高中数学第二讲参数方程四渐开线与摆线导学案新人教A版选修44

高中数学第二讲参数方程四渐开线与摆线导学案新人教A版选修44
高中数学第二讲参数方程四渐开线与摆线导学案新人教A版选修44

四渐开线与摆线

庖丁巧解牛

知识·巧学

一、渐开线的产生过程

我们可以把一条没有弹性的绳子绕在一个圆盘上,在绳的外端系上一枝铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,那么铅笔画出的曲线就是圆的渐开线,相应的定圆叫做基圆(如图2-4-1).

图2-4-1

也可以使用计算机在软件中进行模拟渐开线的图象.

渐开线在实际生活和生产中比较常见.在机械工业中,广泛地使用齿轮传递动力,由于渐开线齿形的齿轮磨损少传动平稳,制造安装较为方便,因此大多数齿轮采用这种齿形.设计加工这种齿轮要依据圆的渐开线方程.

在物理问题中,许多问题都要涉及到渐开线问题,因为它是有关传动力学的基础.在数学中,我们都学习过三角函数,其图象的画法,是首先根据单位圆上的点进行平移,实际上也是圆的渐开线问题.

深化升华圆的渐开线是研究最多的一种渐开线.但是并不是只有一种渐开线,除了圆的渐开线之外,还有正方形的渐开线,长方形的渐开线,椭圆的渐开线等.只需把圆的渐开线中的基圆换成相应的图形即可得到相应的渐开线.研究这些渐开线可以仿照圆的渐开线建立相应的参数方程,进一步得出其性质.

二、摆线的概念和产生过程

圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.我们可以在自行车轮子上喷一个白色的印记,观察自行车在笔直的道路上运动时形成的轨迹来理解圆的摆线,也可以借助教具或计算机软件,观察圆在直线上滚动时圆上定点的轨迹.圆的摆线又叫旋轮线.

市面上曾经流行过一种可绘制曲线的器具,它包含一个在圆周上刻满锯齿的小圆形板,以及一个在内外圆周上都刻有锯齿的大圆环形板.把玩之时,将小圆板放在大圆环板内部,并让锯齿套合而使小圆板沿着大圆环板滚动.将笔插入小圆板上的一个小洞,随着小圆板的滚动,铅笔就会描绘出一条曲线,这条曲线实际上也是摆线的一种(如图2-4-2).

图2-4-2

摆线在生产和实际中有着广泛的应用.最速降线是平摆线,椭圆是特殊的内摆线——卡丹转盘,圆摆线齿轮与渐开线齿轮,收割机、翻土机等机械装置的摆线原理与设计,星形线与公共汽车门,少齿差行星减速器,摆线转子油泵,旋转活塞发动机的缸体曲线,以及多边形切削等等,都与摆线是分不开的.

其实沿着倒放的摆线弧不仅速度最快,而且有一个奇怪的性质,如果在这条曲线不同的高度放一个小球使其沿曲线下滑,你会惊奇地发现他们同时到达了底端,这就是摆线的等时性.这个性质是物理学家惠更斯发现的,并用这个原理巧妙地设计出了摆线时钟.摆线这个名词正是由于这种曲线被用来改进钟摆而得名.

摆线也有很多种类型,我们课本中给出的只是其中一种类型,它是由圆上的一个定点在一条定直线上的运动轨迹,也叫平摆线或者旋轮线.除此之外还有很多种摆线.

知识拓展 比如,当一个小圆在一个大圆的外部沿着大圆作不滑的滚动时,小圆圆周上的点所描绘的旋轮线称为外摆线;小圆内部与外部的点所描绘的旋轮线称为外次摆线.它们都是很优美的图形,在很多绘图和设计中经常用到.圆的外摆线根据两个圆的半径关系也有很多种类型,在设计中有不同的用处.

三、圆的渐开线的参数方程

我们以基圆圆心O 为原点,一条直径所在的直线为x 轴建立直角坐标系,根据动点满足的条件和向量的有关性质,可以得到圆的渐开线的参数方程为?

??-=+=)cos (sin ),sin (cos ??????r y r x (φ为参数).

根据渐开线的定义和求解参数方程的过程,可知其中的字母r 是指基圆的半径,参数φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.

方法归纳

根据圆的渐开线的参数方程??

?-=+=)cos (sin ),sin (cos ??????r y r x (φ为参数)消去参数φ,可以得到圆的渐开线的普通方程:xcos(2221r y x r -+)+ysin(2221r y x r

-+)=r. 四、圆的摆线的参数方程

根据摆线上任意一点的运动轨迹,取定直线为x 轴,动点的其中一个位置为原点建立直角坐标系,根据几何知识可得圆的摆线的参数方程为?

