大学物理论文-浅谈多普勒效应

大学物理论文-浅谈多普勒效应
大学物理论文-浅谈多普勒效应

大学物理仿真实验-光电效应

实验名称:光电效应实验 专业班级:核工程实验日期: 2012 年 5 月 25 日 姓名:学号: 光电效应实验简介: 当光照在物体上时,光的能量仅部分的以热的形式为物体吸收,而另一部分则转换为物体中某些电子的能量,使电子溢出物体表面,这种效应称为光电效应,溢出的电子称为光电子。根据爱因斯坦理论,每个光子的能量为其中h为普朗克常数,是近代量子物理中的重要常数。而本实验就是利用光电效应法来测得普朗克常数。 一.实验目的: 1.了解光电效应的基本规律。 2. 验证爱因斯坦光电方程。 3.熟悉普朗克常数测定仪的操作比并用光电效应方法测量普朗克常数。 二.实验仪器: 包括GD-5光电管、单色仪、水银灯、检流计、直流电源、直流电压表、滑线变阻器、临界电阻箱。 三.实验步骤: 1.连接电路 根据测量光电管正向特性的电路图将实验电路接好;根据测量光电管反向特性的电路图将实验电路接好。 线路连接好后,鼠标右键单击,弹出主菜单,选中接线检查。若连线正确,就可以正式开始实验,否则需要继续连线。 2.调整仪器 通过接线检查后,双击各仪器弹出其放大窗口,调整该仪器。 (1)检流计的调零。 (2)临界电阻箱的调节。 (3)调节单色仪,得到合适波长的单色光,实验中将用到5770埃、5461埃、4358埃、4047埃四种波长的单色光。

四.测量内容及数据处理: (1)分别对四种波长的光进行实验,得到光电管在各种波长的单色光照射下的正向、反向电压特性,一共八组数据,记录在表格中。 5770埃正向伏安特性: 5770埃反向伏安特性: 5461埃正向伏安特性:

5461埃反向伏安特性: 4358埃正向伏安特性: 4358埃反向伏安特性:

大学物理 练习6 光的干涉

班级______________学号____________姓名________________ 练习六 光的干涉 一、选择题 1.在折射率n=的厚玻璃中,有一层平行玻璃表面的厚度为mm d 3105.0-?=的空气隙, 今以波长λ=400nm 的平行单色光垂直照射厚玻璃表面,如图所示,则从玻璃右侧向玻 璃看去,视场中将呈现( ) A 、亮影; B 、暗影; C 、明暗相间的条纹; D 、均匀明亮。 2. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 ( ) (A )使屏靠近双缝; (B )使两缝的间距变小; (C )把两个缝的宽度稍微调窄; (D )改用波长较小的单色光源。 3.在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明纹中心位于图中O 处, 现将光源S 向下移动到示意图中的S '位置,则 ( ) (A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。 4.用单色光垂直照射牛顿环装置,设其平凸透镜可以在垂直的方向上移动,在透镜离开平玻璃的过程中, 可以观察到这些环状干涉条纹 ( ) (A )向右平移; (B )向中心收缩; (C )向外扩张; (D )向左平移。 5.如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,经上下两个表面 反射的两束光发生干涉。若薄膜厚度为e ,而且321n n n >>,则两束反射光在相遇点的 位相差为( ) (A )λπ/42e n ; (B )λπ/22e n ; (C )λππ/42e n +; (D )λππ/42e n +-。 6.两个直径相差甚微的圆柱体夹在两块平板玻璃之间构成空气劈尖,如图所示,单色光垂直照射,可看到 等厚干涉条纹,如果将两个圆柱之间的距离L 拉大,则L 范围内的干涉条纹 ( ) (A )数目增加,间距不变; (B )数目增加,间距变小; (C )数目不变,间距变大; (D )数目减小,间距变大。 二、填空题 1.双缝干涉实验中,若双缝间距由d 变为d ',使屏上原第十级明纹中心变为第五级明纹中心,则='d d : ;若在其中一缝后加一透明媒质薄片,使原光线光程增加λ5.2,则此时屏中心处为第 级 纹。 2.用600=λnm 的单色光垂直照射牛顿环装置时,第4级暗纹对应的空气膜厚度为_________m 。 3.在牛顿环实验中,平凸透镜的曲率半径为,当用某种单色光照射时,测得第k 个暗纹半径为,第k +10个 暗纹半径为,则所用单色光的波长为___________nm 。 4.在垂直照射的劈尖干涉实验中,当劈尖的夹角变大时,干涉条纹将向 方向移动,相邻条纹间的距离 将变 。 5.在空气中有一劈尖形透明物,其劈尖角rad 100.14 -?=θ,在波长700=λnm 的单色光垂直照射下,测 得干涉相邻明条纹间距l=,此透明材料的折射率n =___________。 三、计算题 1.用很薄的云母片(n =纹的位置上。如果入射光波长为550nm ,试问此云母片的厚度为多少 S S 3 n e

