超重和失重

超重和失重
超重和失重

超重和失重

【教材分析】

本节教材是人教版物理必修一第四章中的第六节内容,本节课是利用牛顿第二定律来研究超重和失重现象,是本章知识应用一个典型例子。对超重和失重现象产生原因的分析要用到牛顿第二定律,这不仅有利于学生对定律的理解和巩固,同时也有助于培养学生分析问题和解决问题的能力。另外,这还是一个贴近日常生活的实际问题,而且与航天技术紧密联系,容易激发学生的学习兴趣和探究热情。这节课对于培养学生主动学习具有极其重要的引导作用,是一个很好的教学资源。

【教学目标与核心素养】

一、教学目标

1.认识超重和失重现象的本质,知道超重与失重现象中,地球对物体的作用力并没有变化;

2.能够根据加速度的方向,判别物体的超重和失重现象;

3.知道完全失重状态的特征和条件,知道人造卫星中的物体处于完全失重状态;

4.运用牛顿第二定律,解释实际中的超重和失重现象。

二、核心素养

物理观念:建构超重和失重的物理观念,了解超重和失重的原因,超重和失重与运动方向、加速度方向关系。

科学思维:学会对实际情景“建模”,用科学的方法解决实际问题。培养学生分析、思考、解决问题能力和交流、合作能力。

科学探究:经历探究产生超重和失重现象原因的过程,学习科学探究的方法,进一步学会应用牛顿运动定律解决实际问题的方法。

科学态度与责任:体验学以致用的乐趣,感受物理与生活、社会与科学技术的相关性。

【教学重点】

把超重和失重现象与牛顿运动定律联系起来,探究现象本身和加速度的内在联系。

【教学难设计问题梯度,筛选教学资源,设计典型实验,引导学生探究,

1.超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象(视重>实重)。

2.失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象(视重<实重)。

思考讨论:人站在体重计上向下蹲的过程中,为什么体重计的示数会变化呢?

分析:体重计的示数称为视重,反映了人对体重计的压力。

根据牛顿第三定律,人对体重计的压力与体重计对人的支持力F N 大小相等,方向相反。

解析:选取人为研究对象。人体受到重力mg 和体重计对人的支持力F N ,这两个力的共同作用使人在下蹲的过程中,先后经历加速、减速和静止三个阶段。

(1)人加速向下运动

设竖直向下方向为坐标轴正方向,如图所示

根据牛顿第二定律,有mg -F N =ma F N =m (g -a )

即体重计的示数所反映的视重(力)小于人所受的重力,所以属于失重现象。

α向下视重<重力失重现象

超重和失重的情况。

学生思考讨论

课下让学生切身体验超重和失重

在教师引导下计算人对电梯的压力

学生练习

阅读课文了解太空中完全失重的现象

学生阅读课文

学生练习

的一般思路

巩固解这类问题的思路步骤

巩固理解完全失重的概念

锻炼学生的自主学习能力

了解发射航天器的超重现象

巩固本节知识

(2)人减速向下运动

如图所示:

加速度方向与运动方向相反,有

mg-F N=-ma

F N=m(g+a)>mg

此时,体重计的示数大于人受到的重力。

所以属于超重现象。

α向上视重>重力超重现象

(3)人静止时,受力分析如图:

根据二力平衡的原理:F N=mg

教师总结:人站在体重计上向下蹲,体重计的示数先变小,后变大,再变小,最后保持不变。

思考与讨论:图线显示的是某人站在力传感器上,先“下蹲”后“站起”过程中力传感器的示数随时间的变化情况。请你分析力传感器上的人“站起”和下蹲过程中超重和失重的情况。

出示图片:在体重计上的人

参考答案:起立时先超重后失重,F先大于500N,后小于500N;

下蹲时,先失重后超重,F先小于

500N,后大于500N;

思考讨论:人的运动状态对体重计上显示出的结果是有影响的。那么,如果站在体重计上的人既不蹲下,也不站起,体重计上的示数就不会变吗?

参考答案:站在体重计上的人既不蹲下,也不站起,但如果把体重计放在加速下降或上升的电梯中,体重计上的示数就会变化。

做一做:在电梯地板上放一台体重计。站在体重计上,观察电梯启动、制动和运行过程中体重计示数的变化。

电梯加速上升电梯减速下降

体重计示数变大,属于超重现象。

α向上视重>重力超重现象

电梯加速下降电梯减速上升

体重计示数变小,属于矢重现象。

α向下视重<重力失重现象

电梯匀速运行过程中(a=0):F N=mg

例题:设某人的质量为60kg,站在电梯内的水平地板上,当电梯以0.25m/s2的加速度匀加速上升时,求人对电梯的压力。g取9.8m/s2。

分析:人站在电梯内的水平地板上,随电梯上升过程中受到两个力的作用:重力mg和地板的支持力F N,受力分析如图所示。

解:设竖直向上方向为坐标轴正方向。

根据牛顿第二定律,有

F N-mg=ma

F N=m(g+a)=60×(9.8+0.25)N=603N

根据牛顿第三定律,人对电梯地板的压力F N′为

F N=-F N=-603N

人对电梯的压力大小为603N,方向竖直向下。

这个结果说明

(1)当人与电梯共同向上加速或向下减速运动时,F N>G,人对电梯的压力将大于人所受的重力,出现超重现象。

(2)当人与电梯共同加速下降或减速上升时,F N

处理这类问题的一般思路:

1.确定研究对象;

2.对研究对象进行受力分析并规定正方向。

3.根据牛顿第二定律列出方程或方程组;

4.求解方程,并对结果做必要说明。

针对练习:电梯里有一台秤,台秤上放一个质量为m=10kg的物体,当电梯静止时,台秤的示数是多少?当电梯以大小为

3m/s2的加速度匀减速上升时,台秤的示数又是多少?(g=10m/s2)

参考答案:当电梯静止时,台称的示数为100N,当电梯以大小为3m/s2的加速度匀减速上升时,台秤的示数是70N。

三、完全失重

1.完全失重:如果人在加速下降的过程中加速度a=g,那么,体重计的示数为0。这时物体对支持物(或悬挂物)完全没有作用力,这种现象被叫作完全失重状态。

出示图片:航天器

航天器在太空轨道上绕地球或其他天体运行时,航天器内的物体将处于完全失重状态。

例题:已知人的质量为50kg,若该人

和电梯一起自由下落,台秤的示数是多少?

