超声雾化器理论设计

超声雾化器理论设计
超声雾化器理论设计

超声雾化器设计及实验研究

3.1 引言

超声雾化器的主要作用是将供液装置提供的雾化液雾化,以满足各种不同的应用。常见的雾化方式有喷嘴机械雾化和压电超声雾化两种。传统的机械式雾化方法分为压力喷射式雾化和转杯高速旋转雾化。压力喷射式雾化是雾化液在雾化器压力作用下具备一定动能,在高速旋转中喷出喷孔,在离心力、喷孔反作用力等力作用下,克服雾化液的表面张力和粘性力,碎裂成雾粒;转杯高速旋转雾化是雾化液以细流经管道进入安装在空心轴上的雾化转杯内,在高速旋转雾化杯的离心力作用下,紧贴在雾化杯壁面,形成的液膜随着转杯高速旋转,并不断向杯口移动直至甩出裂解成细小的成曲线运动的雾粒。压电超声雾化有低频大功率超声雾化和高频微细雾化。解释超声雾化机理的理论主要有表面张力波理论和微激波理论。高频超声微细雾化在空气雾化加湿、超声雾化美容、药剂雾化吸入治疗等领域应用广泛。低频大功率超声雾化主要应用在生物与农业工程中、设施农业植物盆栽培养方面,应用范围仍在不断扩展。

低频大功率超声雾化不仅具有汽雾分布均匀,汽雾粒径小,雾化液速度低等高频超声雾化器的优点,而且雾化量较大,雾粒初速度高等机械压力喷嘴的优点,比较适合精密超精密磨削的冷却应用。低频超声雾化器的动力由夹心式大功率压电超声换能器提供,其设计基于声波在弹性介质中的一维传播理论及相关设计理论并结合有限元分析,确定超声雾化器的结构参数。根据纳米汽雾聚焦超声冷却系统的要求,超声雾化器采用了二次雾化技术,以进一步细化雾粒。

超声雾化器的雾化性能试验主要包括最大汽雾流量,汽雾粒径等。汽雾的雾粒粒径之间是不同的,一般用雾粒的平均粒径来表示,设想一个液滴尺寸完全均匀一致的喷雾场以代替实际不均匀的喷雾场,这个假想的均匀喷雾场的液滴直径称为平均直径[55]。几种不同的平均粒径表示方法应用领域如表3-1所示。

表3-1 平均粒径表示方法应用领域

平均粒

径类型

长度表面积体积索特粒径

公式

max

min

max

min

10

D

D

D

D

DdN

D

dN

=

?

?

max

min

max

min

1/2

2

20

D

D

D

D

D dN

D

dN

??

?

= ?

?

??

?

?

max

min

max

min

1/3

3

30

D

D

D

D

D dN

D

dN

??

?

= ?

?

??

?

?

max

min

max

min

3

32

2

D

D

D

D

D dN

D

D dN

=

?

?

用途比较表面控制流体流动质量运输,燃烧反

超声雾化器的设计,及对设计的超声雾化器的阻抗特性、振动特性、雾化性能(粒径、最大流量等)等雾化器性能的实验研究,得到谐振频率、输入功率及其它相关参数对雾化性能的影响,为纳米汽雾聚焦超声冷却系统的研制奠定基础。

3.2 超声雾化器设计

由于本课题所需雾化器的雾粒粒径较小,根据式(1-11)知,超声雾化器的谐振频率需要较高。以20℃水为例,表面张力系数T=7.28×10-2N/m,水密度ρ

=1.0×103kg/m3,相应的超声振动频率(F)与对应的索特粒径(D)关系如表3-2所示。超声雾化器的雾化能量主要由换能器的纵向振动提供,为了得到换能器较好的纵振模态,换能器的径向尺寸要小于换能器材料纵波波长的1/4,因此,换能器的频率越高,其径向尺寸就越小,同时意味着换能器的最大功率容量的减小,换能器的输出能量减小,致使雾化器的雾化量降低。

表3-2 超声频率F与对应索特直径D

超声频率F(KHz)20 50 100 1000 10000

索特粒径D(μm)56.4 30.6 19.3 4.2 0.89

精密磨削区热源每秒钟的发热量在一般磨削用量下都在4187J以下,水的比热容和汽化热都很高,在室温条件下1mL水变成100℃以上的水蒸气至少能带走2512J的热量;据此推测,每秒时间有1.8mL的冷却水进入磨削区,绝大部分热量将被带走,实现磨削区的有效冷却。考虑到水变成汽雾后的表面积大大增加,气化速度快,单位时间内吸热多,降温快,每秒有1mL的水雾进入磨削区即可实现冷却。

超声雾化器的设计需要同时考虑雾化量和汽雾粒径两方面的要求,但由于雾化量和汽雾粒径之间的关系,二者很难同时兼顾。本课题作为一个探索性的设计,需要对雾化器的输入功率、雾粒分布,雾化量、粒径等之间的关系做初步研究,超声雾化器的谐振频率选取55KHz,对应的雾粒索特直径为28.7μm。

超声本课题所设计超声雾化器主要由换能器和变幅杆两部分组成,其结构如图3-1所示。超声雾化器雾化量与雾化面的振幅密切相关,在输入功率一定的情况下,前后盖板的材料、变幅杆的形状等对换能器的前后振速比有很大的影响。在功率超声领域,夹心式压电陶瓷换能器的压电晶片主要是实现大功率及高效率

的能量转换[56],因此,应选择机械及介电损耗较低而压电常数和机电转换系数较高的陶瓷材料,一般选用发射型大功率材料,如PZT-4、PZT-8等。为了获得较大的前后振速比,换能器前盖板的材料一般选用铝合金、铝镁合金和钛合金等,后盖板基本上选用一些重金属,如45号钢、40Cr铜等[57],同时这样选择还能使能量最小限度地从换能器后表面辐射,从而提高换能器的前向辐射效率,增大声场的声辐射压力,提高声场对雾化器生成的雾粒的声作用。本课题实验所设计换能器的前盖板材料选用硬铝12,后盖板材料选用40Cr钢。

1.后盖板

2.PZT-8陶瓷片

3.法兰

4.前盖板

5.变幅杆

6.雾化面

7.反射头

图3-1 超声雾化器结构图

变幅杆主要起振幅放大和聚能的作用[58],常见形状有指数型、圆锥型、悬链线型和阶梯型四种。为实现变幅杆和换能器之间的匹配,变幅杆的材料也选用硬铝12,换能器的各部分材料如表3-3所示。根据雾化的需要,压力波振幅最少应放大6~8倍,喷嘴出口端振动的振幅最起码应有几个微米[59]。因此,变幅杆需要较高的放大系数Mp,同时由于雾化器负载变化小,又无静压力,对输入阻抗特性要求不高,因此,雾化器的变幅杆选用阶梯型变幅杆较合适。

表3-3 超声雾化器各部分材料

后盖板压电陶瓷片前盖板变幅杆

40Cr PZT-8 硬铝12 硬铝12

超声雾化器是由半波长换能器和半波长变幅杆组成的全波长夹心式纵振振子,共2个节面,一个节面在法兰处;为了减小进水孔对雾化器的影响,另一个节面在进水孔中心处。超声雾化器各部分通过高强度螺栓等连接一个有机弹性体。在设计时,为了减小径向振动的影响,换能器的横向尺寸要比声波在换能器材料中的波长小的多,纵振振子的设计就可以按一维理论进行设计,降低设计难度,因此,我们假定所设计的雾化器满足以下条件:

1,雾化器各部分截面内应变分布均匀;

2,在雾化器内,声波波前面保持平面传播,且无能量损耗。

3.2.1 半波长超声雾化器换能器设计

换能器的设计频率为55KHz,依据表3-3各部分的材料参数如表3-4所示,

表3-4换能器各部分材料参数

λk 前盖板 硬铝12 2700 5200

14.04 94.5 0.66 后盖板 40Cr 7865 5100 40.11 92.7 0.67 前盖板长度:3423.6l mm λ==。由于纵向换能器的径向尺寸一般应小于相应材料的声波波长的1/4,故压电陶瓷片PZT-8的直径选取为Φ20mm ,相应陶瓷片的内径为Φ10mm ,厚度为4mm 。由式3-10和表3-3中的材料参数计算的后盖板长度1l 为9mm 。

压电陶瓷材料的抗胀强度低,其数值约为5×107N/m 2。而其抗压强度较高,大概为其抗张强度的10倍左右,约50×107N/m 2。故大功率下易损坏,一般采用加预应力的办法。对预应力的要求既增加了预应力同时又不影响陶瓷片的振动。实验表明:预应力的大小有一个合适的范围,其大小应调节到大于换能器工作过程中所遇到的最大伸张应力。据此选择合适的高强度螺栓,以满足将换能器各部分压紧为一个弹性有机体的要求。