大学物理实验多普勒效应

多普勒效应实验报告 学院化学与生物工程学院班级化学1701 学号姓名 一、实验目的与实验仪器 实验目的 1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。 2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械 能转化的规律。 实验仪器 ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1、声波的多普勒效应 当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为 f0=U0/λ0 则观测频率f、观测波长λ和观测波速U的关系 f=U/λ 当接收器以一定的速率向声源移动时U=U0+V0,则 f=(U0+V0)/λ0 联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0 当声源以一定的速率向接收器移动时V =U0-V0,则 f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f 当声源与接收器运动如图时 f=(U0+V1COSθ1)/( U0-V2 COSθ2) 2、马赫锥 a=arcsin(U0/V0)=arcsin(1/M) U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数

3、天文学中的多普勒效应 观察两波面的时间 t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2) =(1-V2c/C2c)1/2/((1+Vc/Cc)fc) 三、实验步骤 (要求与提示:限400字以内) 1、超声波的多普勒效应 (1)、组装仪器 (2)、打开实验控制箱,调至室温,记录共振频率f0 (3)、选择多普勒效应验证实验 (4)、修改测试总数 (5)、为仪器充电,确定失锁指示灯处于灯灭状态 (6)、选定滑车速率,开始测试 (7)、选择存入或者重测 (8)、重新选择速度,重复(6)、(7) (9)、记录实验数据 2、用多普勒效应研究恒力下物体的运动规律 (1)、测量钩码质量和滑车质量 (2)、连接仪器 (3)、选中变速运动测量 (4)、修改测量总次数 (5)、选中开始测试,立即松开钩码 (6)、记录测量数据 (7)、改变砝码质量,重复(1)到(6) 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 表4.12-1 多普勒效应的验证与声速的测量 t c = 24 ℃f0 = 40001 Hz 次数i 1 2 3 4 5 v/(m/s) 0.41 0.59 0.75 0.87 0.98 Fi/Hz 40049 40070 40089 40103 40116

大学物理练习题 光电效应 康普顿效应

练习二十一光电效应康普顿效应 一、选择题 1. 已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV,而钠的红限波长是540nm,那么入射光的波长是 (A) 535nm。 (B) 500nm。 (C) 435nm。 (D) 355nm。 2. 光子能量为0.5MeV的X射线,入射到某种物质上而发生康普顿散射。若反冲电子的动能为0.1MeV,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A) 0.20。 (B) 0.25。 (C) 0.30。 (D) 0.35。 3. 用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为E k,若改用频率为2ν的单色光照射此种金属,则逸出光电子的最大动能为 (A)hν+E k。 (B) 2hν?E k。 (C)hν?E k。 (D)2E k。 4. 下面这此材料的逸出功为:铍,3.9eV;钯, 5.0eV;铯,1.9eV;钨,4.5eV。要制造能在可见光(频率范围为3.9×1014Hz-7.5×1014Hz)下工作的光电管,在这此材料中应选: (A)钨。 (B)钯。 (C)铯。 (D)铍。 5. 光电效应和康普顿效应都包含有电子与光子的相互作用过程。对此过程,在以下几种理解中,正确的是: (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程。 (B) 两种效应都相当于电子与光子的弹性碰撞过程。 (C) 两种效应都属于电子吸收光子的过程。 (D) 两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律。 6. 一般认为光子有以下性质 (1) 不论在真空中或介质中的光速都是c; (2) 它的静止质量为零; (3) 它的动量为hν/c2; (4) 它的动能就是它的总能量; (5) 它有动量和能量,但没有质量。 以上结论正确的是 (A)(2)(4)。 (B)(3)(4)(5)。 (C)(2)(4)(5)。 (D)(1)(2)(3)。 7. 某种金属在光的照射下产生光电效应,要想使饱和光电流增大以及增大光电子的初动能,应分别增大照射光的

