不等式的证明测试题及答案

不等式的证明测试题及答案
不等式的证明测试题及答案

不等式的证明

班级 _____ 姓名_____

一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)((b

a b a ++ 的最小值是 ?( ) A.2

B.22

C .24

D.4

2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的? (

A .必要条件??B.充分条件

C .充要条件

D.必要或充分条件

3.设a 、b为正数,且a + b≤4,则下列各式中正确的一个是

?

( )

A.

111<+b

a B.

111≥+b

a C.

211<+b a ?D.21

1≥+b

a 4.已知a、

b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是

( )

A.a c≥b

B.a b ≥c ?

C.bc ≥a?D.a b ≤c

5.设a =2,b=37-,26-=

c ,则a 、b 、c 间的大小关系是

( )

A.a>b>c

B .b>a >c ?C.b>c>a D.a >c>b

6.已知a 、b 、m 为正实数,则不等式

b

a m

b m a >++?? ( )

A.当a < b时成立

B.当a > b 时成立 ?

C .是否成立与m无关?D.一定成立

7.设x 为实数,P=ex +e -x

,Q=(si nx +cos x )2

,则P 、Q 之间的大小关系是??( ? )

A.P ≥Q ?B.P≤Q ?C .P>Q ?D . P

8.已知a > b且a + b <0,则下列不等式成立的是???( ? )

A.

1>b

a B .

1≥b

a C.

1

a D.

1≤b

a 9.设a 、

b 为正实数,P=a a b b ,Q=a b b a ,则P 、Q 的大小关系是 ?

?(? )

A.P ≥Q

B.P ≤Q ?C.P =Q

D.不能确定

10.甲、乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时

间以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n行走,若m≠n ,则甲、乙两人到达指定地点的情况是????( ) A.甲先到

B.乙先到

C.甲乙同时到?

D.不能确定

二、填空题

11.若实数,,x y z 满足23()x y z a a ++=为常数,则2

2

2

x y z ++的最小值为

12.函数2

12

()3(0)f x x x x =+

>的最小值为_____________。 13.使不等式a 2>b 2,1>b

a ,l g(a -b)>0, 2a >2b

-1同时成立的a 、b 、1的大小关系

是 .

14.建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别

为120元和80元,则水池的最低总造价为 元. 三、解答题

15.(1)若a、b、c 都是正数,且a +b+c=1,

求证: (1–a )(1–b)(1–c)≥8a bc.

(2)已知实数,,a b c 满足a b c >>,且有2

2

2

1,1a b c a b c ++=++= 求证:4

13

a b <+<

16.设2

1

log log 21,0,1,0+>≠>t t t a a a a 与试比较的大小.(12分)

17.(1)3

a b c

++ (2)已知a ,b ,c 都是正数,且a,b ,c 成等比数列,求证:2

222)(c b a c b a +->++

18.(1)已知x2 = a 2 + b 2

,y 2 = c2 + d 2,且所有字母均为正,求证:xy ≥ac

+ bd .

(2) 已知,,x y z R ∈,且2228,24x y z x y z ++=++=

求证:444

3,3,3333

x y z ≤≤≤≤≤≤

19.设计一幅宣传画,要求画面面积为4840cm 2

,画面的宽与高的比为λ(λ<1),画面的

上下各留8cm 空白,左、右各留5c m空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?

20.数列{x n }由下列条件确定:N n x a

x x a x n

n n ∈+=

>=+),(21,011. (Ⅰ)证明:对n ≥2,总有xn ≥a ; (Ⅱ)证明:对n ≥2,总有x n≥1+n x .

参考答案

一.选择题(本大题共10小题,每小题5分,共50分)

二.填空题(本大题共4小题,每小题6分,共24分)

11.214

a 12.9 13.a >

b >1

14.1760

三、解答题(本大题共6题,共76分) 15.(12分)

[证明]:因为a、b、c 都是正数,且a +b+c=1,

所以(1–a )(1–b)(1–c)=(b+c )( a +c )( a +b)≥2

bc ·2ac ·2ab =8a b c.

