2003年考研数学三真题及全面解析

2003年考研数学三真题及全面解析
2003年考研数学三真题及全面解析

2003年全国硕士入学统考数学(三)试题及答案

一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)

(1)设,0,

0,

0,1cos )(=≠?????=x x x

x x f 若若λ

其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.

【详解】 当1>λ时,有

,0,

0,0,1sin 1cos )(21

=≠??

???+='--x x x

x x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0

f x f x '=='→,即其导函数在x=0处连续.

(2)已知曲线b x a x y +-=2

3

3与x 轴相切,则2b 可以通过a 表示为=2b 6

4a .

【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2

b 与a 的关系.

【详解】 由题设,在切点处有

0332

2=-='a x y ,有 .220a x =

又在此点y 坐标为0,于是有

030023

0=+-=b x a x ,

故 .44)3(6

422202202a a a x a x b =?=-=

(3)设a>0,,

x a x g x f 其他若,

10,0,)()(≤≤??

?==而D 表示全平面,则

??-=D

dxdy x y g x f I )()(= 2a .

【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.

【详解】 ??

-=D dxdy x y g x f I )()(=

dxdy a x y x ??≤-≤≤≤1

0,102

=.])1[(21

021

1

2

a dx x x a dy dx a

x x

=-+=??

?

+

(4)设n 维向量0,),0,,0,(<=a a a T

Λα;E 为n 阶单位矩阵,矩阵

T

E A αα-=, T a

E B αα1

+=, 其中A 的逆矩阵为B ,则a= -1 .

【分析】 这里T

αα为n 阶矩阵,而2

2a T

=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.

【详解】 由题设,有

)1

)((T T

a E E AB αααα+

-= =T

T T T a a E αααααααα?-+-11

=T

T T T a a E αααααααα)(11-+-

=T

T T a a E αααααα21-+-

=E a

a E T

=+--+αα)121(,

于是有 0121=+--a a ,即 0122

=-+a a ,解得 .1,2

1-==a a 由于A<0 ,故a=-1.

(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为

0.9 .

【分析】 利用相关系数的计算公式即可. 【详解】 因为

)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =

于是有 cov(Y ,Z)=

DZ

DY Z Y ),cov(=

.9.0),cov(==XY DY

DX

Y X ρ

(6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样

本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于 2

1

.

【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量

n X X X ,,,21Λ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:

).(111

1∞→→∑∑==n EX n X n n

i i p

n i i

【详解】 这里2

2221,,,n X X X Λ满足大数定律的条件,且

22)(i i i EX DX EX +==

2

1

)21(412=+,因此根据大数定律有 ∑==n i i n X n Y 121依概率收敛于.2

1112

=∑=n i i EX n

二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)

(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数x

x f x g )

()(=

(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.

(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0

)

0()(lim )(lim

)(lim 00

f x f x f x x f x

g x x x '=--==→→→存在,故x=0为可去间断点.

(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是

(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ]

【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.

【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知

0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).

(3)设2

n

n n a a p +=

,2

n

n n a a q -=

,Λ,2,1=n ,则下列命题正确的是

(A) 若

∑∞

=1n n

a

条件收敛,则

∑∞

=1n n

p

∑∞

=1n n

q

都收敛.

(B) 若

∑∞

=1n n

a

绝对收敛,则

∑∞

=1n n

p

∑∞

=1n n

q

都收敛.

(C) 若

∑∞

=1

n n

a

条件收敛,则

∑∞

=1

n n

p

∑∞

=1

n n

q

敛散性都不定.

(D) 若

∑∞

=1

n n

a

绝对收敛,则

∑∞

=1

n n

p

∑∞

=1

n n

q

敛散性都不定. [ B ]

【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若

∑∞

=1

n n

a

绝对收敛,即

∑∞

=1

n n

a

收敛,当然也有级数

∑∞

=1n n

a

收敛,再根据

2

n

n n a a p +=

,2

n

n n a a q -=

及收敛级数的运算性质知,

∑∞

=1

n n

p

∑∞

=1

n n

q

都收敛,故应选

(B).

(4)设三阶矩阵????

??????=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.

(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有

0))(2(2=-+=b a b a a

b b b a b

b

b a ,即有02=+b a 或a=b.

但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).

(5)设s ααα,,,21Λ均为n 维向量,下列结论不正确的是

(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,

则s ααα,,,21Λ线性无关.

(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有

.02211=+++s s k k k αααΛ

(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.

(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.