大学物理实验 光电效应测量普朗克常量

实验题目:光电效应测普朗克常量 实验目的: 了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分 则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电 效应,逸出的电子称为光电子。 光电效应实验原理如图1所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后, 光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。 当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv 2 2 1 (1) 每一光子的能量为hv ,光电子吸收了光子的能量hν之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能。由能量守恒定律可知:A mv hv 2 2 1 (2) 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v 时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v 0,ν0称为红限。 由式(1)和(2)可得:A U e hv 0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分 别做光源时,就有:A U e hv 11,A U e hv 22,…………,A U e hv n n ,

大物实验报告光电效应测量普朗克常量和金属逸出功

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705 姓名童凌炜学号200767025 实验台号 实验时间2009 年04 月24 日,第九周,星期五第5-6 节 实验名称光电效应测量普朗克常量和金属逸出功 教师评语 实验目的与要求: 1.通过测量不同频率光照下光电效应的截止电压来计算普朗克常量 2.获得阴极材料的红限频率和逸出功 主要仪器设备: 1.光电效应实验仪(GGQ-50 高压汞灯,GDh-I型光电管电流测量仪) 2.滤光片组(通光中心波长分别为365.0nm, 404.7nm, 435.8nm, 546.1nm, 577.0nm) 3.圆孔光阑Φ=5mm, Φ’=10mm 4.微电流仪 实验原理和内容: 1.理想光电效应 光电效应实验装置如右上图所示,阴极K收到频率为v的单 色光照射时,将有光电子由K逸出到达阳极A,形成回路 电流I,可以由检流计G所检测到。通过V来监控KA两 端的电压变化,结合G所得到的电流值,可以得到U与光电 流I之间的关系,如右下图所示。 根据爱因斯坦的解释,单色光光子的能量为E=hv,金属中的电 子吸收了光子而获得了能量,其中除去与晶格的相互作用和克

服金属表面的束缚(金属的逸出功A )外, 剩余的便是逸出光电子的动能, 显然仅仅损失了逸出功的光电子具有最大动能: A hv mv M -=2 2 1。 实验中所加的光电管电压U 起到协助光电流I 形成的作用, 当不加电压U 时, 到达阳极的光电子很少, 光电流十分微弱; 当加上正向电压时, 便有更多的光电子到达阳极, 使得I 增大, 而所有的光电子都被吸引到阳极形成电流时, I 到达最大值, 此时再增大U 也不会改变I , 成为饱 和光电流I M , 饱和光电流在光频率一定时, 与光照强度成正比。 如果在光电管两极加反向电压便可以组织光电子到达阳极形成光电流, 当反向电压增大到光电流等于零时, 可知光电子的动能在电场的反向作用下消耗殆尽, 有以下关系式:a M eU mv =2 2 1 , 其中U a 成为截止电压。 结合以上最大动能的表达式可知, e A v e h U a -=, 如左图做出其对应的图像, 可知直线的斜率为 e h k =, 截距为e A U =0。 图中斜线与x 轴的交点对应的频率v0 称为阴极材料的红限频率, 照射光小于这个频率时, 无法产生光电效应(入射光光子能量小于电子的逸出功)。 显然, 通过测量多组v 和Ua , 便可以通过计算函数表达式而得到A 、h 、v0。 2. 实验中相关影响因素的修正 1, 暗电流修正 暗电流指没有光照时, 由于金属表面的隧道效应、 光电管漏电、 热噪声等原因造成的由K 向A 逸出电子形成的电流。 由于暗电流对截止电压的影响不大, 实验中可以使用无光照测量电流的方法测出暗电流值, 在后期处理中将其剔除。 2, 阳极电流修正 由于KA 两级距离很近, 光照时阳极的材料同样可以发生一定程度的光电效应而发射光电子, 当光电管加的是反向电压时, 就会使阳极光电子到达阴极形成阳极电流。 在U-I 曲线上阳极电流的影响就是使在负向电压区的阴极电流出现负值下沉, 由于阳极光电子数目有限且相比阴 极较少, 故阳极电流很快达到饱和, 可见实验中截止电压对应的实际情况是总体电流趋于反向稳定时的电压值。