16.(12分)

[解析 ]: t

t t t a

a

a 21log log 2

1log +=-+ t t t 21,0≥+> (当且仅当t=1时时等号成立)

121≥+∴

t t (1) 当t=1时,t t a a

log 2

1

log =+ (2) 当1≠t 时,

121

>+t

t ,

若t t t

t a a

a a log 2

12

1log ,021log ,1>+>+>则

若t t t t a a

a a log 2

121log ,021log ,10<+<+<<则 17.(12分)

[证明]:左-右=2(a b+bc -ac ) ∵a,b ,c 成等比数列,

ac b =2

又∵a ,b ,c 都是正数,所以ac b =

<0≤c a c a +<+2

∴b c a >+

∴0)(2)(2)(22>-+=-+=-+b c a b b bc ab ac bc ab ∴2222)(c b a c b a +->++

18.(12分)

[证法一]:(分析法)∵a , b, c , d , x, y 都是正数 ∴要证:x y≥a c + bd

只需证:(xy )2≥(ac + bd )2 即:(a 2 + b 2)(c2 + d 2)≥a 2c2 + b 2d 2 + 2abcd

展开得:a 2

c 2 + b2

d 2 + a2

d 2 + b2c 2

≥a2c 2 + b 2d 2

+ 2abcd 即:a2d 2 + b 2c2≥2abc d 由基本不等式,显然成立 ∴xy ≥ac + bd

[证法二]:(综合法)xy =222222222222d b d a c b c a d c b a +++=

++

≥bd ac bd ac d b abcd c a +=+=++22222)(2 [证法三]:(三角代换法)

∵x 2 = a2 + b2,∴不妨设a = x sin α, b = x cos α

y 2 = c 2 + d 2

c = y sin β, d = y cos β

∴ac + bd = xy sin αsin β + xy cos αcos β = xy cos(α - β)≤x y 19.(14分)

[解析]:设画面高为x c m,宽为λx cm 则λx 2=4840. 设纸张面积为S ,有 S=(x +16)(λx +10) =λ x 2

+(16λ+10) x +160,

S=5000+44).5(10λ

λ+?

当8

.)185

(85,5

取得最小值时即S <==

λλ

λ

此时,高:,884840cm x ==λ

宽:,558885cm x =?=λ 答:画面高为88c m,宽为55c m时,能使所用纸张面积最小. 20.(14分) (I)证明:由,01

>=a x 及),(2

11n

n n x a x x +=+可归纳证明0>n x (没有证明过程不扣分)

从而有).()(211

N a a x a

x x a x x

n

n n n n ∈=?≥+=

+ 所以,当a x n ≥≥,2时成立.

(I I)证法一:当)(21,0,21n

n n n

x a

x x a x n +=

>≥≥+因为时

所以,021)(212

1

≤-?=-+=

-+n

n

n n n n n x x a x x a x x x

故当.,21成立时+≥≥n n x x n 证法二:当)(2

1,0,21n

n

n x a x x a x n +=>≥≥+因为时

所以122)(212

22221

=+≤+=+=+n

n n n n n n n n

n x x x a x x x a

x x x 故当成立时1,2+≥≥n n x x n . 2.证明:

2222222(111)()()a b c a b c ++++≥++

2222

()39

a b c a b c ++++∴≥

3

a b c

++≥

4.证明:2222()()

1,2

a b a b a b c ab c c +-++=-=

=- ,a b ∴是方程2

2

(1)0x c x c c --+-=的两个不等实根, 则2

2(1)4()0c c c =--->,得1

13

c -

<< 而2

()()()0c a c b c a b c ab --=-++> 即2

2

(1)0c c c c c --+->,得20,3

c c <>或 所以103c -

<<,即413

a b <+< 5.证明:显然2222()()