3.2.2半波长超声雾化器阶梯变幅杆设计

所设计的变幅杆的节面位于大截面前端面,求得粗圆柱段长度44l λ=,依据表3-3中的数据,计算得44l λ==23.6mm 。同理,细圆柱段长度5423.6l mm λ==。

变幅杆粗圆柱段直径4D =20mm ,细圆柱段直径5D =8 mm ,阶梯变幅杆的有关参数如下:

面积

系数为:45N D R ==2.5

(3-19)

放大系数为:2 6.25p M N ==(3-20)

阶梯型变幅杆实际谐振频率比理论计算的谐振频率低,原因主要是由粗细连接截面处由于截面突变而产生的应力集中导致。实际设计时,为了降低变幅杆粗细截面处的应力集中,提高实际谐振频率,使变幅杆的实际谐振频率和理论谐振频率相接近,一般粗圆柱段和细圆柱段采用圆弧过渡。使变幅杆的实际谐振频率和理论谐振频率相一致的过渡圆弧称为最佳过渡圆弧。

根据文献[58],最佳过渡圆弧直径R 的计算公式为: 4/0.447D l α==(3-21)

其中,/2l λ=

由文献[58]查得0.447α=时

,5R D =0.65,故最佳过渡圆弧为:

50.65 5.2R D mm ==,圆弧过渡阶梯型变幅杆结构如图3-4所示。

图3-4 圆弧过渡阶梯型变幅杆

3.2.3 超声雾化器结构设计

超声雾化器的结构尺寸已经基本确定,还需要确定高强度连接螺栓,法兰,进水孔,前端雾化圆盘等几部分。

换能器的连接螺栓应具有较高的强度,通过预应力估算选择螺栓材料和尺寸参数。 已知5max 510E V m =?,机械品质因素40m Q =,杨氏模量102610Y N m =?,纵向压电常数10

33310d m V =?,拉力极限为2200N cm ,则最大拉力值为: max 33m P d YEQ =(3-22) 计算可知至少需施加23600N cm 的预应力才能保证压电陶瓷片不被拉坏;考虑压电陶瓷片的拉力极限,至少需施加23400N cm 的力才能使压电陶瓷始终处于受压状态下。 陶瓷片的横截面积为:()()()2222S D d π=-(3-23)

故压电陶瓷晶片不被拉坏的最小预应力为:min min F P S =(3-24)

预应力螺栓的横截面积为:F /b S σ=螺栓(3-25)

将相关参数代入上述各式,计算得到预应力螺栓的最小直径为6.8mm 。由于换能器所选用压电陶瓷片的内径为10mm ,螺栓和陶瓷片内孔之间还有绝缘套,因此,螺栓的直径为8mm 。

雾化器法兰的作用主要有两个,一是为了固定法兰位置与其他部件进行连接的纽带;二是防止前部水雾回流,容易引起压电陶瓷堆处电极短路,起保护电路的作用。因此,法兰的位置应设置在陶瓷堆前端的节面处。法兰具有一定的厚度,

会对雾化器的谐振频率有一定的影响,为了减小法兰对雾化器谐振频率的影响,其厚度越薄越好。对法兰来说,换能器相当于一个激励源,使法兰做弯曲振动,当换能器的激振频率等于法兰盘的固有谐振频率时,法兰的弯曲振动较大,因此,法兰的固有谐振频率应远离雾化器的谐振频率。材料一定的情况下,法兰盘的固有谐振频率与厚度和外径有关,厚度越薄,外径越大,法兰盘的固有谐振频率就越小[62],越远离雾化器的谐振频率。但法兰的外径过大,过薄,其机械强度就不足,引起颤动。因此,法兰的尺寸应选择一个合适的范围。其厚度一般为2mm 左右。外径应根据换能器的直径适当确定,设计雾化器的法兰外径预取40mm 。法兰的最大节圆一般是连接孔的位置,对螺钉的强度要求较低,直径越小越好,一般选M2或M3。为了不影响雾化器的性能参数,法兰与其他固定件的接触面积越小越好。因此,法兰最大节圆与法兰的半径差值不适宜过小,也不宜过大,半径差值一般选3mm 左右。

为了减小进水孔其对雾化器性能参数的影响,进水孔的孔径应尽量小,同时设置在换能器的前节面位置。前端雾化圆盘是实现雾化的主要器件,但雾化圆盘的外径和厚度会影响雾化器的阻抗,谐振频率等参数。同时,若雾化的阶梯变幅杆的外径比激励源的直径大很多,雾化圆盘会产生弯曲振动,径向振幅不一致,生成的雾粒就会不均匀。因此,雾化圆盘的外径比激励源的直径稍大即可,较小的影响雾化圆盘径向的纵振振幅的分布。细段直径是8mm ,前端雾化圆盘的直径取12mm 。

在变幅杆上附加雾化圆盘后,会造成雾化器谐振频率的下降和振幅的减小

[40]。采用质量互易法进行修正,以减小附加雾化圆盘对雾化器的影响。如图3-5所示,图中6l 为超声变幅杆附加雾化圆盘后的总等效长度,5l 为超声变幅杆的长度,细端直径1D =8mm ;前端雾化圆盘的直径7D 取12mm ,厚度h 为2mm 。

变幅杆附加雾化圆盘后修正公式为:

()7575h S S l S -=(3-26)

其中,2574S D π=,2754

S D π=。

图3-5 阶梯型变幅杆修正示意图

由上式(3-27)可变换为:

()7751l S S h =-(3-27)

将各数值带入式(3-27)、(3-28)得,7 2.5l mm =,因此,变幅杆附加雾化圆盘后变幅杆等效长度657l l l =-=21.1mm 。

雾化器反射头的主要作用是将液体反射到雾化面上,增大液体与雾化面的接触面积,提高雾化量。雾化器反射头的质量会影响雾化器的前段振幅和,谐振频率,阻抗等参数。因此,雾化器反射头的材料用选用密度较小的材料和较小的外形结构。为了使反射的液体能均匀、较多的反射到雾化面上,雾化器反射头周向至少做4个斜孔,孔直径在1mm 以下,斜孔的中心线与反射板的交点应位于反射板的中径以内。

综合上述分析和计算,图3-1所示超声雾化器的结构设计尺寸如表3-5所示:

表3-5超声雾化器的结构设计尺寸

1l 2l 3l 4l 6l h 过渡圆弧 直径(mm )

20 20 20 20 8 12 10.4 长度(mm )

9 8.4 23.6 23.6 21.1 2 5.2 材料 40Cr PZT-8 硬铝12 硬铝12 硬铝12 硬铝12 硬铝12

3.3 理论设计超声雾化器结构有限元分析

本文主要是通过对超声雾化器进行有限元模态分析,得到超声雾化器的固有谐振频率、模态振型等,以检验所设计的雾化器结构的合理性。模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。

为了保证模型的计算精度和提高运算速度,应忽略粘接剂、电极片厚度、螺

栓预应力、螺纹结构等状况的影响[64],各部分模型建好后还应运用NUMMRG命令优化各个节点的计算序号。根据上文中超声雾化器的相关设计参数在ANSYS10.0中进行建模,为了提高模态分析过程的实际效果,在进行建模时,同一个零件之间的“缝隙”采用VADD相加的方式如法兰盘与换能器前盖板、换能器前盖板和变幅杆之间;不同零件之间采用VGLUE粘接的方式如后盖板与压电陶瓷堆、换能器前盖板与压电陶瓷堆之间。超声雾化器的ANSYS模型如图3-6所示。

图3-6 超声雾化器ANSYS模型

模型建立完成后,需要为振子系统的每个体定义合适的单元类型和材料属性,其中振子系统所用材料的参数及选用单元类型如表3-6所示。给雾化器各部分配材料等属性后,对所建的模型进行网格划分,网格的划分越细密,模态分析的计算精度越高,同时运算占用的空间和时间也可能越多,因此,要根据实际情况选用合适的网格。对设计的雾化器进行振动模态及谐振频率的模拟分析和计算,应在压电陶瓷堆加载交流电压的状况下进行[65],使其更接近实际,即对压电陶瓷进行极化。在施加载荷和求解后,得到超声雾化器的模态振型。

表3-6 雾化器各部分材料属性

40Cr 2.16E11 7865 0.28 SOLID98

PZT-8 8.7E10 7600 0.34 SOLID5

硬铝12 7.1E10 2700 0.33 SOLID98

在40~70KHz频率范围内取40阶模态,选择使用Block Lanczos提取方法,得到超声雾化器在40~70KHz频率范围内短路状态的一阶纵向振动模态如图3-7所示,雾化器的谐振频率为53.6KHz。与设计频率55KHz相差1.4KHz,误差为2.5%。造成ANSYS分析频率与设计频率不一致的原因有多方面的。如选取的材料