解:对人进行受力分析设竖直向下方向为坐标轴正方向

有牛顿第二定律得:mg-F N=ma

因为自由下落所以:a=g

代入得:F N=0

根据牛顿第三定律,人对台秤的的压力F N′为:

F N′=-F N=0

台秤的示数是0。

当物体向下的加速度a=g时,物体对支持物的压力(或对悬挂物的拉力)将等于零,这种状态称为完全失重现象。

完全失重时,物体将飘浮在空中,液滴呈球形,气泡在液体中将不会上浮,走路时稍有不慎,将会“上不着天,下不着地”……

出事图片:航天员在天宫二号上展示水球的实验

2.完全失重的状态下所有和重力有关的仪器都无法使用!

出示图片:弹簧秤

弹簧测力计无法测量物体的重力,但仍能测量拉力或压力的大小。

出示图片:天平

无法用天平测量物体的质量

四、发射航天器的超重现象

1.火箭发射

火箭发射时向上的加速度很大,火箭底部所承受的压力要比静止时大得多。

F N>mg

2.载人航天

如果是载人航天,在火箭发射阶段,航天员要承受数倍于自身体重的压力。只有很好地研究材料、机械结构、人体自身所能承受的压力问题,才能使火箭成功发射、航天员顺利飞向太空。

F N>mg

课堂练习

1.一个质量为50kg的人,站在竖直向上运动着的升降机地板上。他看到升降机上挂着一个重物的弹簧测力计的示数为40N,该重物的质量为5kg。这时人对升降机地板的压力是——————N。(g取10m/s2)

答案:400

2.下列四个实验中,能在绕地球飞行的太空实验舱中完成的是()

A.用天平测量物体的质量

B.用弹簧测力计测物体的重力

C.用温度计测太空实验舱内的温度

D.用水银气压计测太空实验舱内气体的压强

答案:C

3.一人站在体重计上,在他蹲下到停止的过程中,体重计的示数()

A.先小于体重,后大于体重,最后等于体重

B.先大于体重,后小于体重,最后等于体重

C.先小于体重,后等于体重

D.先大于体重,后等于体重

答案:A

4.一质量为m的人站在电梯中,电梯加速上升,加速度大小为g/3,g为重力加速度,人对电梯底部的压力为()A.mg/3

B.2mg

C.mg

D.4mg/3

答案:D

拓展提高

1.下列说法正确的是()

A.体操运动员双手握住单杠吊在空中不动时处于失重状态

B.蹦床运动员在空中上升和下落过程中都处于失重状态

C.举重运动员在举起杠铃后不动的那段时间内处于超重状态

D.游泳运动员仰卧在水面静止不动时处于失重状态

答案:B

2.下列关于超重和失重的说法中,正确的是()

A.物体处于超重状态时,其重力增大了

B.物体处于完全失重状态时,其重力为零

C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增大或减小了D.物体处于超重或失重状态时,其质量及受到的重力都没有变化

答案:D

3.在太空站的完全失重环境中,下列仪器能继续使用的是()

A.水银气压计

B.体重计

C.打点计时器

D.天平

答案:C

课堂小结1.超重:压力(或拉力)大于重力,具有向上的加速度;

失重:与超重刚好相反。

2.完全失重:压力(或拉力)等于

0,具有向下的加速度a,且

a=g=9.8m/s2。

3.物体是超重还是失重是由α的方向来判定的,与v方向无关。不论物体处于超

重还是失重状态,重力不变。

α向上视重>重力超重现象;

α向下视重<重力失重现象;

α=g视重=0完全失重。

梳理自

己本节所学

知识进行交

根据学生

表述,查漏补

缺,并有针对

性地进行讲解

补充。

板书一、重力的测量

测量重力常用的两种方法:一种方法利用牛顿第二定律G=mg;

另一种方法是,利用力的平衡条件对重力进行测量。

二、超重和失重

1.超重:α向上视重>重力超重现象

2.失重:视α向下视重<重力失重现象

三、完全失重

向下的加速度a=g时,物体对支持物(或悬挂物)完全没有作用力。

四、航天器的超重现象

1.火箭发射

2.载人航天发射

超重和失重的典型例题

超重和失重 问题 超重和失重是两个很重要的物理现象。当物体的加速度向上时,物体对支持物的压力大于物体的重力,这种现象叫做超重;当物体的加速度向下时,物体对支持物的压力小于物体的重力,这种现象叫做失重;当物体向下的加速度为g 时,物体对支持物的压力为零,这种现象叫做完全失重。下面通过举例说明超重和失重的有关问题。 【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2): (1)当弹簧秤的示数T 1=40N ,且保持不变. (2)当弹簧秤的示数T 2=32N ,且保持不变. (3)当弹簧秤的示数T 3=44N ,且保持不变. 解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的 作用.规定竖直向上方向为正方向. 当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,则 0/410440211=?-=-=s m m mg T a 由此可见电梯处于静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,则 2 222/2/44032s m s m m mg T a -=-=-= 式中的负号示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升. (3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,则 2 233/1/44044s m s m m mg T a =-=-= 加速度为正值表示电梯的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降. 小结:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态. 【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2) 解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N , (1)在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升 降机应具有向上的加速度 对于重物:F -m 2g=m 2 a 1,则 2 2221/2/10010001200s m s m m g m F a =-=-= (2)当升降机以a 2=2.5m/s 2的加速度加速下降时,重物失重.对于重物, F mg 图1