大学物理下册第三版课后答案18光的干涉

习题18 GG 上传 18-1.杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。(2)若入射光的波长为6000A ,求相邻两明纹的间距。 解:(1)由L x k d λ= ,有:xd k L λ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:33 72.5100.210 5.0101 m λ---???= =?;即波长为:500nm λ=; (2)若入射光的波长为 A 6000,相邻两明纹的间距:7 3 161030.210D x mm d λ--???===?。 18-2.图示为用双缝干涉来测定空气折射率n 的装置。实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。计算空气的折射率。 解:(1)当上面的空气被抽去,它的光程减小,所以它将 通过增加路程来弥补,条纹向下移动。 (2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉 条纹移过N 条,可列出:λN n l =-)(1 得:1+= l N n λ 。 18-3.在图示的光路中,S 为光源,透镜1L 、2L 的焦距都为f , 求(1)图中光线SaF 与光线SOF 的光程差为多少?(2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么该光线与SOF 的光程差为多少?。 解:(1)图中光线SaF 与光线SOF 的几何路程相同,介质相同,透镜不改变光程,所以SaF 与光线SOF 光程差为0。 (2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么光程差为几何路程差与介质折射率差的乘积,即:(1)n l δ=-。 18-4.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。 解:因为油膜( 1.3n =油)在玻璃( 1.5n =玻)上,所以不考虑半波损失,由反射相消条件有:2(21) 122 n e k k λ =-= 油,,, 当12500700nm nm λλ==?????时,1122 2(21)22(21)2 n e k n e k λλ=? -=-??????油油?21 21217215k k λλ-==-, 因为12λλ<,所以12k k >,又因为1λ与2λ之间不存在'λ以满足' 2(21) 2 n e k λ=-油式, 即不存在21'k k k <<的情形,所以1k 、2k 应为连续整数,可得:14k =,23k =;

【大学物理实验报告】多普勒效应及声速的测试与应用

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 学号 实验台号 实验时间 年 月 30 日,第六周,星期 一 第 5-6 节 实验名称 多普勒效应及声速的测试与应用 教师评语 实验目的与要求: 1. 加深对多普勒效应的了解 2. 测量空气中声音的传播速度及物体的运动速度 主要仪器设备: DH-DPL 多普勒效应及声速综合测试仪,示波器 其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。 实验原理和内容: 1、 声波的多普勒效应 实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。 设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式: ???? ? ?-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。 然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动 假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为

)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M ) 为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。 则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式: ????? ????? ? ?--=0001cos c x t M p p S ω 可见接收器接收到的频率变为原来的 S M 11 -, 即: 1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为 1.3介质不动,声源运动速度为S V ,接收器运动速度为r V ,可得接收器接收到的频率为 1.4 介质运动。 同样介质的运动会改变声波从源向接收点传播的实际表观速度(真实声速并没有发生变化), 导致计算收发声时的实时位移量变为t V x x m -=0, 通过同样的计算法, 可以得到此状态下接收器收到的频率为(以介质向接收器运动时, 马赫数记为正) 另外, 当声源和介质以相同的速度和方向运动时, 接收器收到的频率不变(从定性的分析即可得到这一点结论)。 本实验重点研究第二种情况, 即声源和介质不动, 接收器运动。 设接收器运动速度为r V ,根据1.2 式可知,改变r V 就可得到不同的r f ,从而验证了多普勒效应。另外,若已知r V 、f ,并测出r f ,

大学物理驻波、多普勒效应、习题课综述

§4-5 驻波 一、驻波方程 在同一介质中,在同一直线上,两列沿相反方向传播的频率相同、振动方向相同、振幅相同的简谐波叠加时, 就形成 驻波 。 驻波是一种特殊的干涉现象! 为简单起见,设两列行波分别沿 x 轴正、反向传播,在x = 0处两波初相均为0 x + 方向: 12c o s A t x πξωλ??=- ??? x - 方向: 22c o s A t x πξωλ??=+ ?? ? 合成波: 1222cos cos A t x A t x ππξξξωωλλ? ?? ?=+=- ++ ? ???? ? 22c o s c o s A x t π ω ??= ? x 和t 被分割于两个余弦函数中) 绝对值为振幅 谐振动,相位中不含x 二、驻波的特点 1、()(),,x x t t x t ξξ+?+?≠ 其中 x u t ?=? 只有波形的变化,不向前传播 2、cos t ω: 各个质点作同频谐振动 3、2cos x πλ ?? ??? :振幅按余弦规律变化,各处不等大 振幅最大: 222 x k π π λ = (0,1,2,k =±) 2 x k λ = 波腹 振幅最小: 2(21) 2 x k π π λ =+ (0,1,2,k =±) (2 1) 4 x k λ =+ 波节