参数不一致;模型的简化、过渡圆弧直径的选取未达到最优等。与理论计算相比,ANSYS分析的结果则相对较接近实际的谐振频率。但如果所建立的ANSYS模型与声学计算的模型相差较大,则实际的谐振频率与ANSYS分析结果相差也会较大。因此,为了使所设计的雾化器谐振频率达到设计频率55KHz,可以对雾化器在设计模型的基础上通过ANSYS模态分析进行适当的优化。

图3-7 雾化器纵振模态及其固有频率

纵向振动模态剖面图如图3-8所示。从图中可以看出声在雾化器中的传播并非是整个传播过程中都是以平面的形式向前传播。在不同的部件的接触处和截面变化处,波前面的形状是不一样的。在变幅杆的中间波幅处,波前面近似为平面,但在陶瓷堆和前盖板的接触处、变幅杆变截面处等处的声波前面近似为弧形。声波在雾化器中传播的形式与我们理论计算的假设有些出入,这也是设计频率和ANSYS分析的谐振频率不一致的原因之一。

图3-8 纵向振动模态剖面图

沿超声雾化器中心轴线方向提取纵向振动幅值曲线如图3-9、图3-10所示,

图中横坐标起始位置为后盖板后端面。从图3-8中可以看出,中心轴向上有2个节点。一个在法兰处,另一个位于变幅杆突变截面后面;沿中心轴线,纵向相对振幅在雾化器前端达到最大,与设计要求一致。从图3-9可以查得,从后盖板后端面起,第一个节点在18.7mm处,第二个节点在60.4mm处。而设计时的第一个节面距离后盖板后端面17mm,第二个节面在64mm处。对比发现,中心轴线上第一个节点在设计节面的前面,第二个节点在设计节面的后面。考虑到超声波在雾化器中波前面的形状,有一定的合理性。为了进一步确认,应对雾化器圆周面上的节圆位置进行确定。

图3-9 基于雾化器模型轴线方向纵振幅值曲线图

图3-10 雾化器轴线方向纵振幅值曲线

在超声雾化器外圆面取一条与超声雾化器中心轴线平行的路径,提取纵向振动幅值曲线,外圆面轴向纵振幅值曲线图如图3-11所示。图3-12为雾化器外圆

超声波雾化器

超声波雾化器 摘要 在日常生活中雾化器得到了广泛的应用,但是现有的雾化器都需要手工控制开启和关闭并且不具备对室内空气温湿度的监测,人们在使用过程中存在过度加湿和干烧的问题,不仅给室内空气舒适度造成负面影响并且还存在安全隐患。因此开发设计一种价格低廉、功耗低、具有自动控制功能的雾化器显得尤为必要。本设计采用智能控制,以AT80S51单片机为核心,外接辅助电路,通过实现加湿器的防干烧、声光报警、智能开启和关闭以及室内温湿度的显示功 能基本实现雾化器的智能化。 关键词:单片机;智能;雾化器;相对湿度;传感器;

目录 第1章绪论 (5) 1.1概况 (5) 1.2本文研究内容 (5) 第2章 CPU最小系统设计 (5) 2.1总体设计方案 (6) 2.2CPU的选择 (7) 2.3数据存储器扩展 (8) 2.4复位电路设计 (9) 2.5时钟电路设计 (10) 2.6CPU最小系统图 (11) 第3章输入输出接口电路设计 (11) 3.1传感器的选择 (11) 3.2检测接口电路设计 (12) 3.2.1 A/D转换器选择 (12) 3.2.2 模拟量检测接口电路图 (12) 3.3输出接口电路设计 (13) 3.4人机对话接口电路设计 (13) 第4章系统设计与分析 (15) 4.1系统原理图 (15)

4.2系统原理综述 (15) 文献 (17)

第1章绪论 1.1概况 用途功能:超声波加湿器是采用超声波高频振荡的原理,将水雾化为一至五微米的超微粒子,通过风动装置,将水雾扩散到空气中,从而达到均匀加湿空气的目的。 现状:现有生产五个系列的产品,其基本单元均为组合或者说集成式超声波雾化器,其整体还有电源系统、供水系统、水雾输送系统等,另根据不同的使用场所、不同形式、不同要求设计的不锈钢机体,组装为不同的超声波工业加湿设备。现有生产五个系列的产品,所具有的差别主要是在应用领域不同、控制方式不同、雾化量不同等几个方面。首先,应用领域五个系列多种领域;其次;每个领域有侧重不同的控制方式;第三,每个场所有不同的加湿量。 1.2本文研究内容 根据任务书内容进行描述(要完成的功能以及设计的内容)系统软件实现的功能: 1)通过LED显示温湿度值及水位; 2)比较监测到的水位,发现低水位时自动掉电并声光报警; 3)根据相对湿度值控制加湿器的开关。 本课题研究主要涉及以下方面: 1)通过对控制系统的功能及要求确定总体设计方案 2)系统硬件电路的设计与开发 3)系统软件程序的设计与调试 4)系统性能测试 本设计将采用智能控制,以AT80S51单片机为核心,外接辅助电路,通过实现加湿器的防干烧、声光报警、智能开启和关闭以及室内温湿度的显示功能基本实现加湿器的智能化。 第2章cpu最小系统设计 2.1 总体设计方案 根据任务书中的设计要求以及设计内容,画出总体方案框图,并简要说明各模块功能。

雾化器原理

多用途的超声波雾化器。该雾化器具有以下特点:分体式,即超声雾化头与电源和电路部分完全分离;便携式,体积小、即插即用、设有自保功能;高可靠,可全天候工作;雾化量大,与别墅的山水盆景配套可发生云雾缭绕的动感;特别适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感);雾化器(成品)售价低、性价比高,欲自制雾化器,仅器材和工时费也难敌上述的性价比。 一、电路工作原理 该雾化器电路如图1所示,电源经变压器B(AC220V/30W)降压(36V)送D1-D4整流和C5、C6滤波后给电路提供工作电压。雾化器工作电路由振荡器、换能器和水位控制电路等组成。 1.振荡器和换能器,电路中的振荡器是一种由高频压电陶瓷片TD(超声换能器)组成的工作振荡器,其振荡频率为1.65MHz(决定于选定的TD)。晶体三极管BG1和电容器C1、C2等构成电容三点式振荡器电路。C1和电感L1等效并联的谐振频率比工作频率低,其作用是决定工作振荡器的振荡幅度;C2 和电感L2等效串联的谐振频率比工作频率高,其作用是决定工作振荡器的反馈量,以保证振荡器起振和维持电路的可靠振荡。压电陶瓷片TD 具有很大的等效电感,它除决定电路的工作频率外,同时又是雾化器的工作负载。若更换压电陶瓷片TD,无需调整电路其他参数,其振荡器频率也能自动跟踪新的压电陶瓷片的频率而工作。 2.水位控制和偏置电路电路中的超声换能器TD(又称雾化头)和其上安装的两根水位控制触针,他们是浸没在浅水水溶液中工作的。若长期雾化,一旦液面降低而使雾化头的水位控制触针露出水面时,振荡器会自动停止工作,这也避免了雾化头因发热而损坏。 图1电路中的BG2、BG3管、触针A、B以及相关的电阻,共同组成水位控制电路。电路工作时,电源通过触针A、B和水溶液给BG3的射极提供电源。BG3管导通工作。

医用超声雾化器工作与

医用超声雾化器工作原理与检修 医用超声雾化器适用于治疗老慢支、支气管扩张、哮喘、咽喉炎、鼻炎、肺部感染等各种呼吸道疾病及家庭保健。超声雾化器由雾化器外壳、底座、电源变压器、风扇电机(风机)、电路板、换能片(晶片)、储药罐(药杯)、塑料螺纹管、口含管等组成。其外壳多数是用塑料制成,在雾化出口设有风量调节,而板有定时器、电源开关、雾量调节旋钮以及电源和输出指示灯等。 一、工作原理 雾化器是通过换能器(压电晶片,简称晶片)藕合产生高频振荡.并由晶片产生1.7MHz超声波。超生波振荡输出电路大部分采用单管式输出,有的采用双管式输出。超声波以水为介质,通过水槽底下的谐振发射窗使药杯里的水溶性药物,雾化成微细的雾l粒(0.5~10μm)o使药物液体由液态转化为气态,产生雾化效果,送风机将药雾通过波纹管输送给患者吸人治疗。该雾化器具有治疗时间控制(0-60分钟),雾量人工调节,还增设了晶片保护装置,即在水槽水位过低时,能瞬间切断电源。消耗功率不大于60W。 1.JWC-2彩云牌超声波雾化器(电路如图1所示)。