【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21Λ,都有

02211≠+++s s k k k αααΛ,则s ααα,,,21Λ必线性无关,因为若s ααα,,,21Λ线性相关,

则存在一组不全为零的数s k k k ,,,21Λ,使得 02211=+++s s k k k αααΛ,矛盾. 可见(A )成立.

(B): 若s ααα,,,21Λ线性相关,则存在一组,而不是对任意一组不全为零的数

s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ (B)不成立.

(C) s ααα,,,21Λ线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21Λ的秩为s ,则s ααα,,,21Λ线性无关,因此(C)成立.

(D) s ααα,,,21Λ线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.

综上所述,应选(B).

(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件

(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.

(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ] 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.

【详解】 因为

21)(1=

A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,4

1

)(42=A A P 0)(321=A A A P ,

可见有

)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =, )()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.

故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).

三 、(本题满分8分)

).1,2

1[,)1(1sin 11)(∈--+=

x x x x x f πππ 试补充定义f(1)使得f(x)在]1,2

1

[上连续.

【分析】 只需求出极限)(lim 1

x f x -→,然后定义f(1)为此极限值即可.

【详解】 因为

)(lim 1

x f x -→=])1(1sin 11[

lim 1

x x x x --+-→πππ =

x

x x

x x ππππ

π

sin )1(sin )1(lim 1

1

1

---+

-

=

x

x x x

x πππππππ

π

cos )1(sin cos lim 1

1

1

-+---+

-

=x

x x x x

x ππππππππππsin )1(cos cos sin lim 1

1

221----+-

=

.1

π

由于f(x)在)1,2

1[上连续,因此定义

π

1

)1(=

f ,

使f(x)在]1,2

1

[上连续.

四 、(本题满分8分)

设f(u,v)具有二阶连续偏导数,且满足12

222=??+??v f u f ,又)](2

1,[),(2

2y x xy f y x g -=,求.222

2y

g

x g ??+?? 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(2

1,22

y x v xy u -=

=,直接利用复合函数求偏导公式即可,注意利用

.22u

v f

v u f ???=??? 【详解】

v

f x u f y x

g ??+??=??, .v

f y u f x y

g ??-??=?? 故 v

f v f x v u f xy u f y x

g ??+??+???+??=??2222222222,

精选文库

.22

2

2222222v f v

f y u v f xy u f x y

g ??-??+???-??=?? 所以 22

2222222222)()(v

f y x u f y x y

g x g ??++??+=??+?? =.2

2y x +

五 、(本题满分8分) 计算二重积分 .)sin(22)

(22

dxdy y x e I D

y x +=

??-+-π

其中积分区域D=}.),{(22π≤+y x y x

【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I D

y x )sin(22)

(22

+=??+-π

=.sin 20

22

dr r re d e r ?

?

π

π

θ

令2

r t =,则 tdt e e I t sin 0

?

-=π

π

π.

记 tdt e A t sin 0

?

-=

π

,则

t t de e A --?

-

=int 0

π

=]cos sin [0

?----π

π

tdt e t e t t

=?

--

π

cos t tde

=]sin cos [0

tdt e t e t t

?--+-π

π

=.1A e -+-π

因此 )1(2

1

π-+=

e A , ).1(2

)1(2

πππ

π

πe e e I +=

+=

-

六、(本题满分9分)

求幂级数∑∞

=<-+1

2)1(2)1(1n n

n

x n x 的和函数f(x)及其极值. 【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出

和函数后,再按通常方法求极值.

【详解】

.1)1()(12

1

2∑∞

=-+-=-=

'n n n x

x

x x f 上式两边从0到x 积分,得

).1ln(2

11)0()(2

02

x dt t t f x f x

+-=+-=-? 由f(0)=1, 得

).1(),1ln(2

1

1)(2<+-

=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于

,)

1(1)(2

22

x x x f +--='' 01)0(<-=''f ,

可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.

七、(本题满分9分)

设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x

e x g x

f =+

(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.

【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.

【详解】 (1) 由

)()()()()(x g x f x g x f x F '+'=' =)()(2

2

x f x g +

=)()(2)]()([2

x g x f x g x f -+ =(22

)x e -2F(x), 可见F(x)所满足的一阶微分方程为

.4)(2)(2x e x F x F =+'

(2) ]4[)(222C dx e e e x F dx x

dx +???=?

-

=]4[42C dx e e x x +?

-

=.22x x

Ce e

-+

将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是

.)(22x x

e e x F --=

八、(本题满分8分)

设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在

)3,0(∈ξ,使.0)(='ξf

【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于

13

)

2()1()0(=++f f f ,问题转

化为1介于f(x)的最值之间,最终用介值定理可以达到目的.