8,8202

x y x y x y z xy z z +-++=-=

=-+ ,x y ∴是方程2

2

(8)8200t z x z z --+-+=的两个实根, 由0≥得443z ≤≤,同理可得443y ≤≤,4

43

x ≤≤

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

基本不等式练习题

3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题. 经典例题:若a,b,c都是小于1的正数,求证:,,不可能同时大于. 当堂练习: 1.若,下列不等式恒成立的是() A。B。 C。 D. 2. 若且,则下列四个数中最大的是() A. B.C.2ab D。a 3。设x>0,则的最大值为 ( )A.3 B. C。 D.-1 4.设的最小值是( ) A. 10 B. C. D。 5. 若x, y是正数,且,则xy有( ) A.最大值16B.最小值C.最小值16 D.最大值 6. 若a, b,c∈R,且ab+bc+ca=1, 则下列不等式成立的是 ( ) A. B. C.D。 7。若x〉0, y>0,且x+y4,则下列不等式中恒成立的是 ( )

A. B。 C。 D。 8。a,b是正数,则三个数的大小顺序是() A.B。 C.D. 9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有( ) A.B. C.D。 10.下列函数中,最小值为4的是 ( ) A。B. C. D. 11. 函数的最大值为。 12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元. 13。若直角三角形斜边长是1,则其内切圆半径的最大值是。 14。若x, y为非零实数,代数式的值恒为正,对吗?答。 15.已知:, 求mx+ny的最大值. 16。已知.若、, 试比较与的大小,并加以证明. 17。已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值. 18. 设.证明不等式对所有

关于用微积分理论证明不等式的方法

关于用微积分理论证明不等式的方法 学校代码专业代码本科毕业论文(设计) 题目:关于用微积分理论证明不等式的方法 学院: 专业: 学号: 姓名: 指导教师: 年 5月 13日 填写说明 一、毕业论文(设计)须用70克A4纸计算机双面打印,具体打印格式参见教务处主页《山西财经大学普通全日制本科毕业论文(设计)写作指南》。 二、毕业论文(设计)必须按规定的要求进行装订。 1、装订顺序

封面 学术承诺 目录 中文摘要、关键词 英文摘要、英文关键词 正文 参考文献 附录(可选) 致谢 山西财经大学本科毕业论文(设计)指导教师评定表 山西财经大学本科毕业论文(设计)答辩成绩与总成绩评定表 2、装订。由学生自主装订。装订线在左侧。 3、理工科毕业设计的软件要以光盘的形式附在论文的后面(装入小袋,封口),不要单独保存,不能丢失。 4、如果毕业论文(设计)因专业特殊,无法打印的部分可以手写或手绘,但需保持页面整洁,布局合理。 毕业论文(设计)学术承诺 本人郑重承诺:所呈交的毕业论文是我个人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不存在抄袭情况,论文中不包含其他人已经发表的研究成果,也不包含他人或其他教学机构取得研究成果。 作者签名:日期:

毕业论文(设计)使用授权的说明 本人了解并遵守山西财经大学有关保留、使用毕业论文的规定。 即:学校有权保留、向国家有关部门送交毕业论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 (保密的论文在解密后应遵守此规定) 作者签名:指导教师签名: 日期:日期: 目录 中文摘要Ⅰ 英文摘要Ⅱ 第一章用微积分理论证明不等式常见的几种方法 1 第一节用可导函数的单调性证明不等式法 1 第二节利用函数的最大值或最小值证明不等式法 2 第三节用拉格朗日中值定理证明不等式法 3 第四节用柯西中值定理证明不等式法 4 第五节上述几种方法小结 6 第二章用微积分理论证明不等式其他几种方法7 第一节用导数定义证明不等式法7 第二节用函数的凹凸性证明不等式8 第三节用泰勒公式证明不等式法9 第四节用幂级数展开式证明不等式法10