接通电源,启动定时开关DS,风机M启动旋转。市电220V经变压器B降压至48V.通过桥式整流和滤波后给整个电路供电,电源指示灯即发光二极管D1亮,当水槽内的水达到水位线时(K闭合),振荡电路工作。雾量调节由电位器W1控制,当雾化输出正常时输出指示灯即发光二极管D2亮。在振荡电路里一般都设有水位限制感应开关防止无水或水少导致过而烧坏品片。水位控制开关K由带磁环浮子和千簧管组成,通过水槽中浮子的移动,控制干簧管的吸合。在加雾化器水槽中加人一定的水后,带动浮子上升,水位控制开关K闭合。由晶片JR,电容C3,C4,C5和三极管BGI构成电容三点式超声波振荡电路。晶片JR是一高频陶瓷压电振子,是电路中的自激元件,又是电路负载。C1,C2,C6为滤波电容。调节W1的阻值可改变BGI的基极电压,基极电压上升,振幅度加大,雾量增大;反之,基极电压减小,雾量减小。D3为续流二极管,用于保护三极管BG1,防止断电时产生反向电势击穿BG1。 2.CWS-D型超声雾化器(电路如图2所示)。 其中水位控制开关是由三极管BG2,BG3等组成电子开关。当水才曹加人一定水量时(水与A点接触),A、B点之间电阻R水阻值较小,使三极管BG3、BG2导通,使发光二极管D7水位灯亮;三极管BG1起振。调节W1可以改变雾星的大小间电阻R水阻值较小,使三极管BG3、BG2导通,使发光二极管D7水位灯亮;三极管BG1起振。调节W1可当水位下降一定程度时(水位脱离A 点)A,B点之间电阻R水阻值增大,使三极管BG3、BG2截止,发光二极管D7水位灯熄灭;BG1停振。

超声波雾化的原理

超声波雾化的原理 1927年一束强超声波自浸于液体中的超声换能器朝向液面发出后,液面上将会出现一层薄雾,薄雾的浓谈与超声波的强度有关,而雾滴的大小则与超声波的频率及液体的表面张力有关,这时候在液体的表面处有表面波传播,表面波的波长也与超声波的频率及表面张力有关。现已证明,雾滴直径稍微小于表面波的半波长,这使得人们倾向于认为雾滴是表面波在波峰处的喷出物。 超声波雾化是利用超声能量使液体形成微细雾滴的过程。 超声波使液体雾化有两种方式: 1.处于振动表面的薄液层在超声振动下激起毛细一重力波。 2.雾化方式是超声波喷泉成雾。 方式一 超声波雾化的原理存在两种理论解释。分别是微激波理论和表面张力波理论。 一方面,微激波理论解释,超声波在液体介质中产生的空化效应导致微激波的产生从而产生雾化现象。这种理论认为空化效应是使得液体产生雾化的直接原因,空化的空泡崩溃时除了产生热和光辐射外其余部分以微激波的形式辐射当微激波达到一定强度时引起液体的雾化当微激波达到一定强度时引起液体的雾化。 另一方面,表面张力理论认为雾滴的产生是由于液体表面波的不稳定使得液体产生雾化,具体的说当一定声强的超声波通过液体指向气液界面超声波在此界面形成表面张力波在与表面张力波相垂直的力的作用下一旦振动面的振幅达到一定值,液滴即从波峰上飞出而形成雾化。这种理论认为表面张力波在它的波峰处产生雾滴,其雾滴尺寸与波长成正比。表面张力波的模型及表面张力波雾化模型图。

D为雾滴直径;T为表面张力系数;ρ为液体密度;f为声波率 方式二 喷泉雾化,它是常见的一种超声波雾化形式,其利用压电晶片作为换能器,产生兆赫级的超声波。通常喷泉雾化的形成机制如下,当超声换能器发射超声波频率为兆赫级,则超声波及其空化场的指向性就很好,从而与其接触的溶液将被喷起,形成“超声喷泉”。 在超声喷泉产生的同时伴随产生大量气溶胶。其中“超声喷泉”可以看作是一种向上喷射的超声空化场,它拥有一种单方向的辐射力和对称的回旋声流。在这种空化场中,空化泡的分布非常不同。水等液体空化时,由于声辐射压的作用,出于空化泡的密度因超声辐射力和聚束喷射的物理作用,使大量空化泡的集中热效应和机械效应在喷泉前端更为突出,声能密度也因超声自由喷射和聚束喷射而沿喷射方向大有提高。

超声波雾化器电路

多用途超声波雾化器 时间:2006-08-15 来源: 作者: 点击:3178 字体大小:【大中小】这里介绍一种多用途的超声波雾化器。该雾化器具有以下特点:分体式,即超声雾化头与电源和电路部分完全分离;便携式,体积小、即插即用、设有自保功能;高可靠,可全天候工作;雾化量大,与别墅的山水盆景配套可发生云雾缭绕的动感;特别适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感);雾化器(成品)售价低、性价比高,欲自制雾化器,仅器材和工时费也难敌上述的性价比。 一、电路工作原理 该雾化器电路如图1所示,电源经变压器B(AC220V/30W)降压(36V)送D1-D4整流和C5、C6滤波后给电路提供工作电压。雾化器工作电路由振荡器、换能器和水位控制电路等组成。 1.振荡器和换能器,电路中的振荡器是一种由高频压电陶瓷片TD(超声换能器)组成的工作振荡器,其振荡频率为1.65MHz(决定于选定的TD)。晶体三极管BG1和电容器C1、C2等构成电容三点式振荡器电路。C1和电感L1等效并联的谐振频率比工作频率低,其作用是决定工作振荡器的振荡幅度;C2 和电感L2等效串联的谐振频率比工作频率高,其作用是决定工作振荡器的反馈量,以保证振荡器起振和维持电路的可靠振荡。压电陶瓷片TD 具有很大的等效电感,它除决定电路的工作频率外,同时又是雾化器的工作负载。若更换压电陶瓷片TD,无需调整电路其他参数,其振荡器频率也能自动跟踪新的压电陶瓷片的频率

而工作。 2.水位控制和偏置电路电路中的超声换能器TD(又称雾化头)和其上安装的两根水位控制触针,他们是浸没在浅水水溶液中工作的。若长期雾化,一旦液面降低而使雾化头的水位控制触针露出水面时,振荡器会自动停止工作,这也避免了雾化头因发热而损坏。 图1电路中的BG2、BG3管、触针A、B以及相关的电阻,共同组成水位控制电路。电路工作时,电源通过触针A、B和水溶液给BG3的射极提供电源。BG3管导通工作。BG2管起开关作用。当BG3工作时,BG2管也导通,电源通过BG3、BG2、R3、L3向BG1管提供偏置电流,使BG1管振荡工作。一旦液面降低、控制触针露出水面,电源到BG3管的通路被切断,BG3管截止,BG2开关也断开,此时BG1因无偏置电流而迅速停止振荡。调整电阻R3的阻值,可以直接改变BG1管的偏置电流,所以振荡器的调试十分简单和方便。电路中的D7是BG1管be结的保护二极管。 二、超声雾化器结构和使用方法 1.雾化器结构,该雾化器外形如图2所示。雾化头外壳是铜质材料的铸件,铜壳表面镀铬抛光,其外形尺寸为442mm×l5mm,铜壳内封装有换能器(镍或钛高频压电片)和功率管BG1,换能器紧贴BG1管以利工作时在溶液中散热。铸件铜壳是可拆卸的,只需旋转壳面上的定位口,即可更换压电片。此外两根水位控制触针紧固在铜壳内,并按一定距离排列再垂直伸出壳外一定高度,以便控制被雾化溶液的最低水位。 雾化器电源和工作电路都单独装在一个工程塑料壳内,当该装置的输入插入电源后,输出会通过导线给雾化头供电工作。据称该雾化器厂家,不仅提供雾化器成品,也提供全套散件出售。 2,使用方法,若将该雾化器用于室内加湿或消毒,可准备一个小塑料盆,盆内盛一定量的溶液,溶液量不宜太多(浅水为准),仅比水位触针高出一定距离即可(溶液太深其雾化量相对减小)。再把雾化头平放、两根触针向上浸在溶液中,这时只需插上电源,溶液立刻开始雾化。若该雾化器用于盆景,可参照上述方法进行

医用雾化器注册技术审查指导原则(2016年修订版)..

