《数据结构Java版》线性表之单链表的建立及操作

《数据结构Java版》线性表之单链表的建立及操作
《数据结构Java版》线性表之单链表的建立及操作

《数据结构Java》线性表之单链表的建立及操作

package sjjg3;

//单链表结点类,T指定结点的元素类型

public class Node {

public T data;//数据域,存储数据元素

public Node next;//地址域,引用后继结点

public Node(T data,Node next) {//构造结点,data指定数据元素,next指定后继结点

this.data=data;//T对象引用赋值

this.next=next;//Node对象引用赋值

}

public Node() {

this(null, null);

}

public String toString() {//返回结点数据域的描述字符串

return this.data.toString();

}

}

package sjjg3;

//单链表类,实现ADT List声明方法,T表示数据元素的数据类型

public class SinglyList extends Object{

public Node head;//头指针,指向单链表的头结点

//(1)构造方法

public SinglyList() {//构造空单链表

this.head=new Node();//创建头结点,data和next值均为null }

public SinglyList(T[] values) {//构造单链表,由values数组提供元素this();//创建空单链表,只有头结点

Node rear=this.head;//rear指向单链表最后一个结点

for(int i=0;i(values[i],null);//尾插入,创建结点链入rear结点之后

rear=rear.next;//rear指向新的链尾结点

}

}

public boolean isEmpty() {//判断单链表是否空,O(1)

return this.head.next==null;

}

//(2)存取

public T get(int i) {//返回第i个元素,0<=i<表长度。若i越界,则返回null。O(n)

Node p=this.head.next;

for(int j=0;p!=null && j

return(i>=0 && p!=null)?p.data:null;//若p指向第i个结点,返回其元素值}

public void set(int i,T x) {//设置第i个元素为x,0<=i<表长度,x!=null。

}

public int size() {//返回单链表长度,O(n)。

Node p=head;

int count=0;

while(p!=null) {

count++;

p=p.next;

}

return count;

}

//返回单链表所有元素的描述字符串,形式“(,)”。覆盖Object类的toString()方法,O(n)

public String toString() {

String str=this.getClass().getName()+"(";//返回类名

for(Node p=this.head.next;p!=null;p=p.next) {//p遍历单链表

str+=p.data.toString();

if(p.next!=null)

str+=",";//不是最后一个结点时,加分隔符

}

return str+")";//空表返回()

}

//(3)插入

//插入x作为第i个元素,x!=null,返回插入结点

//对序号i采取容错措施,若i<0,则插入x在最前;若i>n,则插入x在最后。O(n) public Node insert(int i,T x){

if(x==null)

throw new NullPointerException("x==null");//抛出空对象异常Node front=this.head;//front指向头结点

for(int j=0;front.next!=null && j

front=front.next;

front.next=new Node(x,front.next);//在front之后插入值为x的结点

return front.next;//返回插入结点

}

public Node insert(T x){//在单链表最后添加x对象,O(n)

//调用insert(i,x),用整数最大值指定插入在最后,遍历一次,i必须容错

return insert(Integer.MAX_VALUE,x);

}

//(4)删除

public T remove(int i) {//删除第i个元素,0<=i

则返回null。O(n)

Node front=this.head;//front指向头结点

for(int j=0;front.next!=null && j

if(i>=0 && front.next!=null) {//若front的后继结点存在,则删除之T old=front.next.data;//获得待删除结点引用的对象

front.next=front.next.next;//删除front的后继,包括头删除,中间/尾删除

//由Java虚拟机稍后释放结点占用的存储单元

return old;

}

return null;//若i<0或i>表长

}

public void clear() {//删除单链表所有元素

this.head.next=null;//Java自动收回所有结点占用的存储空间}

//(5)查找

public Node search(T key){//查找返回首个与key相等元素结点,查找不成功返回null

for(Node p=head.next;p!=null;p=p.next)

if(key.equals(p.data))

return p;

return null;

}

public boolean contains(T key){//判断是否包含关键字为key元素

Node p = null;

return this.search(key)!=p;