相邻两波腹或两波节之间的距离为 2 λ 4、驻波中的“位相” 2cos x πλ?? ??? 为正, 位相为 t ω 2cos x πλ ?? ??? 为负, 位相为 t+ωπ 驻波是分段的振动。两相邻波节间为一段,同一段振动相位相同;相邻段振动相位相反。 5、驻波无能量传播 三、半波损失 波传播时,遇到界面会怎么样?界面处的振动? 波会反射回来,反射波与入射波叠加! 图中情况,B 是固定点 波节 入射波和反射波位相相反,位相差为 π 反射波的位相有 π 的突变,“损失π” 位相差为 2π 的两点,距离为一个波长 λ 反射波有半波损失! 实验发现,在界面处有时形成波节,有时形成波腹。规律? 取决于界面两边介质的相对波阻。 波阻u ρ= 波疏介质 → 波密介质:反射时有半波损失(界面形成波节) 波密介质 → 波疏介质:反射时无半波损失(界面形成波腹) 半波损失是一个很重要的概念,在研究声波、光波的反射问题时会经常涉及到! B 大 波密介质 波疏介质

《大学物理学》光的干涉练习题2016马解答

《大学物理学》光的干涉学习材料(解答) 一、选择题: 11-1.在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明纹中心位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( D ) (A)中央明条纹向下移动,且条纹间距不变; (B)中央明条纹向上移动,且条纹间距增大; (C)中央明条纹向下移动,且条纹间距增大; (D)中央明条纹向上移动,且条纹间距不变。 【提示:画出光路,找出'S 到光屏的光路相等位置】 11-2.如图所示,折射率为2n ,厚度为e 的透明介质薄膜的上方与下方的透明介质折射率分别为1n 与 3n ,且12n n <,23n n >,若波长为λ的平行单色光垂直入射在薄膜上,则上下两个表面反射的两束光的 光程差为( B ) (A)22n e ; (B)22/2n e λ-; (C)22n e λ-; (D)222/2n e λn -。 【提示:上表面反射有半波损失,下表面反射没有半波损失】 11-3.两个直径相差甚微的圆柱体夹在两块平板玻璃之间构成空气劈尖, 如图所示,单色光垂直照射,可瞧到等厚干涉条纹,如果将两个圆柱 之间的距离L 拉大,则L 范围内的干涉条纹( C ) (A)数目增加,间距不变; (B)数目增加,间距变小; (C)数目不变,间距变大; (D)数目减小,间距变大。 【提示:两个圆柱之间的距离拉大,空气劈尖夹角减小,条纹变疏,但同时距离L 也变大,考虑到两圆柱的高度差不变,所 以条纹数目不变】 4.用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:( D ) (A)干涉条纹的宽度将发生改变; (B)产生红光与蓝光两套彩色干涉条纹; (C)干涉条纹的亮度将发生改变; (D)不产生干涉条纹。 【提示:不满足干涉条件,红光与蓝光不相干】 5.如图所示,用波长600λ=nm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1、5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为( B ) (A)5、0×10-4cm ; (B)6、0×10-4cm ; (C)7、0×10-4 cm ; (D)8、0×10-4 cm 。 【提示:光在玻璃内多走的光程应为5λ,即(n -1)d =5λ,可得d 】 11-14.如图所示,用波长480λ=nm 的单色光做杨氏双缝实验,其中一条缝用折射率n =1、4的薄透明玻璃片盖在其上,另一条缝用折射率n =1、7的同样厚度的薄透明玻璃片覆盖,则覆盖玻璃片前的中央明纹极大位置现变成了第五级明纹极大,则此玻璃片厚度为( C ) S S 3 n e

南昌大学物理实验报告光电效应

南昌大学物理实验报告 姓名:李小龙学号:5710116068 学院:材料科学与工程学院班级:材料162 实验时间:第一周指导老师:张德建 一、实验名称:光电效应 二、实验目的: 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、实验仪器: 光电效应测试仪、汞灯及电源、滤色片、光阑、光电管、测试仪 四、实验原理: 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为γ的光波,每个光子的能量为E=hμ,其中

为普朗克常数。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: hν=1 2 mv2+w 式中,ν为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,W为被光线照射的金属材料的逸出功,1/2mv2 为从金属逸出的光电子的最大初动能。由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0U被称为光电效应的截止电压。显然,有e u0-1/2m v2=0 (2)代入上式即有hν=eu0+ w (3)由上式可知,若光电子 能量h+ν

