高考数学好题集锦

高考数学好题集锦
高考数学好题集锦

高考好题集锦(小题)

1、已知1

()1f x x

=

+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=,若20102012

a a =,则2011

a a +

的值是 (上海文14 【解析】由题意得,213=

a ,325=a ,…,13

8

11=a , ∵20122010a a =,且.n a >0,∴2

5

12010+-=

a ,易得2010a =2008a =…=24a =22a =24a =.20a , ∴.20a +11a =

251+-+13

8=265

133+。

2、若2sin

sin

(i)

7

77

n n S π

ππ=+++(n N *

∈),则在12100,,...,S S S 中,正数的个数( C ) A 、16 B 、72 C 、86 D 、100(上海文18)

3、如图,AD 与BC 是四面体A B C D 中互相垂直的棱,2=BC ,若c AD 2=,且

a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 。

(上海理14)

2

3

【解析】过点A 做AE ⊥BC ,垂足为E ,连接DE ,由AD ⊥BC 可知,BC ⊥平面ADE , 所以BC S V V V ADE ADE C ADE B ?=

+=--31=ADE S 3

2

, 当AB=BD=AC=DC=a 时,四面体ABCD 的体积最大。

过E 做EF ⊥DA ,垂足为点F ,已知EA=ED ,所以△ADE 为等腰三角形,所以点E 为AD 的中点,又

12222-=-=a BE AB AE ,∴EF=12222--=-c a AF AE ,

∴ADE S =EF AD ?2

1

=122--c a c , ∴四面体ABCD 体积的最大值=m ax V ADE S 32=13

22

2--c a c 。

4、设25

sin

n n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( D ) A .25 B .50 C .75 D .100(上海理18)

5、已知()(2)(3)f x m x m x m =-++,()22x

g x =-。若x R ?∈,()0f x <或()0g x <,则m 的取值范围是_________。(北京文14)(40m -<<)

【解析】首先看22)(-=x

x g 没有参数,从22)(-=x

x g 入手,显然1

0)(≥x g 。而对R x ∈?,0)(

即可.①当0=m 时,0)(=x f ,不符合(*)式,舍去;②当0>m 时,由)3)(2()(++-=m x m x m x f <0得m x m 23<<--,并不对1≥?x 成立,舍去;③当0-m ,1≥x ,故02>-m x ,所以03>++m x ,即)3(+->x m ,又1≥x ,故]4,()3(-∞∈+-x ,所以4->m ,又0

6、设函数3

()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++???+=,则127a a a ++???+=( D )

(四川文12) A 、0 B 、7 C 、14 D 、21

【解析】3

723

213

1721)3(1)3(1)3()()()(-+-+-+-+-=+++a a a a a a f a f a f

1417=-+a ,即03)3(3)3(3)3(737232131=-+-+-+-+-+-a a a a a a ,根据等差数列的性质得0)3(7)33()23()33(4343434=-++-++--+--a d a d a d a ,即

0)3(7)3()23()23()33()33(43434343434=-+-++--+--++-+--a a d a d a d a d a )

3)3)((3(2)12)3)((3(2)27)3)((3(2224422442244d a a d a a d a a +--++--++--∴0)3(7)3(434=-+-+a a ,即0)784)3(7)(3(2244=++--d a a ,,034=-∴a 即34=a ,2174721==+++∴a a a a ,故选D.

7、椭圆22

21(5

x y a a +

=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ?的周长的最大值是12,则该椭圆的离心率是______。(2

3

四川文15)

8、设,a b 为正实数,现有下列命题:(1、4)

①若221a b -=,则1a b -<;②若

11

1b a

-=,则1a b -<;

③若1=,则||1a b -<;④若3

3

||1a b -=,则||1a b -<。 其中的真命题有____________。(写出所有真命题的编号) (四川文16)

9、设函数()2cos f x x x =-,{}n a 是公差为8

π的

等差数列,125()()

()5f a f a f a π++???+=,则2

315

[()]f a a a -=( D ) (四川理12)? A 、0 B 、

2116π C 、21

8

π D 、21316π 【解析】125112255()()()(2cos )(2cos )(2cos )5f a f a f a a a a a a a π++???+=-+-+???+-=,即

1251252()(cos cos cos )5a a a a a a π++???+-++???+=,而{}n a 是公差为

8

π

的等差数列,代入1251252()(cos cos cos )5a a a a a a π++???+-++???+=,即)4

[cos(1033π

--a a

ππππ5)]4cos()8cos(cos )8cos(3333=+++++-+a a a a ,3(2cos 21)cos 48

cos a ππ

++ 不是π的倍

数,2

,51033π

π=

∴=∴a a .2

2315[()](20)()()22424

f a a a π

ππππ

∴-=?

---+

2

1316

π=,故选D.