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

超重和失重力学单位

超重和失重力学单位 【学习目标】 1、知道什么是超重和失重现象。 2、知道产生超重和失重现象的条件。 3、理解等效法在超失重现象中的运用。 4、知道什么是单位制。 5、知道单位制在物理计算中的应用。 【难点重点】 对超重和失重现象的正确理解。 【知识精讲】 一、超重和失重 1、超重: 物体有向上的加速度称物体处于超重状态。处于超重状态的物体对支持面的压力F N(或对悬挂物的拉力)大于物体的重力mg。 ①超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象。 ②产生超重现象的条件是:物体具有竖直向上的加速度,与物体速度的大小和方向无关。 ③产生超重现象的原因:当物体具有向上的加速度a(向上加速运动或向下减速运动)时,设支持物对物体的支持力(或悬挂物对物体的拉力)为F,由牛顿第二定律得F-mg=m a,所以,F =(mg+m a)>mg,由牛顿第三定律知,物体对支持物的压力(或对悬挂物的拉力)F′>mg。 2、失重: 物体有向下的加速度称物体处于失重状态。处于失重状态的物体对支持面的压力F N(或对悬挂物的拉力)小于物体的重力mg,即F N=mg-m a。当a=g时,F N=0,即物体处于完全失重。 ①失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象。 ②产生失重现象的条件是:物体具有竖直向下的加速度,与物体速度的大小和方向无关。 ③产生失重现象的原因:当物体具有向下的加速度a(向下加速运动或向上做减速运动)时,设支持物对物体的支持力(或悬挂物对物体的拉力)为F。由牛顿第二定律mg-F=m a,所以F=(mg-m a)<mg, 由牛顿第三定律知,物体对支持物的压力(或对悬挂物的拉力)F′<mg。 ④完全失重现象:物体对支持物的压力(或对悬挂物的拉力)等于零的状态,叫做完全失重状态。 ⑤产生完全失重现象的条件:当物体竖直向下的加速度等于重力加速度时,就产生完全失重现象。 3、对超重和失重的理解 (1)不论超重、失重或完全失重,物体的重力依然不变,只是“视重”改变。 所谓“视重”是指人由弹簧秤等量具上所看到的读数。例如,人静止在地面上用弹簧秤等称

超重和失重 教学设计

超重和失重

重>实重)。 2.失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象(视重<实重)。 思考讨论:人站在体重计上向下蹲的过程中,为什么体重计的示数会变化呢? 分析:体重计的示数称为视重,反映了人对体重计的压力。 根据牛顿第三定律,人对体重计的压力与体重计对人的支持力F N大小相等,方向相反。 解析:选取人为研究对象。人体受到重力mg和体重计对人的支持力F N,这两个力的共同作用使人在下蹲的过程中,先后经历加速、减速和静止三个阶段。 (1)人加速向下运动 设竖直向下方向为坐标轴正方向,如图所示 根据牛顿第二定律,有 mg-F N=ma F N=m(g-a)

加速度方向与运动方向相反,有 mg-F N=-ma F N=m(g+a)>mg 此时,体重计的示数大于人受到的重力。 所以属于超重现象。 α向上视重>重力超重现象 (3)人静止时,受力分析如图: 根据二力平衡的原理:F N=mg 教师总结:人站在体重计上向下蹲,体重计的示数先变小,后变大,再变小,最后保持不变。 思考与讨论:图线显示的是某人站在力传感器上,先“下蹲”后“站起”过程中力传感器的示数随时间的变化情况。请你分析力传感器上的人“站起”和下蹲过程中超重和失重的情况。

出示图片:在体重计上的人 参考答案:起立时先超重后失重,F先大于500N,后小于500N; 下蹲时,先失重后超重,F先小于500N,后大于500N; 思考讨论:人的运动状态对体重计上显示出的结果是有影响的。那么,如果站在体重计上的人既不蹲下,也不站起,体重计上的示数就不会变吗? 参考答案:站在体重计上的人既不蹲下,也不站起,但如果把体重计放在加速下降或上升的电梯中,体重计上的示数就会变化。 做一做:在电梯地板上放一台体重计。站在体重计上,观察电梯启动、制动和运行过程中体重计示数的变化。 电梯加速上升电梯减速下降 体重计示数变大,属于超重现象。 α向上视重>重力超重现象 电梯加速下降电梯减速上升

“超上失下”巧记超重与失重现象

“超上失下”巧记超重与失重现象 “超重与失重”现象是牛顿运动定律的具体应用。在解决实际问题时,有的同学对超重到底是加速度向上还是向下经常模糊。为便于记忆,向大家介绍四字诀“超上失下”来帮助记忆。即:当物体处于超重状态时物体具有向上的加速度或向上的加速度分量,当物体处于失重状态时物体具有向下的加速度或向下的加速度分量。为了帮助同学们更好的理解超重与失重,现具体展开如下: 1概念理解 理解超重与失重之前,我们先要知道两个概念:实重和视重。 实重:指物体实际受到的重力,它不受物体运动状态的改变而改变,但随地理位置的变化而变化。在同一地方物体的重力G = mg (g是当地的重力加速度)。 视重:指物体对实际支持物的压力(或对悬挂它的物体的拉力),它随物体运动状态的改变而改变。 当物体的视重大于实重时,我们说物体处于超重状态,比如说加速上升的电梯里的物体处于超重状态;当物体的视重小于实重时,我们说物体处于失重状态,比如说加速下降的电梯里的物体处于超重状态;当物体的视重等于零时,物体处于完全失重状态。所以说超重与失重,并不是物体的实际重力改变了,而只是物体的视重发生改变,物体的重力始终存在,大小也没有变化,因为万有引力并没有改变。

2产生条件 超重产生的条件:物体存在竖直向上的加速度或向上的加速度分量。如:物体在升降机中向上的加速度为a ,则该物体的视重大小为F = m( g + a) > mg ,产生超重现象。 失重产生的条件:物体存在向下的加速度或向下的加速度分量。如:物体在升降机中向下的加速度为a ,则该物体的视重大小为F = m( g - a) < mg ,产生失重现象;此时,若a = g ,则F = 0,出现完全失重的现象。 3记忆口诀 由以上分析可知,发生超重或失重现象与物体的速度大小及方向无关,只决定于加速度的方向及大小。当物体处于超重状态时物体具有向上的加速度或向上的加速度分量,当物体处于失重状态时物体具有向下的加速度或向下的加速度分量。浓缩为四个字即“超上失下”。解答超重与失重问题时,首先要对系统进行受力分析,确定物体在竖直方向上的加速度,从而确定物体是超重还是失重。 4实例分析 【例】有一个装有水的容器放在弹簧台秤上,容器内有一只木球被容器底部的细线拉住浸没在水中处于静止,当细线突然断开,小球上升的过程中,弹簧秤的示数与小球静止时相比较有() A 增大 B 不变 C 减小 D 无法确定 【解析】选C。根据“超上失下”,当细线断后小球加速上升时处于超重状态,而