附件11 医用雾化器注册技术审查指导原则 (2016年修订版) 本指导原则旨在指导注册申请人对医用雾化器注册申报资料的准备及撰写,同时也为技术审评部门审评注册申报资料提供参考。 本指导原则是对医用雾化器的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。 本指导原则是供申请人和审查人员使用的指导文件,不涉及注册审批等行政事项,亦不作为法规强制执行,如有能够满足法规要求的其他方法,也可以采用,但应提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规、标准体系及当前认知水平下制定的,随着法规、标准体系的不断完善和科学技术的不断发展,本指导原则相关内容也将适时进行调整。 一、适用范围 本指导原则适用于第二类医用雾化器产品(或称雾化器)。该产品以超声振荡或气体压缩机驱动的方式将药物雾化供患者吸入。 本指导原则所称的医用雾化器属于《医疗器械分类目录》中 —291 —

— 292 — 6823-6超声雾化器,以及《关于冷热双控消融针等166个产品医 疗器械分类界定的通知》(国食药监械〔2011〕231号)文中二 (六十三)规定的压缩式雾化器,管理类别代号为6821。 本指导原则不适用于网式雾化器和采用外接气源的方式将 药物雾化的器具(如由医院中心供气系统或其他的经过压缩的氧 气或医用气体作为气源的药物雾化器具),但可以参考本指导原 则对这些产品进行技术审查。 二、技术审查要点 (一)产品名称要求 产品的名称应为通用名称,并符合《医疗器械命名规则》、 《医疗器械分类目录》、标准等相关法规、规范性文件的要求。 产品名称可主要依据雾化的原理及方式来命名,如:“医用超声 雾化器”或者“医用压缩式雾化器”。 (二)产品的结构和组成 产品的结构和组成应首先说明产品的主要部件,如有必要再 对主要部件的组成进行说明。 医用超声雾化器一般主要由主机、雾化杯、送雾管、吸嘴或 吸入面罩组成,其中的主机可由超声波发生器(超声换能器)、 超声薄膜、送风装置、调节和控制系统组成。医用超声雾化器产 品实例如图1所示。

超声波雾化器de原理及型号.

超声波雾化器原理简介 A.超声波雾化器原理简介 超声波雾化器利用电子高频震荡(振荡频率为1.7MHz或2.4MHz,超过人的听觉范围,该电子振荡对人体及动物绝无伤害),通过陶瓷雾化片的高频谐振,将液态水分子结构打散而产生自然飘逸的水雾,不需加热或添加任何化学试剂。与加热雾化方式比较,能源节省了90%另外 在雾化过程中将释放大量的负离子,其与空气中漂浮的烟雾、粉尘等产生静电式反应,使其沉淀,同时还能有效去除甲醛、一氧化碳、细菌等有害物质,使空气得到淨化,减少疾病的发生。 B.超声波雾化器分类和用途 本公司的系列雾化器采用高效集成电路,超小型一体化的独特结构 设计,重要部件采用进口元件,并选用高品质的雾化片。凭借产品多方面的优越性能、多年的生产经验和优质的个性化服务,我们生产的雾化 器已为许多日本、美国和国内企业的加湿器、熏香器、美容机、消毒机、浴缸造雾机、盆景、工艺品等提供优质的配套服务,并赢得客户的广泛赞誉。 本公司雾化器系列产品品种齐全,从单喷头到多喷头、从简单投入式到多种法兰安装结构式、从水的雾化器到耐二氧化氯等强氧化剂的雾化器,从锌合金外壳到黄铜和不锈钢外壳,同时我们的专业技术人员会 根据您的各种不同要求和使用条件,协助您选择雾化器产品型号,合理 调整雾化器的参数和工艺,或设计新型雾化器,若有需要,我们还可为您完成

整机的结构设计和控制部分研制。 C.使用说明和注意事项 在正确的使用情况下,雾化片的使用寿命约3000小时,且极易更换。 频震荡,手会有刺痛的感觉,但这不是电的冲击或漏电。 雾化器的正确使用步骤为:将雾化器放入装了水的容器内-雾化器的 电源连接线接入变压器-再将变压器的插头接入电源即可。 特别提醒:不要在雾化片表面没水时,将雾化器接入电源,因为电路 启动的脉冲电流在雾化片没有水的状态下会少坏雾化片。

一款简单的超声波雾化器电路

一款简单的超声波雾化器电路 本例介绍的超声波雾化器,与山水盆景配套使用时能产生云雾缭绕的动感效果。其用于较干燥的环境对空气加湿时能清新空气,有利于人的呼吸;在水中加人适量的消毒溶剂后,雾化后可对居住环境消毒,预防疾病的发生。 工作原理: 超声波雾化器由电源电路、振荡器电路和水位控制电路组成,如图所示 220V交流电压经T降压(降为36V)、桥式整流yDI一VD4及C1、C2滤波后,为水位控制电路和振荡器提供工作电压。在水位检测电极检测到水槽内有水时,整流后的直流电压经两个水位电极之间的水电阻,为VTl的发射极提供工作电压,使VTl导通,VTl集电极输出高电平,使VT2也导通,为振荡器提供偏置电压。振荡器振荡工作后,晶体超声波换能器BC产生高频振动(频率约为1·65MHz),将水雾化。 元器件选择 VT1选用S9015或C8550型硅PNP晶体管;VT2选用2SC18巧或C8550型硅NPN晶体管;VT3选用BU406或MJE13005型硅NPN高反压晶体管。 VDl一VD4、VD5均选用1N4007型硅整流二极管;VSl和VS2均选用1W,4.7V的硅稳压二极管。 R1一R7选用1/4W碳膜电阻器或金属膜电阻器。 C1选用耐压值为50V似上的铝电解电容器;C2一C4和C6选用独石电容器或涤纶电容器;C5选用高频瓷介电容器。 L1一13选用TDK色码电感或用漆包线自制。 T选用30W、二次电压为36V的电源变压器。

BC选用加温器专用压电式超声波雾化头。 水位电极可用不锈钢针制作。 本文介绍的装置能使盆景的假山、树木周围产生层层雾气,犹如山间飘着朵朵白云,极大地提高了观赏价值。同时也适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感)等等。 主要由超声波发生器、水位控制器、电源电路等几部分组成。超声波发生器主要由三极管VT1构成,VT1及其外围元件组成电容三点式LC振荡器,B是超声波换能器,其固有频率fc=1.65MHz,电容C1、C2决定振荡幅度,其固有频率略低于fc,L1、C2为正反馈元件,其固有频率略高于fc,VD5为VT1的保护二极管。由于雾化时B浸在水中,水位控制器由VT2、VT3等元器件构成,作用是: (1)为振荡电路提供基极偏置电流; (2)当盆景中水位低于设定值时,使振荡器停振,起保护作用。VT2、VT3接成复合管,通过L3、R3向VT1提供基极偏置电流,L3为高频扼流线圈,阻止超声波信号进入水位控制电路。调整R1的阻值,可改变VT1的基极电流,从而控制整机的工作电流。a、b为水位控制线,平时浸没在水中。雾化器正常工作时,若水位下降到一定限度,a、b脱离水面,VT2、VT3便截止,水位控制器停止向VT1提供基极电流,整机停止工作。 元器件选择 VT1的质量是制作成功的关键,最好采用意大利SGS产BU406、BU407或BU408等大功率高频三极管,要求fT≥100MHz;VT2、VT3可用9014型等NPN型硅管,要求β≥100;VD1~VD4可用1N4002硅整流二极管。 所有电阻最好全部采用RJ-0.25W金属膜电阻;电容采用CBB-100V聚苯电容;电感L1可用φ0.51mm漆包线在φ10×10mm磁芯上绕27匝,电感量约24μH;L2用φ0.69mm漆包线在φ6mm钻头绕2.5匝,然后脱胎取下,电感量约0.22μH;L3可用270μH色码电感器;换能器B是关键元件,应采用φ20×1.25mm/1.65MHz或φ20×1.2mm/1.7MHz高强度压电陶瓷片;变压器T要求次级电压为50V,功率40W;S用小型船形开关;VT1最好安装散热器;换能器B不能离水通电,否则将烧坏。盆景中水深以4~6cm为宜,应清洁。装好后调整电阻R1,使总电流为