??-=-=)cos 1(),sin (???r y r x (φ为参数). 根据圆的摆线的定义和建立参数方程的过程可知其中的字母r 是指定圆的半径,它决定了摆线的某方面的大小情况.参数φ是指圆上定点相对于某一定点运动所张开的角度大小. 用参数方程描述运动规律时,常常比用普通方程更为直接、简便.根据方程画出曲线十分费时;而利用参数方程把两个变量x 、y 间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难.而对于参数方程,我们可以根据参数的取值求出坐标的关系,相比之下比普通方程更为直观.所以,在研究圆的渐开线和圆的摆线时主要使用参数方程,而不去讨论其普通方程.

问题·探究

问题1 我们知道,在直线的参数方程中,参数t 具有相应的几何意义,根据其几何意义可以给我们研究问题带来很多方便.那么,圆的渐开线和摆线的参数方程中的参数φ是否也具有一

定的几何意义呢?

探究:根据渐开线的定义和求解参数方程的过程,可知其中的字母r 是指基圆的半径,而参数φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.如图2-4-3,其中的∠AOB 即是角φ.显然点M 由参数φ唯一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐标转化为与三角函数有关的问题,使求解过程更加简单.

同样,根据圆的摆线的定义和建立参数方程的过程可知其中的字母r 是指定圆的半径,它决定了摆线的某方面的大小情况.参数φ是指圆上定点相对于某一定点运动所张开的角度大小.如图2-4-4,根据参数的几何意义也可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况

.

图2-4-3 图2-4-4

问题 2 对渐开线和摆线的理解是本节学习的关键,要理解其形成过程和图象的特点及在实际中的应用,还应该从多方面收集信息.那么,我们可以从哪些方面来加强对渐开线和摆线的理解?

探究:由于渐开线和摆线的图形比较复杂,对应的参数方程也不容易理解,即使给出参数方程也很难根据方程画出相应的图形;反过来,根据图形也不容易得到相应的参数方程.因此,要理解渐开线和摆线的有关性质可以结合实际从以下几方面进行考虑:

首先,由于渐开线和摆线在物理和机械制造中有着广泛的应用,我们可以通过走访物理专家和相关的机械制造专家来了解其在实际生产中的应用,结合有关的问题和图纸来加深对概念和性质的理解.摆线还在美术设计中被广泛应用,我们可以找有关美术老师或者通过欣赏一些美术作品来理解数学中的美感.

其次,根据现代信息技术的发展的特点,可以在网上搜索相关资料,通过这些资料来了解渐开线和摆线问题的发展过程,和同学讨论一些相关的性质.另外,我们可以通过手工绘图和电脑绘图相对比,通过对比来理解渐开线和摆线的形成过程,还可以使用一些像几何画板等类似软件来描述渐开线和摆线图形的形成过程,认识其有关的性质.

典题·热题

例1给出某渐开线的参数方程?

??-=+=??????cos 3sin 3,sin 3cos 3y x (φ为参数),根据参数方程可以看出该渐开线的基圆半径是_________,且当参数φ取2

π时对应的曲线上的点的坐标是__________.

思路解析:本题考查对渐开线参数方程的理解.根据一般情况下基圆半径为r 的渐开线的参

数方程?

??-=+=)cos (sin ),sin (cos ??????r y r x (φ为参数)进行对照可知,这里的r=3,即基圆半径是3.然后把φ=2π分别代入x 和y,可得?????==.

3,23y x π即得对应的点的坐标.

答案:3 (2

3π,3) 误区警示 本题易错的解法是:把摆线的参数方程当作渐开线的参数方程,把相应的值代入摆线方程,或者把参数当成横坐标x 的值,令x=2

π再求出y 值. 例2已知一个圆的摆线过一定点(1,0),请写出该摆线的参数方程.

思路分析:根据圆的摆线的参数方程的表达式?

??-=-=)cos 1(),sin (???r y r x (φ为参数)可知,只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一来确定,因此只需把点(1,0)代入参数方程求出r 值再代入参数方程的表达式.

解:令r(1-cos φ)=0可得cos φ=1,所以φ=2k π(k∈Z ).代入x=r(φ-sin φ)可得x=r(2k π-sin2k π)=1.

所以r=π

k 21.又根据实际情况可知r 是圆的半径,故r>0.所以,应有k>0且k∈Z ,即k∈N *. 所以,所求摆线的参数方程是???