《超重与失重》教案教案

《超重与失重》教案 【教学目标】 1.知识与技能 (1)认识超重失重现象的本质,理解产生超重失重现象的原因; (2)掌握根据加速度方向,判断物体的超重与失重现象; (3)知道完全失重状态的特征和条件。 (4)能运用牛顿运动定律分析超重和失重现象,理解生活中的超重和失重现象,并能运用所学知识分析解决相关问题 2.过程与方法 (1) 通过活动探究的学习方式,探究产生超重和失重现象的过程,学习科学 探究的方法。 (2)经历观看实验、分组讨论、合作交流的过程,观察并体验超重和失重现象,完成物理知识的构建。 3.情感、态度与价值观 (1)在探究过程中,领略物理思维方法在探究、分析推理过程中的作用; (2)养成尊重事实,严谨的实验态度。 (3)通过合作实验探究的方式,使学生养成相互交流的学习习惯和合作的精神。 【教学重点】 产生超重和失重的条件和原因。 【教学难点】 理解产生超重和失重的原因,运用牛顿运动定律解释超重和失重的现象。

【教学资源】 若干弹簧测力计和砝码,纸带,; 学生学习单、多媒体课件。 【教学设计思想】 整个教学过程始终强调在教师指导下的学生自主探究与合作学习,把学生放在主体地位,积极营造学生动手实践、自主探究、合作交流的学习情景。挖掘“超重和失重”知识载体所蕴藏的物理学思想和方法,为了实现三维教学目标,设计了四个活动,将本节课的教学目标落实在课堂活动上,让学生通过观察现象、感知现象,来发现问题、提出问题,再通过师生共同讨论、交流探索获得超重和失重的知识。 本设计的基本思路是:通过电梯实验,从表格中分析得出产生超重和失重的条件,并用牛顿运动定律解释超重和失重现象,以此来突出教学重点,突破教学难点。 【教学流程】 1.教学流程图

(完整版)《超重和失重的练习》答案

《超重和失重的练习》 班级姓名学号 1.在完全失重的状态下,下列物理仪器还能使用的是:( CD ) A.天平 B.水银气压计 C.电流表D.秒表 2.跳水运动员从10 m跳台腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中上升过程和下落过程以下说法正确的有:( D ) A.上升过程处于超重状态,下落过程处于失重状态 B.上升过程处于失重状态,下落过程处于超重状态 C.上升过程和下落过程均处于超重状态 D.上升过程和下落过程均处于完全失重状态 3.下列关于超重和失重的说法中,正确的是 ( D ) A.物体处于超重状态时,其重力增加了 B.物体处于完全失重状态时,其重力为零 C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D.物体处于超重或失重状态时,其质量及受到的重力都没有变化 4.在静止的升降机中有一天平,将天平左边放物体,右边放砝码,调至平衡.如果 ①升降机匀加速上升,则天平右倾 ②升降机匀减速上升,则天平仍保持平衡 ③升降机匀加速下降,则天平左倾 ④升降机匀减速下降,则天平仍保持平衡 那么以上说法正确的是: ( C ) A.①②B.③④C.②④D.①③ 5.原来做匀速直线运动的升降机内,有一被伸长的弹簧拉住的.具有一定质量的 物体A静止在地板上,如图4-20所示.现发现A突然被弹簧拉向右方,由此可判 断,此时升降机的运动可能是: ( BC ) A.加速上升 B.减速上升 C.加速下降 D.减速下降 6.如图4-17所示,试管中有一根弹簧,一个质量为m的小球压在弹簧上.开始时手握住试管处于静止状态,现在突然放手,则小球在开始阶段的运动,在地面上的人看来:( A ) A.自由落体运动 B.向上升起一定高度后落下 C.向下做加速度小于g的运动 D.向下做加速度大于g的运动 7.质量为m的物体放置在升降机内的台秤上,升降机以加速度a在竖直方向上做匀变速直线运动,若物体处于失重状态,则:( AB ) A.升降机加速度的方向竖直向下 B.台秤的示数减少ma C.升降机一定向上运动 D.升降机一定做加速运动图4-17 A 图4-20

高一物理超重和失重典型例题解析

超重和失重·典型例题解析 【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图24-1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2): (1)当弹簧秤的示数T 1=40N ,且保持不变. (2)当弹簧秤的示数T 2=32N ,且保持不变. (3)当弹簧秤的示数T 3=44N ,且保持不变. 解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的作用.规定竖直向上方向为正方向. (1)当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,解得这时 电梯的加速度=-=-×=,由此可见,电梯处于a 404104 m /s 012T mg m 1 静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,解得这 时电梯的加速度===-.式中的负号表a 2m /s 22T mg m m s 2232404 --/ 示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升. (3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,解得这时 电梯的加速度==-=.为正值表示电梯a 44404 m /s 1m /s a 3223T mg m 3- 的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降. 点拨:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物

体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态. 【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2) 解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N , 在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升降机应具有向上的加速度 对于重物,-=,所以==-×=; F m g m a a 120010010100m /s 2m /s 221122F m g m -22 当升降机以2.5m/s 2的加速度加速下降时,重物失重.对于重物, m g F m a m 120010 2.5 kg 160kg 3323-=,得==-=.F g a -2 点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变. 【例3】如图24-2所示,是电梯上升的v ~t 图线,若电梯的质量为100kg ,则承受电梯的钢绳受到的拉力在0~2s 之间、2~6s 之间、6~9s 之间分别为多大?(g 取10m/s 2) 解析:从图中可以看出电梯的运动情况为先加速、后匀速、再减速,根据v -t 图线可以确定电梯的加速度,由牛顿运动定律可列式求解 对电梯的受力情况分析如图24-2所示: (1)由v -t 图线可知,0~2s 内电梯的速度从0均匀增加到6m/s ,其加速度a 1=(v t -v 0)/t =3m/s 2 由牛顿第二定律可得F 1-mg =ma 1