超声雾化加湿系统研究与设计

第25卷第3期2006年9月武 汉 工 业 学 院 学 报Journa l o f W uhan P olytechn i c U n i versity V o l 125N o 13 Sep 12006 收稿日期:2005-12-28 作者简介:梁泽钦(1983-),男,广东省肇庆市人,本科生。 文章编号:1009-4881(2006)03-0024-03 超声雾化加湿系统研究与设计 梁泽钦,邱红喜,杨明丰,严飞,王旺平 (武汉工业学院机械工程系,湖北武汉430023) 摘 要:提出了基于粗、精加水组合的加湿调质工艺方案,对超声雾化加湿系统进行了研究,并给出了设计参数及关键技术解决方案。关键词:超声雾化;加湿系统;设计中图分类号:TS 210.4 文献标识码:A 0 引言 现代粮食加工工艺过程中,通过对物料进行加湿处理以提高加工效率和成品质量已经成为重要的应用技术。如加压碾米和抛光中的着水调质、剥皮制粉新工艺中的二次加水润麦、油料预处理工段中的水分调节、饲料制粒工艺中的加湿处理等都与水分对处理对象的介入密切相关。加水调质的基本要求是:加水量准确、易控,水分均匀分散,水分粒度合适。传统的 加水方式有:自然滴液式、液压泵送式、机械离心式、气流雾化式等。这些方式都难以全面满足加湿工艺指标。本文提出的超声雾化着水方案能最大限度满足加工工艺要求。着水量易控制,着水均匀性好,雾滴分散性好,且不会造成水分凝聚。超声雾化着水的水珠径粒在微米数量级,故相应地增加了水)料间的接触面积,使其间的传质传湿效能大大增强,物料的有效浸润时间长。此外,与其他方法相比,超声雾化系统既无机械传动件,易于维护;又无复杂的辅助设备,运行费用低,功耗小 [1] 。 必须指出,超声雾化水分总量相对较低,在一些工况下达不到着水量的要求,为此,多数情况下应采用粗加水和精加水相结合的工艺组合,用相对简单的如风道式执行粗加水至预设量,然后用超声雾化系统来锁定最终所需水分。这样,有效结合了不同着水方案的优点,既保证量的需要,又实现了精度需求。 1 超声雾化原理及其相关应用 在超声波作用下,液体在气相中分散而形成微细雾滴的过程称为超声雾化 [2] 。超声效应分热效 应和非热效应。超声雾化是由超声波的非热作用效应而产生的,这种非热效应表现为机械效应和空化效应两种形式。机械效应是指超声波传播过程中引起的介质质点的微幅高频振动即质点的交替压缩和伸张,这种高频振动,虽然位移变化不大,但速度尤其是加速度的变化极大。空化效应是指在能量超声作用下,介质粒子获得约为其重力的104 倍的加速度交替周期波动能量,波动的压缩和伸张作用使介质泡核激活,撕裂出大量的空穴,这些小空穴瞬间生成、生长、崩溃,从而产生高达几千个大气压的瞬间压力。在较低声强作用下发生的稳态空化和在较高 声强下发生的瞬态空化都能够使水珠破裂成微小的粒子,而产生水雾。 关于雾化现象的解释归于两种理论,一种称为微激波理论,认为是超声振动在液面下产生空化作用引起的微激波导致了雾的形成。按照这种理论,空化泡闭合时产生很强的微激波,其强度达到一定值时引起雾化。另一种表面张力波理论认为是表面波的不稳定引起的表面张力波导致了雾的形成。表面张力波理论是基于液-气界面的不稳定性理论,在与表面张力波相垂直的力作用下,一旦振动面的振幅达到一定值,液滴即从波峰上飞出而形成雾。

医用超声雾化器电路分析

医用超声雾化器电路分析 工作原理 医用超声雾化器适用于治疗老慢支、支气管扩张、哮喘、咽喉炎、鼻炎、肺部感染等各种呼吸道疾病及家庭保健。 超声雾化器由雾化器外壳、底座、电源变压器、风扇电机(风机)、电路板、换能片(晶片)、储药罐(药杯)、塑料螺纹管、口含管等组成。其外壳多数是用塑料制成,在雾化出口设有风量调节,面板有定时器、电源开关、雾量调节旋钮以及电源和输出指示灯等。 工作原理 雾化器是通过换能器(压电晶片,简称晶片)耦合产生高频振荡,并由晶片产生1.7MHz 超声波。超生波振荡输出电路大部分采用单管式输出,有的采用双管式输出。 超声波以水为介质,通过水槽底下的谐振发射窗使药杯里的水溶性药物。雾化成微细的雾粒(0.5~10μm)。使药物液体由液态转化为气态,产生雾化效果,送风机将药雾通过波纹管输送给患者吸入治疗。 该雾化器具有治疗时间控制(0~60分钟),雾量人工调节,还增设了晶片保护装置,即在水槽水位过低时,能瞬间切断电源。消耗功率不大于60W。 1、JWC-2彩云牌超声波雾化器(电路如图1所示)。 接通电源,启动定时开关DS,风机M启动旋转。市电220V经变压器B降压至48V,通过桥式整流和滤波后给整个电路供电,电源指示灯即发光二极管D1亮,当水槽内的水达到水位线时(K闭合),振荡电路工作。雾量调节由电位器W1控制,当雾化输出正常时输出指示灯即发光二极管D2亮。在搌荡电路里一般都设有水位限制感应开关,以防止无水或水少导致过热,而烧坏晶片。 水位控制开关K由带磁环浮子和干簧管组成,通过水槽中浮子的移动,控制干簧管的吸合。在加雾化器水槽中加入一定的水后,带动浮子上升,水位控制开关K闭合。由晶片JR、电容C3、C4、C5和三极管BG1构成电容三点式超声波振荡电路。晶片JR是一高频陶瓷压电振子,是电路中的自激元件,又是电路负载。C1、C2、C6为滤波电容。调节W1的阻值可改变BG1的基极电压,基极电压上升,振幅度加大,雾量增大;反之,基极电压减小,雾量减小。D3为续流二极管,用于保护三极管BG1,防止断电时产生反向电势击穿BG1。 2、CWS-D型超声雾化器(电路如图2所示)。 其中水位控制开关是由三极管BG2、BG3等组成电子开关。当水槽加入一定水量时冰与A点接触),A、B点之间电阻R水阻值较小。使三极管BG3、BG2导通。使发光二极管D7水位灯亮:三极管BGl起振。调节Wl可以改变雾量的大小。 当水位下降一定程度时f水位脱离A点)A、B点之间电阻R水阻值增大,使三极管BG3、BG2截止,发光二极管D7ZK位灯熄灭;BGl停振。 3.402l型超声雾化器(电路如图3所示)。 该电路增设了电源开关K。并且送风采用电子调速控制的直流电机,该机没有设置雾量调节电位器,它是利用调速控制电机转速。间接控制了雾量的大小,其原理:电源变压器降压10V经二极簧V5~V8整流、电容C8滤波后作为供电电源。调节电位器W可改变三极管V13基极的电位,以调节电机转速。

超声雾化器理论设计

超声雾化器设计及实验研究 3.1 引言 超声雾化器的主要作用是将供液装置提供的雾化液雾化,以满足各种不同的应用。常见的雾化方式有喷嘴机械雾化和压电超声雾化两种。传统的机械式雾化方法分为压力喷射式雾化和转杯高速旋转雾化。压力喷射式雾化是雾化液在雾化器压力作用下具备一定动能,在高速旋转中喷出喷孔,在离心力、喷孔反作用力等力作用下,克服雾化液的表面张力和粘性力,碎裂成雾粒;转杯高速旋转雾化是雾化液以细流经管道进入安装在空心轴上的雾化转杯内,在高速旋转雾化杯的离心力作用下,紧贴在雾化杯壁面,形成的液膜随着转杯高速旋转,并不断向杯口移动直至甩出裂解成细小的成曲线运动的雾粒。压电超声雾化有低频大功率超声雾化和高频微细雾化。解释超声雾化机理的理论主要有表面张力波理论和微激波理论。高频超声微细雾化在空气雾化加湿、超声雾化美容、药剂雾化吸入治疗等领域应用广泛。低频大功率超声雾化主要应用在生物与农业工程中、设施农业植物盆栽培养方面,应用范围仍在不断扩展。 低频大功率超声雾化不仅具有汽雾分布均匀,汽雾粒径小,雾化液速度低等高频超声雾化器的优点,而且雾化量较大,雾粒初速度高等机械压力喷嘴的优点,比较适合精密超精密磨削的冷却应用。低频超声雾化器的动力由夹心式大功率压电超声换能器提供,其设计基于声波在弹性介质中的一维传播理论及相关设计理论并结合有限元分析,确定超声雾化器的结构参数。根据纳米汽雾聚焦超声冷却系统的要求,超声雾化器采用了二次雾化技术,以进一步细化雾粒。 超声雾化器的雾化性能试验主要包括最大汽雾流量,汽雾粒径等。汽雾的雾粒粒径之间是不同的,一般用雾粒的平均粒径来表示,设想一个液滴尺寸完全均匀一致的喷雾场以代替实际不均匀的喷雾场,这个假想的均匀喷雾场的液滴直径称为平均直径[55]。几种不同的平均粒径表示方法应用领域如表3-1所示。 表3-1 平均粒径表示方法应用领域 平均粒 径类型 长度表面积体积索特粒径 公式 max min max min 10 D D D D DdN D dN = ? ? max min max min 1/2 2 20 D D D D D dN D dN ?? ? = ? ? ?? ? ? max min max min 1/3 3 30 D D D D D dN D dN ?? ? = ? ? ?? ? ? max min max min 3 32 2 D D D D D dN D D dN = ? ?