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

不等式的证明及著名不等式知识梳理及典型练习题

不等式的证明及着名不等式 一、知识梳理 1.三个正数的算术—几何平均不等式 (1)定理 如果a ,b ,c 均为正数,那么a +b +c 3____3abc ,当且仅当________时, 等号成立. 即三个正数的算术平均________它们的几何平均. (2)基本不等式的推广 对于n 个正数a 1,a 2,…,a n ,它们的算术平均________它们的几何平均,即a 1+a 2+…+a n n ____n a 1a 2…a n ,当且仅当______________时,等号成立. 2.柯西不等式 一、二维形式的柯西不等式 二维形式的柯西不等式的变式: .,,,,, )( 1等号成立时当且仅当则都是实数若二维形式的柯西不等式定理bc ad d c b a =22222) ())((bd ac d c b a +≥++bd ac d c b a +≥+?+2222)1(bd ac d c b a +≥+?+2222)2 ( .,,,,, )( 2等号成立时使或存在实数是零向量当且仅当是两个向量设柯西不等式的向量形式定理βαββαk k =≤.,:1221等号成立时当且仅当式得二维形式的柯西不等平面向量坐标代入b a b a ,=2 221122212221)()()(b a b a b b a a +≥++式: 得三维形式的柯西不等将空间向量的坐标代入,2 332211232221232221)()()(b a b a b a b b b a a a ++≥++++.)3,2,1(,,,,等号成立时使得或存在一个数即共线时当且仅当 ,i kb a k i i ===221221222221212211)()(R,y ,x ,y , )( 3y y x x y x y x x -+-≥+++∈那么设二维形式的三角不等式定理

数学分析中不等式证明方法论文

数学分析中不等式证明方法论文 毕业论文(设计)开题报告 题目:数学分析中不等式证明方法 1 目录 摘要((((((((((((((((((((((((((((((((((((((((((((((3 英文摘要((((((((((((((((((((((((((((((((((((((((((((((4 第1章不等式的定义及研究背景(((((((((((((((((((((((((5 1.1不等式的定义((((((((((((((((((((((((((((((((((((5 1.2不等式的研究背景(((((((((((((((((((((((((((((((((5 第2章数学分析中不等式的证明方法与举例(((((((((((((((6 2.1?构造变上限积分函数(((((((((((((((((((((((((((((((6 2.2?利用拉格朗日中值定理进行证明(((((((((((((((((((((((((7 2.3?利用微分中值定理证明积分不等式((((((((((((((((((((((((8 2.4?积分中值定理解不等式((((((((((((((((((((((((((((((((((9 2.5?利用泰勒公式证明不等式((((((((((((((((((((((((((((((((10 2.6?用函数的极值进行证明(((((((((((((((((((((((((((((((((12 2.7?用函数凹凸性进行不等式的证明((((((((((((((((((((((((((13 2.8利用函数单调性解不等式((((((((((((((((((((((((((((((((13 2.9利用条件极值求解不等式((((((((((((((((((((((((((((((((14 2.10利用两边夹法则证明不等式(((((((((((((((((((((((((((((15 第3章不等式证明方法的归纳总结(((((((((((((((((((((17 第4章论文的结论与展望(((((((((((((((((((((((((((((((18 致谢

分式不等式的证明与方法

分式 摘要:分式不等式的证明是高中数学中的难点之一,本文主要通过作差法,利用基本不等式法,利用非负实数的性质,利用放缩法,环元法,构造法,类比法,局部不等式法来分析与 证明分式不等式,从而对分式不等式的证明有着整体的理解。通过方法与总结克服证明分式不等式的胆怯心理。 关键词:分式不等式 证明方法 作差法 基本不等式法 构造法 二.利用基本不等式法 均 值 不 等 式 即 : 利用不等式 ∑ =n i y i x m i n 11 ≥∑=∑=n i y i n n i x i n m 1 11)1(∑=-∑=n i i m m y x n n i i 1 2 1 1)((2,1,,=∈+i R y x i i )证明一 类难度较大的分式不等式是很简捷的。 例2.若1,2)(i R =∈+ a i 且N m s n i i a ∈=∑=,1 ,则有∑+=-n i m a a i i 1 ) (1)(s n n s m n +≥ 证明:(1)当m=1时, ∵n a a n i i n i i 2 1 1 1 ≥∑∑=-=,s n a n i i 2 1 1 ≥∑=-,所以有:)1 1 (a a i n i i +∑=-=∑∑==-+n i i n i i a a 1 1 1 ≧s n 2 +s=n(n s s n +) (2)当m=2时,