大学物理学》光的干涉练习题马解答

《大学物理学》光的干涉学习材料(解答) 一、选择题: 11-1.在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明纹中心位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( D ) (A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。 【提示:画出光路,找出'S 到光屏的光路相等位置】 11-2.如图所示,折射率为2n ,厚度为e 的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,且12n n <,23n n >,若波长为λ的平行单色光垂直入射在薄膜上,则上下两个表面反射的两束光的光程差为( B (A )22n e ; (B )22/2n e λ-; (C )22n e λ-; (D )222/2n e λn -。 【提示:上表面反射有半波损失,下表面反射没有半波损失】 11-3.两个直径相差甚微的圆柱体夹在两块平板玻璃之间构成 空气劈尖, 如图所示,单色光垂直照射,可看到等厚干涉条纹,如果将两个圆柱 之间的距离L 拉大,则L 范围内的干涉条纹( C ) (A )数目增加,间距不变; (B )数目增加,间距变小; (C )数目不变,间距变大; (D )数目减小,间距变大。 【提示:两个圆柱之间的距离拉大,空气劈尖夹角减小,条纹变疏,但同时距离L 也变大,考虑到两圆柱的高度差不变,所以条纹数目不变】 S S 3 n

4.用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:( D ) (A )干涉条纹的宽度将发生改变; (B )产生红光和蓝光两套彩色干涉条纹; (C )干涉条纹的亮度将发生改变; (D )不产生干涉条纹。 【提示:不满足干涉条件,红光和蓝光不相干】 5.如图所示,用波长600λ=nm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5 央明纹极大的位置,则此玻璃片厚度为( B ) (A )5.0×10-4cm ; (B )6.0×10-4cm ; (C )7.0×10-4cm ; (D )8.0×10-4cm 。 【提示:光在玻璃内多走的光程应为5λ,即(n -1)d =5λ,可得d 】 11-14.如图所示,用波长480λ=nm 的单色光做杨氏双缝实验,其中一条缝用折射率n =1.4的薄透明玻璃片盖在其上,另一条缝用折射率n =1.7的同样厚度的薄透明玻璃片覆盖,则覆盖玻璃片前的中央明纹极大位置现变成了第五级明纹极大,则此玻璃片厚度为( C ) (A )3.4 μm ; (B )6.0 μm ; (C )8.0 μm ; (D )12 μm 。 【提示:两光在玻璃内的光程差应为5λ,即(n 2-1)d -(n 1-1)d =5λ,可得d 】 7.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 ( B ) (A )使屏靠近双缝; (B )使两缝的间距变小; (C )把两个缝的宽度稍微调窄; (D )改用波长较小的单色光源。 【提示:根据公式'd x d λ?= 判断】 8.将双缝干涉实验放在水中进行,和空气中的实验相比,相邻明纹间距将( B ) (A )不变; (B )减小; (C )增大; (D )干涉条纹消失。 【提示:由/n n λλ=,知在水中光波长变短】 9.在双缝干涉实验中,若双缝所在的平板稍微向上平移,其他条件不变,则屏上的干涉条纹( B ) (A )向下移动,且间距不变;(B )向上移动,且间距不变;