????-=-=)cos 1(21),sin (21?π??πk y k x (φ为参数)(其中k∈N *).

误区警示 本题易错点是误把点(1,0)中的1或0当成φ的值,代入参数方程中求出x 和y 的值,再计算r 的值;或者在求出cos φ=1时,直接得出φ=0,从而导致答案不全面. 例3给出半径为3的圆,分别写出对应的渐开线的参数方程和摆线的参数方程.

思路分析:首先根据条件建立直角坐标系,对于渐开线可以以圆的圆心为原点,一条半径所在直线为x 轴,对于摆线可以以圆上的某一定点为圆心以那条定直线所在直线为x 轴,建立直角坐标系.圆的渐开线的参数方程和摆线的参数方程由圆的半径唯一确定.

解:

先求圆的渐开线方程,以圆的圆心为原点,一条半径所在直线为x 轴,建立直角坐标系,又根据条件圆的半径是3,所以,渐开线的参数方程是???-=+=?

?????cos 3sin 3,sin 3cos 3y x (φ为参数);

再求圆的摆线方程,以圆上的某一定点为圆心,以定直线所在直线为x 轴,建立直角坐标系.

又根据条件圆的半径是3,所以摆线的参数方程是?

??-=-=???cos 33,sin 33y x (φ为参数). 例4已知圆的直径为2,其渐开线的标准参数方程对应的曲线上两点A 、B 对应的参数分别是3π和2

π,求A 、B 两点的距离. 思路分析:首先根据圆的直径可知半径为1,写出渐开线的标准参数方程,再根据A 、B 对应的参数代入参数方程可得对应的A 、B 两点的坐标,然后使用两点之间的距离计算公式可得A 、B 之间的距离.

解:

根据条件可知圆的半径是1,所以对应的渐开线参数方程是??

?-=+=??????cos sin ,sin cos y x (φ为参

数),分别把φ=3π和φ=2

π代入,可得A 、B 两点的坐标分别为A(6

33,633ππ-+),B(2π,1). 那么,根据两点之间的距离公式可得A 、B 两点的距离为 |AB|=,633366)3613(6

1)1633()2633(222++--=--+-+πππππ即点A 、B 之间的距离为

,633366)3613(612++--ππ. 深化升华 本节主要内容是圆的渐开线和摆线的定义和参数方程.要解决有关的问题首先要理解这两个定义和参数方程的推导过程,还要牢记两个参数方程.给出圆的半径要能写出对应的参数方程,根据参数方程能写出某对应参数的坐标,从而再解决其他问题.本例题就是对这些知识的综合考查,要注意前后知识的联系,特别是两点之间的距离公式也要熟记.

人教版高中数学选修44坐标系与参数方程全套教案

人教版高中数学选修4-4坐标系与参数方程全套教案 课型: 复习课 课时数: 1 讲学时间: 2010年1月18号 班级: 学号: 姓名: 一、【学习目标】: 1、了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。 2、能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。 3、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。 4、分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程,能进行参数方程与普通方程的互化。 二、【回归教材】: 1、阅读选修4-4《坐标系与参数方程》152P P -,试了解以下内容: (1)设点),(y x P 是平面直角坐标系中的任意一点,在伸缩变换公式???>?='>?=') 0()0(:μμλλ?y y x x 的作用下,如何找到点P 的对应点),(y x P '''?试找出x y sin =变换为x y 2sin 3=的伸缩变换公式 . (2)极坐标系是如何建立的?试类比平面直角坐标系的建立过程画一个,并写出点M 的极径与极角来 表示它的极坐标,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,写出极坐标和直角坐标的互化公式 . (3)在平面直角坐标系中,曲线C 可以用方程0),(=y x f 来表示,在极坐标系中,我们用什么方程来 表示这段曲线呢?例如圆222r y x =+,直线x y =,你是如何用极坐标方程表示它们的? 2、阅读选修4-4《坐标系与参数方程》3721P P -,了解以下内容: (1)直接给出这条曲线上点的坐标间的关系的方程叫做普通方程,那如果变数t 都是点坐标x ,y 的函 数,我们如何建立这条曲线的参数方程呢? (2)将曲线的参数方程化为普通方程,有利于识别曲线的类型,我们是如何做到的?在互化的过程中, 必须注意什么问题?试探究一下圆锥曲线的参数方程与普通方程的互化。