【CN110013587A】一种医疗用的离子雾化机【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910263401.9 (22)申请日 2019.04.02 (71)申请人 安徽汉诺医疗科技有限公司 地址 232000 安徽省淮南市田家庵区安成 经济开发区2号标准化厂房(西)3层 (72)发明人 段鹏  (74)专利代理机构 北京联瑞联丰知识产权代理 事务所(普通合伙) 11411 代理人 苏友娟 (51)Int.Cl. A61M 11/00(2006.01) (54)发明名称 一种医疗用的离子雾化机 (57)摘要 本发明公开了一种医疗用的离子雾化机,包 括雾化箱、加热室、超声波雾化器和离子发生器, 所述雾化箱和加热室通过连通管相连通,所述加 热室的内部安装有加热管,所述加热管上电性连 接有温度控制器,所述超声波雾化器和离子发生 器安装于雾化箱的内部,所述雾化箱的一侧连通 有进水管,所述进水管上安装有电磁阀,所述电 磁阀上电性连接有液位传感器,所述液位传感器 安装于雾化箱的内部,所述雾化箱的一侧安装有 风扇。在雾化箱中安装超声波雾化器和离子发生 器,通过超声波雾化器将雾化箱中的水进行雾化 与离子发生器发出的负离子融合,通过风扇将雾 气吹入到加热室中,通过出汽管排出,结构简单, 操作方便,噪音小, 适合在医院使用。权利要求书1页 说明书3页 附图2页CN 110013587 A 2019.07.16 C N 110013587 A

权 利 要 求 书1/1页CN 110013587 A 1.一种医疗用的离子雾化机,包括雾化箱、加热室、超声波雾化器和离子发生器,其特征在于:所述雾化箱和加热室通过连通管相连通,所述加热室的内部安装有加热管,所述加热管上电性连接有温度控制器,所述超声波雾化器和离子发生器安装于雾化箱的内部,所述雾化箱的一侧连通有进水管,所述进水管上安装有电磁阀,所述电磁阀上电性连接有液位传感器,所述液位传感器安装于雾化箱的内部,所述雾化箱的内部安装有固定板,所述固定板的一侧安装有缸体,所述缸体的内部活动插接有联动杆,所述联动杆上固定连接有限位板,所述限位板的顶部设有弹簧,所述弹簧套接于联动杆的外部,所述联动杆的下端固定连接有夹板,所述夹板活动连接于超声波雾化器的顶部,所述雾化箱的一侧安装有风扇。 2.根据权利要求1所述的一种医疗用的离子雾化机,其特征在于:所述雾化箱上销接有箱盖,所述箱盖和雾化箱上安装有相匹配搭扣锁,所述箱盖的内侧安装有密封垫。 3.根据权利要求1所述的一种医疗用的离子雾化机,其特征在于:所述风扇的外部安装有风扇盒,所述风扇盒的一侧开设有进风口,所述进风口中安装有呼吸纸。 4.根据权利要求1所述的一种医疗用的离子雾化机,其特征在于:所述出汽管上安装有喷汽头。 5.根据权利要求1所述的一种医疗用的离子雾化机,其特征在于:所述联动杆的上端安装有拉环。 6.根据权利要求1所述的一种医疗用的离子雾化机,其特征在于:所述雾化箱的底部安装有橡胶垫,所述橡胶垫的底部设有防滑纹。 2

介绍一种多用途的超声波雾化器解析

介绍一种多用途的超声波雾化器。该雾化器具有以下特点:分体式,即超声雾化头与电源和电路部分完全分离;便携式,体积小、即插即用、设有自保功能;高可靠,可全天候工作;雾化量大,与别墅的山水盆景配套可发生云雾缭绕的动感;特别适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感);雾化器(成品)售价低、性价比高,欲自制雾化器,仅器材和工时费也难敌上述的性价比。 一、电路工作原理 该雾化器电路如图1所示,电源经变压器B(AC220V/30W)降压(36V)送D1-D4整流和C5、C6滤波后给电路提供工作电压。雾化器工作电路由振荡器、换能器和水位控制电路等组成。 1.振荡器和换能器,电路中的振荡器是一种由高频压电陶瓷片TD(超声换能器)组成的工作振荡器,其振荡频率为1.65MHz(决定于选定的TD)。晶体三极管BG1和电容器C1、C2等构成电容三点式振荡器电路。C1和电感L1等效并联的谐振频率比工作频率低,其作用是决定工作振荡器的振荡幅度;C2和电感L2等效串联的谐振频率比工作频率高,其作用是决定工作振荡器的反馈量,以保证振荡器起振和维持电路的可靠振荡。压电陶瓷片TD具有很大的等效电感,它除决定电路的工作频率外,同时又是雾化器的工作负载。若更换压电陶瓷片TD,无需调整电路其他参数,其振荡器频率也能自动跟踪新的压电陶瓷片的频率而工作。 2.水位控制和偏置电路电路中的超声换能器TD(又称雾化头)和其上安装的两根水位控制触针,他们是浸没在浅水水溶液中工作的。若长期雾化,一旦液面降低而使雾化头的水位控制触针露出水面时,振荡器会自动停止工作,这也避免了雾化头因发热而损坏。 图1电路中的BG2、BG3管、触针A、B以及相关的电阻,共同组成水位控制电路。电路工作时,电源通过触针A、B和水溶液给BG3的射极提供电源。BG3管导通工作。BG2

超声雾化器原理和常见故障分析检修实例

超声雾化器原理与常见故障分析检修实例(可供超声波加湿器的检修参考) 随着医疗科技迅速发展,人们生活水平的提高,对生存质量特别重视,超声雾化器(简称雾化器①)也进入千家万户。下面将常见雾化器原理与检修实例提供给同行参考。 雾化器结构比较简单,它是由雾化器外壳、底座、电源变压器、风扇电机(风机)、电路板、换能片(晶片)、储药罐(药杯)、塑料螺纹管、口含管等组成。其外壳多数是用塑料制成,在雾化出口设有风量调节,面板有定时器、电源开关、雾量调节旋钮以及电源和输出指示灯等(雾化器外形见图1)。 一、工作原理 雾化器它是通过换能器(压电晶片,简称晶片)耦合产生高频振荡,并由晶片产生超声波1.7MHz。在振荡电路中大部分采用单管式输出,有的采用双管式输出,超声波以水为介质,通过水槽底下的谐振发射窗使药

杯里的水溶性药物,雾化成微细的雾粒(0. 5-10μm)。使药物液体由液态转化为气态,产生雾化效果,送风机将药雾通过波纹管输运到患者作为吸入治疗。该雾化器具有治疗时间控制(0-60分钟),雾量人工调节,还增设了晶片保护装置,即在水槽水位过低时,能瞬间切断电源。消耗功率不大于60 W。 以JWC-2彩云牌超声波雾化器为例(图2): 接通电源,启动定时开关DS,风机M启动旋转。市电220V经变压器B降压至48V,通过桥式整流和滤波供给整个电路,电源指示灯即发光二极管D1亮,当水槽内的水达到水位线时(K闭合),振荡电路工作。雾量调节由电位器W1控制,当雾化输出正常时输出指示灯即发光二极管D2亮。在振荡电路里一般都设有水位限制感应开关,以防止无水或水少过热工作,而烧坏晶片。 水位控制开关K由带磁环浮子和干簧管组成,通过水槽中浮子的移动,控制干簧管的吸合。在加雾化器水槽中加入一定的水后,

超声波雾化器

超声波微型雾化器电路图 该雾化器具有以下特点:分体式,即超声雾化头与电源和电路部分完全分离;便携式,体积小、即插即用、设有自保功能;高可靠,可全天候工作;雾化量大,与别墅的山水盆景配套可发生云雾缭绕的动感;特别适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感);雾化器(成品)售价低、性价比高,欲自制雾化器,仅器材和工时费也难敌上述的性价比。 超声波微型雾化器电路 一、电路工作原理: 该雾化器电路如图1所示,电源经变压器B(AC220V/30W)降压(36V)送D1-D4整流和C5、C6滤波后给电路提供工作电压。雾化器工作电路由振荡器、换能器和水位控制