大学物理实验光电效应

光电效应 当光束照射到某些金属表面上时, 会有电子从金属表面即刻逸出,这种现象称为“光电效应”。1905年爱因斯坦圆满地解释了光电效应的实验现象,使人们进一步认识到光的波粒二象性的本质,促进了光的量子理论的建立和近代物理学的发展,爱因斯坦因此获得了1921年的诺贝尔奖。现在利用光电效应制成的各种光电器件(如光电管、光电倍增管、夜视仪等)已经被广泛应用于工农业生产、科研和国防等领域。 [实验目的] 1.加深对光的量子性的认识; 2.验证爱因斯坦方程,测定普朗克常数; 3.测定光电管的伏安特性曲线。 [ 实验原理] 当一定频率的光照射到某些金属表面上时, 可以使电子从金属表面逸出,这种现象称为光电效应。所产生的电子, 称为光电子。根据爱因斯坦的光电效应方程有 hν=1/2 mv m2+ W (1) 其中ν为光的频率,h为普朗克常数,m和v m是光电子的质量和最大速度,W为电子摆脱金属表面的约束所需要的逸出功。 按照爱因斯坦的光量子理论:频率为ν的光子具有能量hν,当金属中的电子吸收一个频率为ν的光子时,便获得这个光子的全部能量。如果光子的能量hν大于电子摆脱金属表面的约束所需要的逸出功W,电子就会从金属中逸出,1/2mv m是光电子逸出表面后所具有的最大动能;光子能量hν小于W时,电子不能逸出金属表面,因而没有光电效应产生。能产生光电效应的入射光最低频率ν0,称为光电效应的截止(或极限)频率。由方程(1)可得 v0=W/h (2) 不同的金属材料有不同的逸出功, 因而ν0也是不同的。 利用光电管可以进行研究光电效应规律、测量普朗克常数的实验,实验原理可参考图1。图中K为光电管的阴极,A为阳极,微安表用于测量微小的光电流, 电压表用于测量光电管两极间的电压,E为电源,R提供的分压可以改变光电管两极间的电势差。单色光照射到光电管的阴极K上产生光电效应时,逸出的光电子在电场的作用下由阴极向阳极运动,并且在回路中形成光电流。当阳极A电势为正,阴极K电势为负时,光电子被加速。当K电势为正,A电势为负时,光电子被减速;而当A、K之间的电势差足够大时,具有最大动能的光电子也被反向电场所阻挡,光电流将为零。此时,有 e U0 =1/2 mv m2(3)

大学物理13章光的干涉习题答案电子教案

大学物理13章光的干涉习题答案

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 第13章习题答案 13—7 在双缝干涉实验中,两缝的间距为mm 5.0,照亮狭缝S 的光源是汞弧灯加上绿色滤光片。在m 5.2远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为mm 2。试计算入射光的波长。 解:已知条纹间距32210-==?x mm m ?,缝宽4 05510-==?d .mm m ,缝离屏的距离25=D .m =D x d ?λ ∴ 43751021041025 ---?==??=?d x m D .λ? 13—8用很薄的云母片(58.1=n )覆盖在双缝实验中的一条缝上,这时屏幕上的零级明条纹移到原来的第七级明条纹的位置上,如果入射光波长为nm 550,试问此云母片的厚度为多少? 解: 设云母片厚度为e ,则由云母片引起的光程差为 e n e ne )1(-=-=δ 按题意 λδ7= ∴ 610 106.61 58.1105500717--?=-??=-=n e λm 6.6=m μ 13—9 用包含两种波长成分的复色光做双缝实验,其中一种波长nm 5501=λ。已知双缝间距为mm 6.0,屏和缝的距离为m 2.1,求屏上1λ的第三级明条纹中心位置。已知在屏上1λ的第六级明条纹和未知波长光的第五级明条纹重合,求未知光的波长。 解:屏上1λ的三级明纹中心的位置 m 103.31055010 6.02.133933---?=????==λd D k x 依题意屏上1λ的第六级明条纹和波长为λ的第五级明条纹重合于x 处 则有 λλd D k d D k x 516== 即 λλ516k k = m 106.6105505 679156--?=??==λλk k 13—10平板玻璃(5.1=n )表面上的一层水(33.1=n )薄膜被垂直入射的光束照射,光束中的光波波长可变。当波长连续变化时,反射强度从nm 500=λ时的最小变到nm 750=λ时的同级最大,求膜的厚度。 习题13-10图

大学物理论文浅谈多普勒效应

大学物理论文浅谈多普 勒效应 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

浅谈多普勒效应 摘要:本文从多普勒效应的基本原理出发,结合声波中的具体实例,并写出了自己的一些浅显认识。之后,介绍了多普勒效应在天文学、医学和公共交通方面的应用。最后,发散地想了原理变化后的一些现象,简要说了冲击波、马赫锥的相关内容。 引言:在生活中,我们常常遇到波源与观测者发生相对运动的情形,如站在铁路旁听着高速行驶的列车拉着响笛飞驰而过,此时你会感觉到响笛音调的明显变化,这就是人们常说的多普勒效应。那么,出现这种情况的原因是什么呢关于多普勒效应可以建哪些模型进行研究呢下面让我们简单来了解一下多普勒效应。 关键词:多普勒效应、应用、冲击波、马赫锥。 一、多普勒效应基本原理 首先,先来让我们以声波为例具体分析一下多普勒效应的三种情况。 物理量的定义:设波源为S,观察者相对介质的运动速度是v0,波源相对介质的运动速度是v s,声波在介质中的传播速度为u,波源的频率、波的频率、观察者收到的频率分别是,, γγγ'。 B (一)、波源相对介质静止,观测者相对介质运动 此时,当观测者靠近波源沿直线(这样研究较简便)运动时,他在一定时间内接收到的完整的波长必定要增加,这好比雨水迎面打来,我们顶着雨跑,单位时间内会淋更多的雨水。在单位时间内,他接受的波的总长度为u+v0,而此时,该波在介质中传播的频率是不变的,与波源振动频率相同,同为γ,所以在单位时间内观测者所接受到的完整波的数目是:

0u v u γγ+'= 所以此时观测者会感觉音调变高了。 (二)观察者相对介质静止,波源相对介质运动 当波源向着观察者运动时,波源每次完整震动后都发出一次脉冲,设初始时刻发出一次脉冲,而在一个周期后,该波源又会发出一次脉冲,但波源的位置在哪里呢显然发生了变化,距离观察者近了v s T 。这样,经过多个周期从整体上看,波源前面(即距观察者近一边)的脉冲密集了,波源后面(即距观察者远的一面)的脉冲稀疏了,量化来看就是波长发生了变化,由原来的λ变为 由于观察者静止,所以观察者受到的频率就是介质中波的频率,即 11s s u u v u v u γλ'==='-- 由上式可知此时观察者收听到的频率较高。 (三)波源与观察者同时运动 根据上述讨论,使得观察者接收到的频率不同于波源频率的原因有两个:一是观察者的运动,使波在单位时间内通过观察者的总距离变为0u v +;二是波源的运动使介质中的波长变为s s u v v T λλγ-'=-= 。 所以观察者接收到的声波频率为0s u v u v γγ+'= -。 (四)、多普勒效应的简单理解 如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接s s u v v T λλγ-'=-=

大学物理期末论文之多普勒效应

大学物理期末论文之多普勒效应 13125244 吴祥昇 生活实例 当一辆救护车迎面驶来的时候,听到声音越来越高;而车离去的时候声音越来越低。你可能没有意识到,这个现象和医院使用的彩超同属于一个原理,这就是“多普勒效应”。 内容简介 多普勒效应是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,他于1842 年首先提出了这一理论。主要内容为物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift);在运动的波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift);波源的速度越高,所产生的效应越大。根据波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度。 原理解释 多普勒效应指出,波在波源移向观察者接近时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。但是由于缺少实验设备,多普勒当时没有用实验验证,几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。假设原有波源的波长为λ,波速为c,观察者移动速度为v:

当观察者走近波源时观察到的波源频率为(c+v)/λ,反之则观察到的波源频率为(c-v)/λ。 一个常被使用的例子是火车的汽笛声,当火车接近观察者时,如果观察者远离波源,汽鸣声会比平常更刺耳。你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。 如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。 产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即

多普勒效应原理及其应用

大学生物理论文及科技制作竞赛 多普勒效应原理及其应用 虞金花(08009203) (东南大学自动化学院,南京,211189) 摘要:多普勒效应是波源和观察者有相对运动时观察者接收到的波的频率与波源发出不同频率的现象。 本文首先介绍声波和光波中多普勒效应的原理,然后结合原理阐述多普勒效应在我们现在生活中的广泛应用。 关键词:多普勒效应;原理;应用 Doppler Effect’s Principle and Application Yu Jin Hua (Department of Automation Southeast University, Nanjing, 211189) Abstract: Doppler Effect is a phenomenon that when the waves and observers have relative motion, the frequency the observers receive is different from the frequency that it originally was. First,this paper introduces the principle of Doppler Effect, then explain its wide use in our daily life with the combination of its principle. Key words:Doppler Effect;principle;appplication 多普勒效应是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒而命名的,他于1842年首先提出了这一理论。多普勒认为,物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高 (蓝移)。在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低 (红移)。波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。恒星光谱线的位移显示恒星循着观测方向运动的速度。除非波源的速度非常接近光速,否则多普勒位移的程度一般都很小。所有波动现象 (包括光波) 都存在多普勒效应。1多普勒效应的原理 波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。 假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ。 1.1声波中的原理 设声源的频率为v,声波在媒质中的速度为V,波长λ=V/v。声波在媒质中传播的速度与波源是否运动无关,故总是以决定于媒质特性的速度V来传

相关文档
最新文档