高三数学一轮复习 专题 直线的参数方程导学案

第三课时 直线的参数方程 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二重难点:教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 圆222r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆22020)\()(r y y x x =+-参数方程为:???+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是0 30 ,并且经过点P (2,3),如何描述直线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程

?? ?+=+=α α sin cos 00t y y t x x (t 为参数) 【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。带符号. (2)、经过两个定点Q 1 1 ( ,)y x ,P 2 2 (,)y x (其中12x x ≠)的直线的参数方程为 12112 1(1){ x X y y x y λλ λλλλ++++= =≠-为参数,。其中点M(X,Y)为直线上的任意一点。这里 参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的 数量比QM MP 。当o λ >时,M 为内分点;当o λ<且1λ≠-时,M 为外分点;当o λ=时, 点M 与Q 重合。 例题演练: 例1、 已知直线l :10x y +-=与抛物线2 y x =相交于A,B 两点,求线段AB 的长和点 M (1,2)-到A,B 两点的距离之积。 例2、 经过点M(2,1)作直线l ,交椭圆 22 1164 x y +=于A,B 两点,如果点M 恰好为线段AB 的中点,求直线l 的方程。

人教A版 参 数 方 程 学案

第二节参数方程 知识体系 必备知识 1.参数方程与普通方程 参数方程普通方程 变量间 的关系 曲线上任意点的坐标x,y都是某个 变数t的函数,t简称参数 曲线上任意点坐标x,y 间的关系 方程 表达式 F错误!未找到引用源。 =0 曲线的 方程、方 程的曲 线 (1)曲线上任意点的坐标x,y都是 参数t的函数 (2)对于t的每一个允许值确定的 点错误!未找到引用源。都在曲线 上 (1)曲线上点的坐标都 是方程的解 (2)以方程的解为坐标 的点都在曲线上 2.参数方程和普通方程的互化 (1)参数方程化普通方程:主要利用两个方程相加、减、乘、除或者代入法消去参数.

(2)普通方程化参数方程:如果x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),则得曲线的参数方程错误!未找到引用源。 3.直线、圆与椭圆的普通方程和参数方程 轨迹普通方程参数方程 直线 y-y0=tan α(x-x0) (t为参数) 圆(x-a)2+(y-b)2=r2 (θ为参数) 椭圆错误!未找到引用 源。+错误!未找到 引用源。=1 (a>b>0) (φ为参数) 基础小题 1.已知直线错误!未找到引用源。(t为参数),下列说法中正确的有 ( ) ①直线经过点(7,-1);②直线的斜率为错误!未找到引用源。;③直线不过第二象限;④|t|是定点M0(3,-4)到该直线上对应点M的距离. A.①② B.②③ C.①②④ D.①②③

【解析】选D.根据题意,直线错误!未找到引用源。(t为参数),其普通方程为y+4= 错误!未找到引用源。(x-3),对于①,(-1)+4=错误!未找到引用源。(7-3),即直线经过点(7,-1),①正确;对于②,直线的普通方程为y+4=错误!未找到引用源。(x-3),其斜率k=错误!未找到引用源。,②正确;对于③,直线的普通方程为y+4=错误!未找到引用源。(x-3),不经过第二象限,③正确;对于④,直线错误!未找到引用源。(t为参数),|5t|表示定点M0(3,-4)到该直线上对应点M的距离,④错误. 2.过点A(2,3)的直线的参数方程为错误!未找到引用源。(t为参数),若此直线与直线x-y+3=0相交于点B,则|AB|=________. 【解析】把错误!未找到引用源。代入直线x-y+3=0得t=2, 则交点为(4,7), 所以|AB|=错误!未找到引用源。=2错误!未找到引用源。. 答案:2错误!未找到引用源。 3.直线l的参数方程为错误!未找到引用源。(t为参数),求直线l的斜率. 【解析】将直线l的参数方程化为普通方程为 y-2=-3(x-1),因此直线l的斜率为-3. 4.已知直线l1:错误!未找到引用源。(t为参数)与直线 l2:错误!未找到引用源。(s为参数)垂直,求k的值. 【解析】直线l1的方程为y=-错误!未找到引用源。x+错误!未找到引用源。,斜率为-错误!未找到引用源。;