超重和失重现象

A B C D 第8题图 第9节 超重和失重现象 1.2011年理综天津卷 9.(1)某同学利用测力计研究在竖直方向运行的电梯运动状态,他在地面上用测力计测量砝码的重力,示数是G ,他在电梯中用测力计仍测量同一砝码的重力,发现测力计的示数小于G ,由此判断此时电梯的运动状态可能是 。 【解析】物体处于失重状态,加速度方向向下,故而可能是减速上升或加速下降。 2.2015年江苏卷6. 一人乘电梯上楼,在竖直上升过程中加速度 a 随时间 t 变化的图线如图所示,以竖直向上为 a 的正方向,则人对地板的压力 ( AD ) (A)t = 2 s 时最大 (B)t = 2 s 时最小 (C)t = 8.5 s 时最大 (D)t = 8.5 s 时最小 解析:由题意知在上升过程中F-mg=ma ,所以向上的加速度越大,人对电梯的压力就越大,故选项B 错A 正确;由图知,7s 后加速度向下,由mg-F=ma 知,向下的加速度越大,人对电梯的压力就越小,所以选项C 错D 正确。 3.2018年浙江卷(4月选考)8.如图所示,小芳在体重计上完成下蹲动作。下列F-t 图像能反映体重计示数随时间变化的是( C ) 解析:下蹲时先加速下降,后减速下降,故先失重,后超重,F 先小于重力,后大于重力,C 正确。 4.2012年理综山东卷 16.将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v-t 图像如图所示。以下判断正确的是( ) A .前3s 内货物处于超重状态 B .最后2s 内货物只受重力作用 C .前3s 内与最后2s 内货物的平均速度相同 D .第3s 末至第5s 末的过程中,货物的机械能守恒 答:AC -1

高一物理必修一第四章超重和失重知识点总结

高一物理必修一第四章超重和失重知识点总结 1.超重现象 (1)定义(力学特征):物体对支持物的压力(或对悬挂物的拉力) 大于物体所受重力的情况叫超重现象。 (2)产生原因(运动学特征):物体具有竖直向上的加速度。 (3)发生超重现象与物体的运动(速度)方向无关,只要加速度方 向竖直向上—物体加速向上运动或减速向下运动都会发生超重现象。 2.失重现象 (1)定义(力学特征):物体对支持物的压力(或对悬挂物的拉力) 小于物体所受重力的情况叫失重现象。 (2)产生原因(运动学特征):物体具有竖直向下的加速度。 (3)发生超重现象与物体的运动(速度)方向无关,只要加速度方 向竖直向下—物体加速向下运动或减速向上运动都会发生失重现象。 3.完全失重现象—失重的特殊情况 (1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情 况(即与支持物或悬挂物虽然接触但无相互作用)。 (2)产生原因:物体竖直向下的加速度就是重力加速度,即只受 重力作用,不会再与支持物或悬挂物发生作用。 (3)是否发生完全失重现象与运动(速度)方向无关,只要物体竖 直向下的加速度等于重力加速度即可。 注意 1.超重和失重的实质:物体超重和失重并不是物体的实际重力变大或变小,物体所受重力G=mg始终存在,且大小方向不随运动状态

变化。只是因为由于物体在竖直方向有加速度,从而使物体的视重 变大变小。 3.判断超重和失重现象的关键,是分析物体的加速度。要灵活运用整体法和隔离法,根据牛顿运动定律解决超重、失重的实际问题。 有的同学课后总是急着去完成作业,结果是一边做作业,一边翻课本、笔记。而在这里我要强调我们首先要做的不是做作业,而应 该静下心来将当天课堂上所学的内容进行认真思考、回顾,在此基 础上再去完成作业会起到事半功倍的效果。 复习的方法我们可以分成以下两个步骤进行:首先不看课本、笔记,对知识进行尝试回忆,这样可以强化我们对知识的记忆。之后 我们再钻研课本、整理笔记,对知识进行梳理,从而使对知识的掌 握形成系统。 作业 在复习的基础上,我们再做作业。在这里,我们要纠正一个错误的概念:完成作业是完成老师布置的任务。我们在课后安排作业的 目的有两个:一是巩固课堂所学的内容;二是运用课上所学来解决一 些具体的实际问题。 明确这两点是重要的,这就要求我们在做作业时,一方面应该认真对待,独立完成,另一方面就是要积极思考,看知识是如何运用的,注意对知识进行总结。我们应时刻记着“我们做题的目的是提 高对知识掌握水平”,切忌“为了做题而做题”。 质疑 小结 学习的最后一个是对所学知识的小结。小结的常用方法是列概括提纲,将当天所学的知识要点以提纲的形式列出,这样可以使零散 的知识形成清晰的脉络,使我们对它的理解更为深入,掌握起来更 为系统。看了“高一物理必修一第四章超重和失重知识点总结”的 人还看了:

第四讲 两类动力学问题 超重和失重

第四讲两类动力学问题超重和失重 基础知识归纳 1、超重与失重和完全失重 (1)实重和视重 ①实重:物体实际所受的重力,它与物体的运动状态无关. ②视重:当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的_示数称为视重,视重的大小等于弹簧测力计所受物体的_ 拉力_或台秤所受物体的压力。(2)超重、失重和完全失重的比较 ①当物体处于超重和失重状态时,物体所受的重力并没有变化. ②物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而是取决于加速度方向是向上还是向下. ③当物体处于完全失重状态时,重力只产生使物体具有a=g的加速度效果,不再产生其他效果.