【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是

M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故

.3

)

2()1()0(M f f f m ≤++≤

由介值定理知,至少存在一点]2,0[∈c ,使

.13

)

2()1()0()(=++=

f f f c f

因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在

)3,0()3,(?∈c ξ,使.0)(='ξf

九、(本题满分13分) 已知齐次线性方程组

?????

????=+++++=+++++=+++++=+++++,

0)(,0)(,0)(,

0)(332211332211332211332211n

n n

n n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中

.01

≠∑=n

i i

a

试讨论n a a a ,,,21Λ和b 满足何种关系时,

(1) 方程组仅有零解;

(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.

【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.

【详解】 方程组的系数行列式

b

a a a a a b

a a a a a

b a a a a a b a A n n n n

++++=ΛM M M M M ΛΛΛ3

213213

21321 =).(1

1

∑=-+n

i i n a b b

(1) 当0≠b 时且01

≠+

∑=n

i i

a

b 时,秩(A)=n ,方程组仅有零解.

(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a Λ 由

01

≠∑=n

i i

a

可知,),,2,1(n i a i Λ=不全为零. 不妨设01≠a ,得原方程组的一个基础

解系为

T a a )0,,0,1,(12

1Λ-

=α,T a a )0,,1,0,(132Λ-=α,.)1,,0,0,(,1

T n n a a ΛΛ-=α 当∑=-

=n

i i

a

b 1

时,有0≠b ,原方程组的系数矩阵可化为

?

?????????????

?????????

?

----∑∑∑∑====n i i n n

n

i i

n

n

i i

n

n

i i

a a a a a a a a a a a a a a a a a a a a 13

2

113213121321

M M M M Λ

ΛΛ (将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-

n

i i

a

1

1

倍)

→ ????????

???

?

?

??

??

?

----∑=100101010011321

M M M M ΛΛΛ

n n

i i

a a a a a ( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)

.0000

100101010011

???????

?????????---Λ

ΛM M M M Λ

Λ 由此得原方程组的同解方程组为

12x x =,13x x =,1,x x n =Λ . 原方程组的一个基础解系为 .)1,,1,1(T

Λ=α

十、(本题满分13分)

设二次型

)0(222),,(312

32221321>+-+==b x bx x x ax AX X x x x f T ,

中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;

(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若

有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.

【详解】 (1)二次型f 的矩阵为

.200200????

??????-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有

1)2(2321=-++=++a λλλ,

.12242

002

00

2321-=--=-=b a b b

a λλλ

解得 a=1,b= -2.

(2) 由矩阵A 的特征多项式

)3()2(2

2

2

0201

2+-=+----=

-λλλλλλA E ,

得A 的特征值.3,2321-===λλλ

对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T

对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系

.)2,0,1(3T

-=ξ

由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得

T )5

1,

0,5

2(

1=η,T )0,1,0(2=η,.)5

2,0,5

1(

3T -

令矩阵

[]??????????

???

?-

==5205

1010510

5232

1ηηηQ ,

则Q 为正交矩阵. 在正交变换X=QY 下,有

??

??

?

?????-=300020002AQ Q T ,

且二次型的标准形为

.3222

32221y y y f -+=

十一、(本题满分13分) 设随机变量X 的概率密度为

;],8,1[,

0,31

)(32其他若∈???

??=x x x f

F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.

【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。注意应先确定Y=F(X)的值域范围)1)(0(≤≤X F ,再对y 分段讨论.

【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1. 对于]8,1[∈x ,有 .131)(31

32

-==

?

x dt t x F x

设G(y)是随机变量Y=F(X)的分布函数. 显然,当0

})({}{)(y X F P y Y P y G ≤=≤=

=})1({}1{33+≤=≤-y X P y X P

=.])1[(3

y y F =+ 于是,Y=F(X)的分布函数为

.1,10,0,1,,0)(≥<≤

?

??=y y y y y G 若若若

十二、(本题满分13分)

设随机变量X 与Y 独立,其中X 的概率分布为 ???

?

??7.03.021~X ,

而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).

【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.

【详解】 设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为

}{)(u Y X P u G ≤+=

=}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P =}22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P . 由于X 和Y 独立,可见

G(u)= }2{7.0}1{3.0-≤+-≤u Y P u Y P

=).2(7.0)1(3.0-+-u F u F

由此,得U 的概率密度

)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g

=).2(7.0)1(3.0-+-u f u f

相关主题
相关文档
最新文档