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

高中数学第二讲参数方程三直线的参数方程互动课堂学案新人教A版选修4_4

三 直线的参数方程 互动课堂 重难突破 本课时重点是对直线参数方程的理解,关键是理解参数t 的几何意义,难点是应用直线的参数方程解决相关问题 一、直线参数方程的意义 相对于直线的一般方程,参数方程更能反映一条直线上点的特征.判断与其他曲线的关系时,直接代入横坐标和纵坐标对应的参数表达式,方便运算.又由于直线参数方程的标准方程中的参数有一定的几何意义,对于那些需要直接求线段长度或者求有向线段的数量值的问题会更加方便快捷 用坐标的观点理解直线参数方程中的参数,在解决有关直线问题时,可以自然地将新旧知识联系起来,特别是在求直线被圆锥曲线所截得的弦长或弦中点问题时,可以提供更广阔的思考空间;具体问题中根据实际情况可以使用参数方程的标准式和非标准式,使解题的方法灵活多样,有利于一题多解和创新思维的培养 二、直线参数方程的形式 对于同一条直线的普通方程随着参数选取的不同,会得到不同的参数方程.例如,对于直线普通方程y =2x +1,如果令x =t 即可得到参数方程?? ?+==1 2,t y t x (t 为参数);如果令x =2t 则得到参数方程?? ?+==1 4,2t y t x (t 为参数).这样随便给出的参数方程中的参数t 不具有一定的 几何意义,但是在实际应用中也能简化某些运算. 而过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程都可以写成为?????+=+=a t y y a t x x sin , cos 00 (t 为参数),我们把这一形式称为直线参数方程的标准形式,其中t 表示直线l 上以定点M 0 为起点,任意一点M (x ,y )为终点的有向线段?? →?M M 0 的数量且cos 2α+sin 2 α=1是标准参数方程的基本特征 三、直线参数方程中参数的几何意义 1.对于一般的参数方程,其中的参数可能不具有一定的几何意义,但是对于直线参数方程中的参数有一定的几何意义. 过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程都可以写成为x =x 0+t cos αy =y 0+t sin α(t 为参数),其中t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M 的数量,也就是 (1)直线l 上的动点M 到定点M 0的距离等于参数t 的绝对值,即|M 0M |=| t (2)若t >0,则M 0M 的方向向上;若t <0,则M 0M 的方向向下;若t =0,则点M 与点M 0重合. 2.根据直线的参数方程判断直线的倾斜角. 根据参数方程判断倾斜角,首先要看参数方程的形式是不是标准形式,如果是标准形式,根据方程就可以判断出倾斜角,例如x =2+t y =-4+t sin20°(t 为参数),可以直接 判断出直线的倾斜角是 但是如果不是标准形式,就不能直接判断出倾斜角了.例如判断直线

2019-2020年高中数学第二章参数方程三直线的参数方程教学案新人教A版选修4

2019-2020年高中数学第二章参数方程三直线的参数方程教学案新人教A 版选修4 [对应学生用书P27] 1.直线的参数方程 (1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为? ?? ?? x =x 0+t cos α y =y 0+t sin α(t 为参数) (2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义 参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0. [对应学生用书P27] [例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离. [思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程. [解] 由直线方程3x -4y +1=0可知,直线的斜率为3 4,设直线的倾斜角为α, 则tan α=34,sin α=35,cos α=4 5. 又点P (1,1)在直线l 上, 所以直线l 的参数方程为????? x =1+4 5 t ,y =1+3 5 t (t 为参数). 因为3×5-4×4+1=0,所以点M 在直线l 上.

由1+4 5 t =5,得t =5,即点P 到点M 的距离为 5. 理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0 的距离等于参数t 的绝对值是解决此类问题的关键. 1.设直线l 过点A (2,-4),倾斜角为5π 6 ,则直线l 的参数方程为________________. 解析:直线l 的参数方程为????? x =2+t cos 5π 6 ,y =-4+t sin 5π 6 (t 为参数),即 ????? x =2-3 2t ,y =-4+12 t (t 为参数). 答案:??? ?? x =2-3 2t ,y =-4+1 2 t (t 为参数) 2.一直线过P 0(3,4),倾斜角α=π 4,求此直线与直线3x +2y =6的交点M 与P 0之间 的距离. 解:设直线的参数方程为??? ?? x =3+2 2 t ,y =4+2 2t , 将它代入已知直线3x +2y -6=0, 得3(3+ 22t )+2(4+2 2 t )=6. 解得t =-112 5 ,

导学案:参数方程与普通方程的互化(可编辑修改word版)