④处于超重和失重状态下的液体浮力公式分别为F浮=ρV排(g+a)或F浮=ρV排(g-a),处于完全失重状态下的液体F浮=0,即液体对浸在液体中的物体不再产生浮力. 2、连接体问题 (1)连接体 两个或两个以上存在相互作用或有一定关联的物体系统称为连接体,在我们运用牛顿运动定律解答力学问题中常会遇到. (2)解连接体问题的基本方法 整体法:把两个或两个以上相互连接的物体看成一个整体,此时不必考虑物体之间的内力. 隔离法:当求物体之间的作用力时,就需要将各个物体隔离出来单独分析. 解决实际问题时,将隔离法和整体法交叉使用,有分有合,灵活处理. (3)整体法和隔离法的应用 ①解答问题时,不能把整体法和隔离法对立起来,而应该把这两种方法结合起来,从具体问题的实际情况出发,灵活选取对象,恰当地选择使用隔离法和整体法. ②在使用隔离法解题时,所选取的隔离对象可以是连接体中的某一个物体,也可以是连接体中的某部分物体(包含两个或两个以上的单个物体),而这“某一部分”的选取,也应根据问题的实际情况,灵活处理. ③在选用整体法和隔离法时,可依据所求的力进行选择,若为外力则应用整体法;若所求力为内力则用隔离法.但在具体应用时,绝大多数的题目要求两种方法结合应用,且应用顺序也较为固定,即求外力时,先隔离后整体;求内力时,先整体后隔离.先整体或先隔离的目的都是为了求解共同的加速度. 3、整体运用牛顿第二定律 应用牛顿第二定律时,若研究对象为一物体系统,可将系统的所有外力及系统内每一物体的加速度均沿互相垂直的两个方向分解,则牛顿第二定律的系统表达式为:ΣF x=m1a1x+m2a2x+…+m n a nx ΣF y=m1a1y+m2a2y+…+m n a ny 应用牛顿第二定律的系统表达式解题时,可不考虑系统内物体间的相互作用力(即内力),这样能达到简化求解的目的,但需把握三个关键点: (1)正确分析系统受到的外力; (2)正确分析系统内各物体加速度的大小和方向; (3)确定正方向,建立直角坐标系,并列方程进行求解. 【例1】在升降电梯内的地面上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在

超重与失重教学案例

《超重与失重》教学案例 【教学目标】 一、知识与技能 1、认识超重和失重现象的本质,知道超重与失重现象中,地球对物体的作用力并没有变化; 2、能够根据加速度的方向,判别物体的超重和失重现象; 3、知道完全失重状态的特征和条件,知道人造卫星中的物体处于完全失重状态; 4、运用牛顿第二定律,解释实际中的超重和失重现象。 二、过程与方法 1、经历观看实验,分组实验、讨论交流的过程,观察并体验超重和失重现象; 2、经历探究产生超重和失重现象原因的过程,学习科学探究的方法,进一步学会应用牛顿运动定律解决实际问题的方法。 三、情感态度与价值观 1、通过探究性学习活动,体会牛顿运动定律在认识和解释自然现象中的重要作用,产生探究的成就感; 2、通过运用超重与失重知识解释身边物理现象,激发学习的兴趣,认识到掌握物理规律是有价值的;

3、通过观看有关杨利伟在太空的视频片段,激发学生爱国、爱科学的热情。 页 1 第 【教学的重点与难点】 重点:把超重和失重现象与牛顿运动定律联系起来,探究现象本身和加速度的内在联系。 难点:设计问题梯度,筛选教学资源,设计典型实验,引导学生探究,控制讨论交流时间是本节的难点。 【教学策略】 演示、讨论、讲解、分组实验探究。 【教学用具】 每两位同学一个弹簧秤与一个砝码。 【教学过程】 情景引入:播放杨利伟在太空的工作的视频片段。 航天员杨利伟返回地面后,电视台记者在对他进行采访时,有一段很生动的对话: 记者:当你乘坐飞船升空时,你有什么感觉? 杨利伟:感到有载荷,就是感到胸部受到压力。 记者:压力很大?感到很难受吗? 杨利伟:还可以,不觉得很难受。我们平时训练时,这种压力可达到8个G,说得通俗一点,就等于有8个人压在你的身上。飞船加速上升时,压力没有这么大。

超重和失重的理解与应用(1)

超重和失重的理解与应用 (2018·北京西城区)小明家住10层。他放学后,乘坐电梯从1层直达10层。假设电梯刚起动时做匀加速直线运动,中间一段时间内做匀速直线运动,最后一段时间内做匀减速直线运动。在电梯从1层直达10层的过程中,下列说法正确的是 A.电梯刚起动时,小明处于失重状态 B.电梯刚起动时,小明处于超重状态 C.在超重或失重过程中,小明的体重发生了变化 D.电梯运动的加速度方向发生了变化 【参考答案】BD 【试题解析】电梯刚起动时,小明有向上的加速度,则小明处于超重状态,故A错误,B正确;电梯启动和向上加速时,加速度向上,而减速运动时,加速度向下,故加速度方向发生了变化,故C错误,D正确。【知识补充】 加速度超重、失重视重F a=0不超重、不失重F=mg a的方向竖直向上超重学、科网F=m(g+a) a的方向竖直向下失重F=m(g–a) a=g,竖直向下完全失重F=0 (2018·河北容城博奥中学)小玲同学在乘坐电梯时感觉到电梯在加速上升过程中超重,在减速上升过程中失重,则她对她在这两个过程中受力情况的判断,以下说法中正确的是 A.在超重状态下她受到的重力大于电梯地板的支持力 B.在超重状态下她受到的各个力的合力方向向下 C.在失重状态下她受到的重力大于电梯地板的支持力 D.在失重状态下她受到的各个力的合力为零