)1 1 (a a i n i i +∑=-≧ n m 2 1 -n i i n i m a a ∑+=-1 )(1≧n )( n s s n m + 综上,由(1)(2)知原不等式成立。 排序不等式即,适用于对称不等式 例3.设a,b,c 是正实数,求证: 23 ≥+++++b a c a c b c b a 证明:不妨设a ≧c b ≥则b a a c c b +≥+≥+1 11 由排序不等式得: ≥+++++b a c a c b c b a b a a a c c c b b +++++ (1) ≥+++++b a c a c b c b a b a b a c a c b c +++++ (2) 由(1)+(2)得 2( b a c a c b c b a +++++)3≥,所以2 3≥+++++b a c a c b c b a 利用倒数不等式即:若a i >0,则n a a n i i n i i 2 1 1 1 ≥∑∑=-= 例4.设βα,都是锐角,求证:且βα,取什么值时成立? 证明:1cos sin 2 2=+βα,不等式左边拆项得: ββαcos sin sin cos 2 2 2 2 1 1 + = β αβααsni 2 2 2 2 2 sin cos sin cos 1 1 1 + + 又由于1sin sin cos sin cos 2 2222=++βαβαα 由倒数不等式有: ) (sin sin cos sin cos 2 2 2 2 2 βαβαα++)1 1 1 ( 2 2 2 2 2 sin cos sin cos β αβααsni + + ≥9 所以原不等式成立 当且仅当βαβααsin sin cos sin cos 2 2222==即2tan ,1tan ==αβ时等

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.360docs.net/doc/4c5229871.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.360docs.net/doc/4c5229871.html,) 原文地址: https://www.360docs.net/doc/4c5229871.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

数学论文【不等式的证明方法】(汉)

不等式的证明方法 麦盖提县库尔玛乡中学 买合木提·买买提 2012年12月30日

2 不等式的证明方法 不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。 1.证明不等式的基本方法 1.1比较法 比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下: 比差法。主要依据是实数的运算性质与大小顺序关系。即 , 0,0,0a b a b a b a b a b a b ->?>- 欲证a b >只需证 1a b > 欲证a b <只需证1a b < 基本解题步骤是:作商——变形——判断。(与1的大小) 例1. 求证: 222(2)5a b a b +≥-- 2 2 2 2 4254250a b a b a b a b +≥--=>+-++≥ 2 2 (44)(21)0a a b b -++++≥

3 2,1a b ==-时等号成立。 所以222(2)5a b a b +≥--成立。 例2. 已知,a b R +∈求证a b b a a b a b ≥ 证: ,a b R +∈ 又 ()a b a b b a a b a a b b -=∴()1a b b a a b a a b a b b -≥?≥ (1)当a b >时, 1a b >,0a b ->所以()1a b a b -> (2)当a b <时01,a a b o b < <-<所以()1a b a b -> (3)当a b =时不等式取等号。 所以(1),(2),(3)知,不等式a b b a a b a b ≥成立。 1.2.综合法 综合法就是从已知式已证明过的不等式出发,根据不等式的性质推出,欲证的不等式,通过一系列已确定的命题(包含不等式的性质,已掌握的重要不等式)逐步推演,从而得到所要求证的不等式成立,这种方法叫做综合法。 几个重要不等式:2222()0,(),2,(,a b a b a b ab a b ->≠+≥ 为实数) /2(0,0),//2,(,a b a b a b b a a b +≥ >>+≥同号) /3a b c ++≥a b c ==成立) 例3.已知 a b ≠ 且 ,a b R +∈ 求证: 3322 a b a b ab +>+

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

不等式的证明测试题与答案

不等式的证明 班级 _____ _____ 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)((b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+b a B . 111≥+b a C . 21 1<+b a D . 21 1≥+b a 4.已知a 、 b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37-,26-= c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

不等式的证明方法论文

不等式的证明方法 摘要 不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考. 关键词:不等式;证明;方法

Methods for Proving Inequality Abstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers. Key words: inequality; proof; method

相关文档
最新文档