? + = 2 课题:参数方程与普通方程的互化 【学习目标】 1. 进一步理解参数方程的概念及参数的意义。 2. 能通过消去参数将参数方程化为普通方程,由普通方程识别曲线的类型 3. 能选择适当的参数将普通方程化成参数方程 【重点、难点】 参数方程和普通方程的等价互化。 自主学习案 【问题导学】阅读课本 P24—P26,然后完成下列问题: 1. 参数方程的概念 (1) 在平面直角坐标系中,如果曲线上任意一点的坐标 x 、 y 都是某个变数t ? x = f (t ) 的函数? y = g (t ) (t ∈ D ) , 并且对于 t 的每一个允许值,由方程组所确定的点 M (x,y )都在这条曲线上,那么方程就叫这条曲线的 ,联系变数 x 、 y 的变数 t 叫做 ,简称 。相对于参数方程而言,直接给出点的坐标间关系的方程 F (x , y ) = 0 叫做 。 (2) 是联系变数 x,y 的桥梁,可以是一个有 意义或 意义的 变数,也可以是 的变数。 2、 ( 1) 圆 心 在 原 点 O , 半 径 为 r 的 圆 的 一 个 参 数 方 程 是 ; (2)圆(x - a )2 + ( y - b )2 = r 2 的一个参数方程是 . 3、指出下面的方程各表示什么样的曲线: (1)2x+y+1=0 表示 (2) y = 3x 2 + 2x +1 表示 2 (3) x y 1表示 9 4

t ? (4) ?x = cos + 3(为参数) 表示 ? y = sin 【预习自测】把下列参数方程化为普通方程,并说明它们各表示什么曲线? ?x = t +1 ?x = 2 c os 1、? y = 1- 2t (t 为参数) 2、? y = sin (为参数) ? ? 思考: 1、通过什么样的途径,能从参数方程得到普通方程? 2、在参数方程与普通方程互化中,要注意哪些方面? 合作探究案 考向一、参数方程化普通方程 例 1.把下列参数方程化为普通方程,并说明它们各表示什么曲线 (1) ??x = ? + 1 ?x = sin + cos (t 为参数) (2) ? y = 1 + sin 2 (为参数) ?? y = 1 - 2 ? 小结: t

2019高考数学考点突破——选考系列参数方程学案

参数方程 【考点梳理】 1.曲线的参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数 ? ?? ?? x =f t ,y =g t 并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲 线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化 通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例 如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么? ?? ?? x =f t ,y =g t 就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程 直线 y -y 0=tan α(x -x 0) ? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2 ? ?? ?? x =r cos θ,y =r sin θ(θ为参数) 椭圆 x 2a 2+y 2 b 2 =1(a >b >0) ? ?? ?? x =a cos φ,y =b sin φ(φ为参数) 考点一、参数方程与普通方程的互化 【例1】已知曲线C 1:?????x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ????x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π 2 ,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

直线的参数方程导学案

《直线的参数方程》导学案 紫云民族高级中学高二数学组 学习目标: 1、了解直线的参数方程及参数的的意义 2、能选取适当的参数,求直线的参数方程 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t (数轴上的点坐标)与点在直角坐标系中的坐标,x y 之间的联系. 一、回忆旧知,做好铺垫 1.→a 与→b 共线向量的充要条件是什么?________________________ 2.直线l 的方向向量怎样表示?________________________ 3.什么是单位向量?________________________ 4.斜率存在且为k 的直线l 的方向向量怎样表示?________________________ 5.倾斜角为α的直线l 的单位方向向量怎样表示?________________________ 6直线方程的有几种形式? 二直线参数方程探究 问题1:经过点M(x0,y0),倾斜角为 ??? ??≠2παα 的直线l 的 普通方程是________________________; 合作探究:过定点0M ),(00y x ,倾斜角为α的直线l 的参数方程如何建立?

得出结论:定点 ) ,(000y x M 倾斜角 α直线的参数方程为 观察直线的参数方程,知道那些量可以把直线的参数方程写出来? 练一练 1.写出满足下列条件直线的参数方程: (1)过点(2,3)倾斜角为4π (2)过点(4,0)倾斜角为32π

知识探究一: 由 t M 0 ,你能得到直线l 的参数方程中参数t 的几何 意义吗? 知识探究二: 如图所示:请讨论参数t 的符号; 利用t 的几何意义,如何求过M0直线上两点AB 的距离? 点A,点B 在M0同侧点A,点B 在M0异侧 e