}

}

package sjjg3;

public class SinglyTest {

public static void main(String[] args) {

Node i;

String values[] = {"A","B","C","D","E","F"};

SinglyList list = new SinglyList(values);

Integer values1[] = { 10, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

SinglyList list1 = new SinglyList(values1);

Integer values2[] = { 100, 11, 22, 33, 44, 55, 66, 77, 88, 99 };

SinglyList list2 = new SinglyList(values2);

System.out.println("更改前的顺序表:");

System.out.println(list.toString());

System.out.println(list1.toString());

System.out.println(list2.toString());

list.insert(3,"K");

System.out.print("插入后的顺序表:");

System.out.println(list.toString());

list1.remove(4);

System.out.print("删除后的顺序表:");

System.out.println(list1.toString());

i=list2.search(100);

System.out.print("查找结果:");

if(i!=null)

System.out.print(true);

else

System.out.print(false);

}

}

数据结构 单链表基本操作代码

实验一单链表 #include "stdio.h" #include "stdlib.h" typedef int ElemType; typedef struct LNode { ElemType data; struct LNode *next; }LNode,*LinkList; void creatLNode(LinkList &head) { int i,n; LNode *p; head=(LNode*)malloc(sizeof(LNode)); head->next=NULL; printf("请输入链表的元素个数:"); scanf("%d",&n); for(i=n;i>0;i--) { p=(LNode*)malloc(sizeof(LNode)); printf("第%d个元素:",i); scanf("%d",&p->data); p->next=head->next; head->next=p; } } void InsertLNode(LinkList &L) { LNode *p=L; int i,j=0,e; printf("请输入你要插入的位置(超过链表长度的默认插在最后!):"); scanf("%d",&i); printf("请输入你要插入的元素:"); scanf("%d",&e); while (p->next&&jnext; ++j; }

LNode *s; s=(LNode*)malloc(sizeof(LNode)); s->data=e; s->next=p->next; p->next=s; } int DeleteLNode(LinkList &L,int i,int &e) { LNode *p; p=L; LNode *q; int j=0; while (p->next&&jnext; ++j; } if(!(p->next)||j>i-1) { printf("删除位置不合理!\n"); return 0; } q=p->next; p->next=q->next; e=q->data; free(q); return e; } void DeleteCF(LinkList &L) { LNode *p,*s,*r; p=L->next; while(p!=NULL) { r=p; s=r->next; while(s!=NULL) { if(p->data==s->data) { r->next=s->next; s=s->next;

实验二 链表操作实现

实验二链表操作实现 实验日期: 2017 年 3 月 16 日 实验目的及要求 1. 熟练掌握线性表的基本操作在链式存储上的实现; 2. 以线性表的各种操作(建立、插入、删除、遍历等)的实现为重点; 3. 掌握线性表的链式存储结构的定义和基本操作的实现; 4. 通过本实验加深对C语言的使用(特别是函数的参数调用、指针类型的应用)。 实验容 已知程序文件linklist.cpp已给出学生身高信息链表的类型定义和基本运算函数定义。 (1)链表类型定义 typedef struct { int xh; /*学号*/ float sg; /*身高*/ int sex; /*性别,0为男生,1为女生*/ } datatype; typedef struct node{ datatype data; /*数据域*/ struct node *next; /*指针域*/ } LinkNode, *LinkList; (2)带头结点的单链表的基本运算函数原型 LinkList initList();/*置一个空表(带头结点)*/ void createList_1(LinkList head);/*创建单链表*/ void createList_2(LinkList head);/* 创建单链表*/ void sort_xh(LinkList head);/*单链表排序*/ void reverse(LinkList head);/*对单链表进行结点倒置*/ void Error(char *s);/*自定义错误处理函数*/ void pntList(LinkList head);/*打印单链表*/ void save(LinkList head,char strname[]);/*保存单链表到文件*/