关于超重和失重,下列说法中正确的是 A .超重就是物体受的重力增加了 B .完全失重就是物体一点重力都不受了 C .失重就是物体受的重力减少了 D .不论超重或失重甚至完全失重,物体所受重力都不变 (2018·河北衡水中学)如图,在绕地运行的天宮一号实验舱中,宇航员王亚平将支架固定在桌面上,摆轴末端用细绳连接一小球。拉直细绳并给小球一个垂直细绳的初速度,它沿bdac 做圆周运动。在a 、b 、c 、d 四点时(d 、c 两点与圆心等高),设在天宫一号实验舱中测量小球动能分别为k a E 、k b E 、k c E 、k d E ,细绳拉力大小分别为a T 、b T 、c T 、d T ,阻力不计,则 A .k a E >k c E =k d E >k b E B .若在c 点绳子突然断裂,王亚平看到小球做竖直上抛运动 C .a T =b T =c T =d T D .若在b 点绳子突然断裂,王亚平看到小球做平抛运动 如图所示,运动员“3 m 跳板跳水”运动的过程可简化为:运动员走上跳板,将跳板从水平位置B 压到最低点C ,跳板又将运动员竖直向上弹到最高点A ,然后运动员做自由落体运动,竖直落入水中.跳板自身重力可忽略不计,则下列说法正确的是

第十五讲 超重与失重问题

第十五讲 超重、失重问题分析 真重:物体实际所受的重力G=mg 视重:物体对水平支持物的压力或对竖直悬绳的拉力 理解: 1、当物体处于平衡状态(静止或匀速直线运动状态)时,物体的真重与视重相等,即物体对水平支持物的压力(或对悬绳的拉力)大小等于物体的重力. 2、超重:物体的视重大于真重的现象 特点:物体具有向上的加速度(或加速度具有竖直向上的分量) 一般分两种:向上加速 向下减速 由F -mg=ma 得F=m (g +a )>mg , 3、失重:物体的视重小于真重的现象 特点:物体具有向下的加速度(或加速度具有竖直向下的分量) 一般分两种:向下加速 向上减速 由m g -F=ma 得F=m (g -a )

消去a ,可解得()3 21213/2m m m m m g m T +++=。 对滑轮稳定后平衡:弹簧秤的读数T =2T /,移动前弹簧秤的读数为2(m 1+m 2+m 3)g ,比较可得移动后弹簧秤的读数小于2(m 1+m 2+m 3)g 。故B 项正确。 【例2】如图所示,有一个装有水的容器放在弹簧台秤上,容器内有一只木球被容器底部的细线拉住浸没在水中处于静止,当细线突然断开,小球上升的过程中,弹簧秤的示数与小球静止时相比较有’(C ) A.增大; B.不变; C.减小; D.无法确定 解析:当细线断后小球加速上升时处于超重状态,而此时将有等体积的“水球”加速下降处于失重状态;而等体积的木球质量小于“水球”质量,故总体体现为失重状态,弹簧秤的示数变小. 针对训练 1、某人在地面上最多能举起质量为50kg 的物体,在一电梯里最多能举起质量为80kg 的物体,此时电梯的加速度大小和方向是 [ ] A .3.75 ,方向竖直向下 B .3.75 ,方向竖直向上 C .5 ,方向竖直向上 D .5,方向竖直向下 2、在升降机里,一个小球系于弹簧下端,如图所示,升降机静止时,弹 簧伸长4cm ,升降机运动时,弹簧伸长2cm ,则升降机运动情况是 [ ] A .以1 的加速度下降 B .以4.9的加速度减速上升

知识讲解超重和失重提高

超重和失重 编稿:周军审稿:吴楠楠 【学习目标】 1.理解超重和失重现象的含义。 2.能通过牛顿定律对超重和失重进行定量地分析。 【要点梳理】 要点一、超重与失重 (1)提出问题 你乘过垂直升降式电梯吗?当电梯开始启动上升时,你会心慌同时也会充分体验到“脚踏实地”的感觉,电梯即将停止上升时,则会头晕同时有种“飘飘然”的感觉,这就是失重和超重造成的. (2)实重与视重 ①实重:物体实际所受的重力.物体所受重力不会因物体运动状态的改变而变化.②视重:当物体在竖直方向上有加速度时(即a≠0),物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力,此时弹簧测力计或台秤的示数叫物体的视重.【说明】正因为当物体在竖直方向有加速度时视重不再等于实重,所以我们在用弹簧测力计测物体重力时,强调应在静止或匀速运动状态下进行. (3)超重和失重现象 ①超重现象:当人在电梯中开始上升时,感觉对底板的压力增大,即当物体具有竖直向上的加速度时,这个物体对支持面的压力(或对悬挂绳的拉力)大于它所受的重力,称为超重现象.如用弹簧竖直悬挂一重物静止,当用力提弹簧使重物加速上升时,弹簧伸长,弹力就会变大,这就是一种超重现象. ②失重现象:当人在电梯中开始下降时,感觉对底板的压力减小,即当物体具有向下的加速度时,这个物体对支持而的压力(或悬挂绳的拉力)小于它所受的重力,称为失重现象.如果物体对支持面的压力(或对悬挂绳的拉力)等于零,叫完全失重现象.如用弹簧竖直悬挂着一重物保持静止,人拿着悬挂点加速下移时,弹簧会缩短,说明弹力变小,这就是一种失重现象.若人松手,让弹簧和重物一起自由下落,则弹簧的示数为零,此为完全失重现象. 【注意】 a.超重与失重现象,仅仅是一种表象,好像物体的重力时大时小.处于平衡状态时,物体所受的重力大小等于支持力或拉力,但当物体在竖直方向上做加速运动时,重力和支持力(或托力)的大小就不相等了.所谓超重与失重,只是拉力(或支持力)的增大或减小,是视重的改变. b.物体处于超重状态时,物体不一定是竖直向上做加速运动,也可以是竖直向下做减速运动.即只要物体的加速度方向是竖直向上的,物体都处于超重状态.物体的运动方向可能向上,也可能向下. 同理,物体处于失重状态时,物体的加速度竖直向下,物体既可以做竖直向下的加速运动,也可以做竖直向上的减速运动. c.物体不在竖直方向上运动,只要其加速度在竖直方向上有分量,即y a≠0时,则当y a方向竖直向上时,物体处于超重状态;当y a方向竖直向下时,物体处于失重状念. d.当物体正好以向下的大小为g的加速度运动时,这时物体对支持面、悬挂物完全没有作用力,即视重为零,称为完全失重.

