应力脆断”?为什么会产生低应力脆断? 4. 何谓“应力场强度因子”? “断裂韧性”?它们的物理意义是什么?量纲 是什么? 5. 什么是平面应力状态?什么是平面应变应力状态?实际构件承载时哪些可 以看成是平面应变应力状态? 6. 说明IC I K a Y K ≥?=σ,式中各符号所代表的物理意义?这一不等式可以解 决哪些问题? 7. 设有两条Ι型裂纹,其中一条长为4a ,另一条长为a ,若前者加载至σ,后 者加载至2σ,试问它们裂纹顶端附近的应力场是否相同,应力场强度因子是否相同? 8. 改善材料断裂韧性的途径? 9. 对实际金属材料而言,裂纹顶端形成塑性区是不可避免的,由此对线性弹性断裂力学分析带来哪些影响。反映在 试验测定上有何具体要求。 10. 有一大型板件,材料的σ0.2=1200MPa ,K IC =115 MPa·m 1/2,探伤发现有20mm 长的横向穿透裂纹,若在平均轴向应力900MPa 下工作,试计算K I 和塑性区宽度并判断该件是否安全。 11. 有一构件加工时,出现表面半椭圆裂纹,若a=1mm,a/c=0.3,在1000MPa 的 应力下工作,对下列材料应选哪一种?

σ0.2/ MPa 1100 1200 1300 1400 1500 KIC/ MPa·m 1/2110 95 75 60 55 12. 已知裂纹长2a=8mm ,σ=400MPa ,若取Y 为0.8636,求K 1? 13. 某高压气瓶壁厚18mm ,内径380mm ,经探伤发现沿气瓶体轴向有一表面深 裂纹,长 3.8mm ,气瓶材料在-40℃时的抗拉强度为86 Kgf/mm 2,K IC = 166Kgf/mm 23,试计算在-40℃时临界压力是多少?(提示:可把表面深裂纹看作穿透裂纹)

金属断裂机理

1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

断裂韧性实验报告

断裂韧性测试实验报告 随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。下面介绍下这几种方法的测试原理及试验方法。 1、三种断裂韧性参数的测试方法简介 1. 1 平面应变断裂韧度IC K 的测试 对于线弹性或小范围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子 I K 所决定。I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的 C P 、a 代入所用试样的I K 表达式即可求得IC K 。 IC K 的试验步骤一般包括: (1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲 劳预制裂纹等); (2) 断裂试验; (3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的 计算及Q K 有效性的判断)。 1. 2 延性断裂韧度R J 的测试 J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度 力学参量J 积分的某些特征值。测试J 积分的根据是J 积分与形变功之间的关系:

a B U J ??- = (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。 J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。 但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。这种方法能同时得到几个J 积分值,满足工程实际的不同需要。 所谓R J 阻力曲线,是指相应于某一裂纹真实扩展量的J 积分值与该真实裂纹扩展量的关系曲线。标准规定测定一条R J 阻力曲线至少需要5个有效试验点,故一般要5~8件试样。把按规定加工并预制裂纹的试样加载,记录?-P 曲线,并适当掌握停机点以使各试样产生不同的裂纹扩展量(但最大扩展量不超过0.5mm )。测试各试样裂纹扩展量a ?,计算相应的J 积分,对试验数据作回归处理得到R J 曲线。R J 阻力曲线的位置高低和斜率大小代表了材料对于启裂和亚临界扩展的抗力强弱。 R J 阻力曲线法测试步骤一般包括: (1) 试样准备 ①试样尺寸的选择原则: 1)平面应变条件:标准规定 )/(05.0s J B σα≥ (1-2) 其中 ?? ???铝合金钛合金钢 120 80 50 α

相关文档
最新文档