电路等组成。 1、振荡器和换能器,电路中的振荡器是一种由高频压电陶瓷片TD(超声换能器)组成的工作振荡器,其振荡频率为1.65MHz(决定于选定的TD)。晶体三极管BG1和电容器C1、C2等构成电容三点式振荡器电路。C1和电感L1等效并联的谐振频率比工作频率低,其作用是决定工作振荡器的振荡幅度;C2和电感L2等效串联的谐振频率比工作频率高,其作用是决定工作振荡器的反馈量,以保证振荡器起振和维持电路的可靠振荡。压电陶瓷片TD 具有很大的等效电感,它除决定电路的工作频率外,同时又是雾化器的工作负载。若更换压电陶瓷片TD,无需调整电路其他参数,其振荡器频率也能自动跟踪新的压电陶瓷片的频率而工作。 2、水位控制和偏置电路电路中的超声换能器TD(又称雾化头)和其上安装的两根水位控制触针,他们是浸没在浅水水溶液中工作的。若长期雾化,一旦液面降低而使雾化头的水位控制触针露出水面时,振荡器会自动停止工作,这也避免了雾化头因发热而损坏。 图1电路中的BG2、BG3管、触针A、B以及相关的电阻,共同组成水位控制电路。电路工作时,电源通过触针A、B和水溶液给BG3的射极提供电源。BG3管导通工作。BG2管起开关作用。当BG3工作时,BG2管也导通,电源通过BG3、BG2、R3、L3向BG1 管提供偏置电流,使BG1管振荡工作。一旦液面降低、控制触针露出水面,电源到BG3 管的通路被切断,BG3管截止,BG2开关也断开,此时BG1因无偏置电流而迅速停止振荡。调整电阻R3的阻值,可以直接改变BG1管的偏置电流,所以振荡器的调试十分简单和方便。电路中的D7是BG1管be结的保护二极管。 二、超声雾化器结构和使用方法: 1、雾化器结构,该雾化器外形如图2所示。雾化头外壳是铜质材料的铸件,铜壳表面镀铬抛光,其外形尺寸为442mm×l5mm,铜壳内封装有换能器(镍或钛高频压电片)和功率管BG1,换能器紧贴BG1管以利工作时在溶液中散热。铸件铜壳是可拆卸的,只需旋转壳面上的定位口,即可更换压电片。此外两根水位控制触针紧固在铜壳内,并按一定距离排列再垂直伸出壳外一定高度,以便控制被雾化溶液的最低水位。 雾化器电源和工作电路都单独装在一个工程塑料壳内,当该装置的输入插入电源后,输

超声波雾化器设计

物理与电子工程学院 《单片机》 课程设计报告书 设计题目:超声波雾化器设计 专业:自动化 班级: 14接本 学生姓名:郑磊 学号: 20140343110 指导教师:王承林 2014年11 月16 日

物理与电子工程学院XXXX级本科课程设计 物理与电子工程学院课程设计任务书 专业:自动化班级: 2014接本

摘要 提出一种基于单片机的超声波雾化器的智能控制系统。该系统选用AT89S52为控制器,其中超声渡雾化器为系统核心器件,可实现室内空气迅速升温、增湿,净化空气。实际运行情况表明,该系统具有温湿度实时显示及设定功能、无需人工干预温湿度自动调节,能实现自动进水、排水等众多功能。系统控制简便快捷,抗干扰能力强,具有十分广阔的市场前景。 关键词:超声波雾化器;单片机;智能控制

目录 1. 引言 (2) 2. 课程设计的目的 (3) 3 .分类和用途 (3) 4.相关文献和书目 (3) 5. 相关工具和软件的准备 (3) 6 .说明 (4) 7. 注意事项 (4) 8. 特别提醒 (4) 9 .单片机的选用 (5) 10.系统结构及工作原理 (5) 11.硬件电路设计 (6) 12 .软件设计 (7) 13. 运行情况 (8) 14. 结语 (9) 15.总结 (9) 16 .附录 (10)

引言 冬天来临,如何营造一个舒适温暖的洗浴环境成了人们普遍关注的问题;在某些气候干燥的地区,保持室内湿度也是一个大问题。目前,市场上也有很多种类的加温加湿产品,但是这些产品在不同程度上存在着一些不足:(1)相对北方而言,南方无集中供暖设备,进入浴室洗浴之前人们普遍使用的如浴霸、壁挂式热吹风机等产品,而使用浴霸加热,并不能从根本上提高室内空气环境的温度。并且该产品存在辐射,光线太强等缺点,长期处于该环境下,容易引起头晕目眩、失眠、食欲不振等现象。(2)根据调查,空气干燥,空气中悬浮物、粉尘过多易于病菌的迅速传播,处于这种环境中,人们易感冒、皮肤过敏,肌体免疫力下降,同时体内水分也加速流失,皮肤显得很干燥。目前市面上的产品多为单纯的加湿器,不能同时解决加温加湿问题。基于此,采用超声波加湿器处理热水将会是一个有效的办法,由于水的比热相当大而空气比热很小,用较少的水与空气进行热交换就可以使较多量多的空气升温,对调节气温起着巨大的作用。而且超声波加湿器加湿强度大,加湿均匀,加湿效率高,节能、省电。为此笔者设计了一种基于超声波雾化器的智能控制系统,该系统是在基于快速节能的前提下,实现室内环境快速加温加湿,且具有保温保湿的作用

多用途超声波微型雾化器解析

多用途超声波微型雾化器 来源:《电子报》|成都作者:新力 笔者介绍一种多用途的超声波雾化器。该雾化器具有以下特点:分体式,即超声雾化头与电源和电路部分完全分离;便携式,体积小、即插即用、设有自保功能;高可靠,可全天候工作;雾化量大,与别墅的山水盆景配套可发生云雾缭绕的动感;特别适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感);雾化器(成品)售价低、性价比高,欲自制雾化器,仅器材和工时费也难敌上述的性价比。 一、电路工作原理 该雾化器电路如图1所示,电源经变压器B(AC220V/30W)降压(36V)送D1-D4整流和C5、C6滤波后给电路提供工作电压。雾化器工作电路由振荡器、换能器和水位控制电路等组成。 1.振荡器和换能器,电路中的振荡器是一种由高频压电陶瓷片TD(超声换能器)组成的工作振荡器,其振荡频率为1.65MHz(决定于选定的TD)。晶体三极管BG1和电容器C1、C2等构成电容三点式振荡器电路。C1和电感L1等效并联的谐振频率比工作频率低,其作用是决定工作振荡器的振荡幅度;C2和电感L2等效串联的谐振频率比工作频率高,其作用是决定工作振荡器的反馈量,以保证振荡器起振和维持电路的可靠振荡。压电陶瓷片TD具有很大的等效电感,它除决定电路的工作频率外,同时又是雾化器的工作负载。若更换压电陶瓷片TD,无需调整电路其他参数,其振荡器频率也能自动跟踪新的压电陶瓷片的频率而工作。 2.水位控制和偏置电路电路中的超声换能器TD(又称雾化头)和其上安装的两根

水位控制触针,他们是浸没在浅水水溶液中工作的。若长期雾化,一旦液面降低而使雾化头的水位控制触针露出水面时,振荡器会自动停止工作,这也避免了雾化头因发热而损坏。 图1电路中的BG2、BG3管、触针A、B以及相关的电阻,共同组成水位控制电路。电路工作时,电源通过触针A、B和水溶液给BG3的射极提供电源。BG3管导通工作。BG2管起开关作用。当BG3工作时,BG2管也导通,电源通过BG3、BG2、R3、L3向BG1管提供偏置电流,使BG1管振荡工作。一旦液面降低、控制触针露出水面,电源到BG3管的通路被切断,BG3管截止,BG2开关也断开,此时BG1因无偏置电流而迅速停止振荡。调整电阻R3的阻值,可以直接改变BG1管的偏置电流,所以振荡器的调试十分简单和方便。电路中的D7是BG1管be 结的保护二极管。 二、超声雾化器结构和使用方法 1.雾化器结构,该雾化器外形如图2所示。雾化头外壳是铜质材料的铸件,铜壳表面镀铬抛光,其外形尺寸为442mm×l5mm,铜壳内封装有换能器(镍或钛高频压电片)和功率管BG1,换能器紧贴BG1管以利工作时在溶液中散热。铸件铜壳是可拆卸的,只需旋转壳面上的定位口,即可更换压电片。此外两根水位控制触针紧固在铜壳内,并按一定距离排列再垂直伸出壳外一定高度,以便控制被雾化溶液的最低水位。 雾化器电源和工作电路都单独装在一个工程塑料壳内,当该装置的输入插入电源后,输出会通过导线给雾化头供电工作。据称该雾化器厂家,不仅提供雾化器成品,也提供全套散件出售。 2,使用方法,若将该雾化器用于室内加湿或消毒,可准备一个小塑料盆,盆内盛一定量的溶液,溶液量不宜太多(浅水为准),仅比水位触针高出一定距离即可(溶液太深其雾化量相对减小)。再把雾化头平放、两根触针向上浸在溶液中,这时只需插上电源,溶液立刻开始雾化。若该雾化器用于盆景,可参照上述方法进行。

相关文档
最新文档