东北师大附属中学高三第一轮复习导学案参数方程A

参数方程(教案)A 一、知识梳理:(阅读教材:选修4-4第21页至39页) 1、曲线的参数方程的概念: 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数() () x f t y g t =?? =?①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都 在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数得到普通方程. (2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方 程,求出另一个变数与参数的关系()y g t =,那么() () x f t y g t =?? =?就是曲线的参数方程,在 参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数方程 设圆O (O 为坐标原点)的半径为r ,点M 从初始位置0M 出发,按逆时针方向在圆O 上作匀速圆周运动,设(,)M x y ,则cos ()sin x r y r θθθ =?? =?为参数。 这就是圆心在原点O ,半径为r 的圆的参数方程,其中θ的几何意义是0OM 转过的角度。 圆心为(,)a b ,半径为r 的圆的普通方程是2 2 2 ()()x a y b r -+-=, 它的参数方程为:cos ()sin x a r y b r θ θθ=+??=+? 为参数。 4.椭圆的参数方程 以坐标原点O 为中心,焦点在x 轴上的椭圆的标准方程为

直线的参数方程和应用(学案)

直线的参数方程及应用 目标点击: 1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化; 3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击: 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, x

高中数学选修4-4坐标系与参数方程-高考真题演练

高中数学选修4-4坐标系与参数方程------高考真题演练 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=?? =? , (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 1(2)(2018全国卷II )在直角坐标系中,曲线的参数方程为(为参 数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 1(3)(2018全国卷I )在直角坐标系 中,曲线的方程为,以坐标原点为 极点,轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 (1)求的直角坐标方程 (2)若 与有且仅有三个公共点,求 的方程 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ =?? =?, (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. xOy C 2cos 4sin x θy θ=?? =? , θl 1cos 2sin x t αy t α=+??=+? , t C l C l (1,2) l

解:(1)O e 的参数方程为cos sin x y θθ =?? =?,∴O e 的普通方程为22 1x y +=,当90α=?时, 直线::0l x =与O e 有两个交点,当90α≠?时,设直线l 的方程为tan y x α=-直线l 与O e 1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴ 4590α?<

高中数学 直线参数方程导学案 新人教A版选修44

三维目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 学习重点:参数t 的含义,直线单位方向向量)sin ,(cos αα=e 的含义。 学习难点:如何引入参数t ,理解和写直线单位方向向量)sin ,(cos αα=e 学法指导:认真阅读教材,按照导学案的导引,深刻领会数学方法,认真思考、独立规范作答。 知识链接: 我们学过的直线的普通方程都有哪些? 学习过程: 问题1已知一条直线过点),(000y x M ,倾斜角α,求这条直线方程。 问题2在直线l 上,任取一个点M (x ,y ),求0M M 坐标。 问题3试用直线l 的倾斜角α表示直线l 的方向单位向量e 。 问题4设0M M t =,则e 与0M M 具有什么位置关系?用t 能否表示出这种关系。 问题5通过坐标运算,用),(000y x M ,α,t 把在直线l 上,任取一点M (x ,y )的坐标表示出来 即过定点00M (x ,y )倾斜角为α的直线的参数方程: 问题6在直线l 的参数方程中,哪些是变量,哪些是常量? 问题70,M M te l t =由你能得到直线的参数方程中参数的几何意义吗? 问题8参数t 的取值范围是什么?分别代表什么含义? 练习:A1、直线?????=+=0020 cos 20sin 3t y t x (t 为参数)的倾斜角是( ) A, 020 B, 070 C, 0110 D, 0 160 A2、求直线01=-+y x 的一个参数方程。

参数方程的概念学案

参数方程的概念学案 第八大周 年级:高二 学科:数学(文) 主备人:张淑娜 审核人:王静 【学习目标】1.理解曲线参数方程的概念,体会实际问题中参数的意义; 2.能选取适当的参数,求简单曲线的参数方程。 【学习重点】曲线参数方程的定义及求法 【学习难点】曲线参数方程的探求。 一、【课前预习】 引例: 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?救援物资做何运动?你能用物理知识解决这个问题吗? 思考交流:把引例中求出的物资运动轨迹的参数方程消去参数t 后,再将所得方程与原方 程进行比较,体会参数方程的作用。 二、【新知探究】 1、参数方程的概念 一般地, 在平面直角坐标系中,如果曲线上任意一点的坐标(x, y )都是某个变数t 的函数 ??? ,并且对于t 的每一个允许值, 由方程组(1) 所确定的点M(x,y)都在这条曲线上, 那么方程(1) 就叫做这条曲线的_______________, 联系变数x,y 的变数t 叫做____________,简称________。 相对于参数方程而言,直接给出点的坐标间关系的方程叫做_______________。 2、关于参数几点说明: (1)一般来说,参数的变化范围是有限制的。 (2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。 3、求曲线的参数方程的一般步骤。 (1)建立直角坐标系,设曲线上任一点P 坐标为),(y x (2)选取适当的参数 (3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式 (4)证明这个参数方程就是所由于的曲线的方程 三、【预习检测】 1、曲线2 1,(43x t t y t ?=+?=-? 为参数)与x 轴的交点坐标是( ) A 、(1,4) B 、25(,0)16± C 、25(,0)16 D 、(1,3)- 2、方程sin ,(cos x y θθθ=??=? 为参数)所表示的曲线上一点的坐标是( ) A 、(2,7) B 、12(,)33 C 、11(,)22 D 、(1,0)