10、记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-。设a 为正整数,数列{}

n x 满足1x a =,1[

][

]()2

n n

n a x x x n N *++=∈,现有下列命题:

①当5a =时,数列{}n x 的前3项依次为5,3,2;②对数列{}n x 都存在正整数k ,当n k ≥时总有n k x x =;③当1n ≥

时,1n x >;④对某个正整数k ,若1k k x x +≥

,则n x =。

其中的真命题有____________。(写出所有真命题的编号) ? (四川理16)(1、3、4)

11、已知函数211

x y x -=

-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是 .(天

津文14)(01,12)k k <<<<

12、设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22

(1)+(y 1)=1x --相切,则+m n 的取值范围是 D (天津理8)

(A

)[1

(B)(,1)-∞-∞

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考数学常用公式及结论200条(一)【天利】

高考数学常用公式及结论200条(一) 湖北省黄石二中 杨志明 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11()f x N M N > --. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(), ()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈- =,则{}m i n () m i n ( ),() f x f p f q = ,若

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高中数学重要结论集锦

高中数学重要结论集锦 1.函数()y f x =的图象的对称性: ①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②函数()y f x =的图象关于直2 a b x +=对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=-- 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ? =-- 2.两个函数图象的对称性: ①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m += 对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- 3. 分数指数幂 m n a =0,,a m n N *>∈,且1n >). 1m n m n a a - = (0,,a m n N *>∈,且1n >) 4. 对数的换底公式 log log log m a m N N a =.推论 log log m n a a n b b m =. 对数恒等式log a N a N =(0,1a a >≠) 5. 若数列{}n a 是等差数列,n S 是其前n 项的和,* N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+- 5. 若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为' 12-n S , 则'1212--=n n n n S S b a 。等比数列{}n a 的通项公式1 *11()n n n a a a q q n N q -==?∈; 等比数列{}n a 的变通项公式m n m n q a a -= 其前n 项的和公式11 (1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q q q s na q -?≠? -=??=? 6. 同角三角函数的基本关系式 22 sin cos 1θθ+=,tan θ=θ θ cos sin ,tan 1cot θθ?= . 2 21 1tan cos αα +=

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

高中高考数学所有二级结论《完整版》

高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为2 00))(())((r b y b y a x a x =--+-- ①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ①过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ①抛物线)0(22 >=p px y 的切点弦方程为)(00x x p y y += ①二次曲线的切点弦方程为02 22000000=++++++++F y y E x x D y Cy x y y x B x Ax 9.①椭圆)0,0(122 22>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(122 22>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

高考数学常用结论集锦

高考数学常用结论集锦 一. 函数 1.函数 ()y f x =的图象的对称性: ①. 函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②. 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ?=-- 2.两个函数图象的对称性: ①. 函数 ()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②. 函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③. 函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④. 函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- 3. 对数的换底公式 log log log m a m N N a =. 推论 log log m n a a n b b m =. 对数恒等式log a N a N =(0,1a a >≠) 4. 导数: ⑴导数定义:f(x)在点x 0处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(000 00 ; ⑵常见函数的导数公式: ①' C 0=;②1')(-=n n nx x ;③x x cos )(sin '=;④. x x sin )(cos '-=; ⑤a a a x x ln )(' =;⑥x x e e =')(;⑦'1(log )log a a x e x =;⑧. x x 1)(ln '= ; ⑶导数的四则运算法则:;)(;)(;)(2 v v u v u v u v u v u uv v u v u '-'=''+'=''±'='± 二.数列 1. 若数列 {}n a 是等差数列,n S 是其前 n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s +=1(1)2n n na d -=+21 1()22d n a d n =+- 5. 若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S ,则'1 212--=n n n n S S b a 。 等比数列 {}n a 的通项公式1*11()n n n a a a q q n N q -== ?∈;等比数列{}n a 的变通项公式m n m n q a a -= 其前n 项的和公式 11 (1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q q q s na q -?≠? -=??=? 三.三角函数 1. 同角三角函数的基本关系式 2 2sin cos 1θθ+=,tan θ=θ θ cos sin ,tan 1cot θθ ?=2 211tan cos αα += 2. 正弦、余弦的诱导公式: 2 12(1)sin ,sin()2(1)s ,n n n n co n απαα-?-?+=??-?为偶数为奇数 212(1)s ,s()2(1)sin ,n n co n n co n απαα+?-?+=??-? 为偶数为奇数 即:奇变偶不变,符号看象限,如cos()sin ,sin()cos 22 sin()sin ,cos()cos π π ααααπααπαα +=-+ =-=-=- 3. 和角与差角公式:sin()sin cos cos sin α βαβαβ±=±;cos()cos cos sin sin αβαβαβ ±=; tan tan tan()1tan tan αβαβαβ ±±= . 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高中数学常用结论集锦

1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 2U U A B A A B B A B C B C A =?=???? U A C B ?=Φ U C A B R ?= 3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个 4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠. 三次函数的解析式的三种形式①一般式32()(0)f x ax bx cx d a =+++≠ ②零点式123()()()()(0)f x a x x x x x x a =---≠ 5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性: ①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②函数()y f x =的图象关于直2 a b x +=对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=-- 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ? =-- 7.两个函数图象的对称性: ①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m += 对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数)(x f y =和)(1 x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m n a =0,,a m n N *>∈,且1n >). 1 m n m n a a - = (0,,a m n N * >∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>. log log log a a a M N MN +=(0.1,0,0)a a M N >≠>> log log log a a a M M N N -=(0.1,0,0)a a M N >≠>>

相关文档
最新文档