物理 知识讲解 超重和失重 提高篇

第1 页共29 页 物理总复习:超重和失重 【考纲要求】 1、理解牛顿第二定律,并会解决应用问题; 2、理解超重和失重的概念,会分析超重和失重现象,并能解决具体超重和失重。【考点梳理】 考点:超重、失重、完全失重 1、超重 当物体具有竖直向上的加速度时(包括向上加速或向下减速两种情况),物体对支持物的压力或对悬挂物的拉力大于自身重力的现象。 2、失重 物体具有竖直向下的加速度时(包括向下加速或向上减速两种情况),物体对支持物的压力或对悬挂物的拉力小于自身重力的现象。 3、完全失重 物体以加速度a=g向下竖直加速或向上减速时(自由落体运动、处于绕星球做匀速圆周运动的飞船里或竖直上抛时以及忽略空气阻力的各种抛体运动),物体对支持物的压力或对悬挂物的拉力等于零的现象。 在完全失重的状态下,由重力产生的一切物理现象都会消失。如单摆停摆、天平失效、浸没于液体中的物体不再受浮力、水银气压计失效等,但测力的仪器弹簧测力计是可以使用的,因为弹簧测力计是根据F=kx制成的,而不是根据重力制成的。 要点诠释:(1)当系统的加速度竖直向上时(向上加速运动或向下减速运动)发生超重现象,当系统的加速度竖直向下时(向上减速运动或向下加速运动)发生失重现象;当竖直向下的加速度正好等于g时(自由落体运动或处在绕地球做匀速圆周运动的飞船里面)发生完全失重现象。 (2)超重、失重、完全失重产生仅与物体的加速度有关,而与物体的速度大小和方向无关。“超重”不能理解成物体的重力增加了;“失重”也不能理解为物体的重力减小了;“完全失重”不能理解成物体的重力消失了,物体超重、失重以及完全失重时重力是不变的。 (3)人们通常用竖直悬挂的弹簧秤或水平放置的台秤来测量物体的重力大小,用这种方法测得的重力大小常称为“视重”,其实质是弹簧秤拉物体的力或台秤对物体的支持力。 例、在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲 动作。传感器和计算机相连,经计算机处理后得到压力F随时间t变化的图象,则下列图象

超重与失重(高考题及答案详解)

集备:管日权纪殿荣授课日期:2018年5月 超重与失重专题为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态。在箱子下落过程中,下列说法正确的是 A.箱内物体对箱子底部始终没有压力 教学目标:掌握超重失重规律及应用 预习案 1匀加速下降加速度方向() B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 2匀减速下降加速度方向()C.箱子接近地面时,箱内物体受到的支持力比刚投下时大 D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 3匀加速上升加速度方向()3.(11四川19)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为: 打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在 4匀减速上升加速度方向()火箭喷气过程中返回舱做减速直线运动,则 A.火箭开始喷气瞬间伞绳对返回舱的拉力变小 5平抛运动物体()重B.返回舱在喷气过程中减速的住要原因是空气阻力 C返回舱在喷气过程中所受合外力可能做正功 6竖直上抛物体()重D.返回舱在喷气过程中处于失重状态 4.(10浙江14)如图所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。 7人浮在水中不动()重下列说法正确的是 A.在上升和下降过程中A对B的压力一定为零 A 探究案B.上升过程中A对B的压力大于A对物体受到的重力 C.下降过程中A对B的压力大于A物体受到的重力 v B D.在上升和下降过程中A对B的压力等于A物体受到的重力 5.(10海南8)如右图,木箱内有一竖直放置的弹簧,弹簧上方有一物块;木箱静止时弹簧处于压缩状态且物块压在箱顶上。若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为 A.加速下降B.加速上升 1.(09广东8)某人在地面上用弹簧秤称得体重为490N。他将弹簧秤移至电梯内称其体重,t0 C.减速上升D.减速下降 至t3时间段内,弹簧秤的示数如图5所示,电梯运行的v-t图可能是(取电梯向上运动的方向为 正) 2.(08山东19)直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示。设投放初速度

超重和失重汇总

《超重和失重》教学设计 海原回中杨海贵 2016.4.5 一、教材分析 超重和失重是牛顿第二定律的一个非常重要运用,也是本章的一个非常重要知识点。本节主要讲述超重和失重的原因、实质、产生的条件,以及在生活,生产和科研中的运用,内容非常贴近生活,更易形成错误生活性经验,所以应当多选择一些生活中的实例去分析处理。 二、学生分析 1.学生牛顿运动定律的学习,已经基本掌握了动力学问题的分析方法,但是针对具体实例,还不能很好的建立物理情境。 2.学生对有关物理概念和物理规律之间的联系与内涵有待加深。 三、教学目标 (一)知识与技能 1.理解超重和失重的实质及产生的原因。 2.能够运用牛顿第二定律分析超重与失重类的具体问题,并从中总结出超重与失重的条件。 (二)过程与方法 1.培养学生、观察、分析、推理能力,养成由现象到本质的认识事物的方法。 2.培养学生发散思维、类比归纳能力。 (三)情感与价值观

1.渗透从生活中观察现象,得出物理规律的方法,激发培养学生探索自然,学习科学的兴趣。 2.科学的意义不仅仅是认识自然,挑战自然,更在于能动改造自然。 四、重点和难点 重点:超重和失重的实质。 难点:利用牛顿第二定律分析问题,得出超重和失重的条件。 五、设计思想 本节课的方法:实验法,归纳法、类比法、讲授法。 利用多媒体展示场景,吸引学生的眼球,激发学生的求知欲望,从而把学生带入新课,利用实验让学生参与其中,并且通过具体实例,由学生分析得到超重的实质,以及形成的条件,从而突破难点, 六、教学过程 (一)、引入新课(播放多煤体) ①“神六”上天,宇航员躺在座椅上 ②杨利伟在太空中演示失重情形 提问:自从人造卫星上天,人们经常谈到超重与失重其实质是什么?能否根据前面所出示的图片,分析讨论并提出自己的猜想。 学生可能的猜想: ①可能是物体所受重力变大或是变小了 ②超重、失重是否与物体运动有关 安排实验体验:

相关文档
最新文档