高中数学选修4-4坐标系与参数方程完整教案

第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标 四、数学运用 例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

高中数学第二章参数方程21直线的参数方程学案北师大版4

2.1 直线的参数方程 [对应学生用书P24] [自主学习] 1.有向线段的数量 如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取 负值.我们称这个数值为有向线段PM u u u r 的数量. 2.直线参数方程的两种形式 (1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为 参数). 其中M (x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M 的位移,可以用有向线段PM u u u r 的数量来表示. (2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为 ????? x =x 1 +λx 2 1+λ,y =y 1 +λy 2 1+λ (λ为参数,λ≠-1). 其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 分有向线段QP u u u r 的数 量比QM MP . ①当λ>0时,M 为内分点; ②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合. [合作探究] 1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )? ?? ?? 或斜率为b a 平行的直线的 参数方程? 提示:在直线l 上任取一点M (x ,y ),因为PM u u u r ∥a ,由两向量共线的充要条件以及PM u u u r =(x -x 0,y -y 0),可得 x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0 b =t ,则有:

高中数学人教A版选修4-4检测:第二讲四渐开线与摆线 Word版含解析

第二讲 参数方程 四、渐开线与摆线 A 级 基础巩固 一、选择题 1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的直角坐标系的位置不同,那么画出的渐开线形状就不同 解析:本题容易错选 A.渐开线不是圆独有的,其他图形,例如椭圆、正方形也有.渐开线和摆线的定义虽然在字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同.对于同一个圆,不论在什么地方建立直角坐标系,画出的渐开线的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. 答案:C 2.?????r =5(φ-sin φ), y =5(1-cos φ) (φ为参数)表示的是( ) A .半径为5的圆的渐开线的参数方程 B .半径为5的圆的摆线的参数方程 C .直径为5的圆的渐开线的参数方程 D .直径为5的圆的摆线的参数方程 解析:对照渐开线和摆线参数可知选B.

答案:B 3.下列各点中,在圆的摆线? ????x =φ-sin φ, y =1-cos φ(φ为参数)上的是 ( ) A .(π,0) B .(π,1) C .(2π,2) D .(2π,0) 答案:B 4.圆? ????x =3cos θ, y =3sin θ(θ为参数)的平摆线上一点的纵坐标为0,那 么其横坐标可能是( ) A .π B .3π C .6π D .10π 解析:根据条件可知圆的平摆线的参数方程为 ? ????x =3φ-3sin φ,y =3-3cos φ(φ为参数),把y =0代入,得cos φ=1,所以φ=2k π(k ∈Z),故x =3φ-3sin φ=6k π(k ∈Z). 答案:C 5.已知一个圆的参数方程为?????x =3cos φ,y =3sin φ(φ为参数),那么圆的 摆线方程中与参数φ=π 2对应的点A 与点B ? ?? ??3π2,2之间的距离为 ( ) A.π 2 -1 B. 2 C.10 D. 3π2 -1 解析:根据圆的参数方程可知,圆的半径为3,那么它的摆线的 参数方程为? ????x =3(φ-sin φ),y =3(1-cos φ)(φ为参数),把φ=π2代入参数方程中

《直线的参数方程》教学案1

2.5《直线的参数方程》教学案 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二重难点: 教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. 圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)-()(参数方程为:???+=+=θ θ sin cos r y y r x x 00 (θ 为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是 30 ,并且经过点P(2,3),如何描述直 线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q(1,1),P(4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程 ???+=+=αα sin cos t y y t x x 00 (t 为参数【辨析直线的参数方程】:设M(x ,y)从点P 到点M 的位移,可以用有向线段PM (2)、经过两个定点Q 11(,)y x ,P 22(,)y x (其中12≠)的直线的参数方程为

高中数学选修坐标系与参数方程知识点总结

坐标系与参数方程 知识点 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?g g 的作用下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸 缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表: 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程

相关文档
最新文档