数据结构课程设计单链表操作汇总

《数据结构课程设计》报告 题目:单链表操作 专业:计算机科学与技术 班级: 单链表操作 针对带头结点的单循环链表,编写实现以下操作的算法函数。

实现要求: ⑴单链表建立函数create:先输入数据到一维数组A[M]中,然后根据一维 数组A[M]建立一个单循环链表,使链表中个元素的次序与A[M]中各元素的次序相同,要求该函数的时间复杂度为O(m); ⑵定位查找函数Locate:在所建立的单循环链表中查找并返回值为key的 第1个元素的结点指针;若找不到,则返回NULL; ⑶求出该链表中值最大和次大的元素值,要求该算法的时间复杂度为O(m), 最大和次大的元素值通过指针变量带回,函数不需要返回值; ⑷将链表中所有值比key(值key通过形参传入)小的结点作为值为key的结 点前驱,所有值比key大的结点作为值为key的结点后继,并尽量保持原有结点之间的顺序,要求该算法的时间复杂度为O(m); ⑸设计一个菜单,具有上述处理要求和退出系统功能。 ⒈本人完成的工作: 一、定义结构体:LNode 二、编写以下函数: (1)建立单循环链表 (2)建立定位查找函数 (3)求出链表中最大和次大值 (4)将链表中的值和输入的Key比较,小的作为key前驱结点,大的作为key 的后继结点 三、设计具有上述处理要求和退出系统菜单 ⒉所采用的数据结构:单链表 数据结构的定义: typedef struct Node //定义结点的结构体 { DataType data; //数据域 struct Node *next; //指针域

}LNode; //结点的类型 ⒊所设计的函数 (1)Create(void) LNode *Create(void) //建立单循环链表,链表头结点head作为返回值{ int i,j,n,A[M]; //建立数组A【M】 LNode *head,*p,*move; head=(LNode*)malloc(sizeof(LNode)); //创建空单循环链表head->next=head; move=head; printf("请输入数组元素的个数:"); //输入数组 scanf("%d",&n); printf("请输入数组:"); for(i=0;idata=A[j]; p->next=move->next; move->next=p; move=move->next; } return head; //返回头指针

数据结构_实验1_线性表的基本操作

实验1 线性表的基本操作 一、需求分析 目的: 掌握线性表运算与存储概念,并对线性表进行基本操作。 1.初始化线性表; 2.向链表中特定位置插入数据; 3.删除链表中特定的数据; 4.查找链表中的容; 5.销毁单链表释放空间; 二、概要设计 ●基础题 主要函数: 初始化线性表InitList(List* L,int ms) 向顺序表指定位置插入元素InsertList(List* L,int item,int rc)删除指定元素值的顺序表记录DeleteList1(List* L,int item) 删除指定位置的顺序表记录 DeleteList2(List* L,int rc) 查找顺序表中的元素 FindList(List L,int item) 输出顺序表元素OutputList(List L) 实验步骤: 1,初始化顺序表 2,调用插入函数 3,在顺序表中查找指定的元素 4,在顺序表中删除指定的元素 5,在顺序表中删除指定位置的元素 6,遍历并输出顺序表 ●提高题

要求以较高的效率实现删除线性表中元素值在x到y(x和y自定义)之间的所有元素 方法: 按顺序取出元素并与x、y比较,若小于x且大于y,则存进新表中。 编程实现将两个有序的线性表进行合并,要求同样的数据元素只出现一次。 方法: 分别按顺序取出L1,L2的元素并进行比较,若相等则将L1元素放进L中,否则将L 1,L2元素按顺序放进L。 本程序主要包含7个函数 主函数main() 初始化线性表InitList(List* L,int ms) 向顺序表指定位置插入元素InsertList(List* L,int item,int rc)删除指定元素值的顺序表记录DeleteList1(List* L,int item) 删除指定位置的顺序表记录 DeleteList2(List* L,int rc) 查找顺序表中的元素 FindList(List L,int item) 输出顺序表元素OutputList(List L) 提高题的程序 void Combine(List* L1,List* L2,List* L) void DeleteList3(List* L,int x,int y) 二、详细设计 初始化线性表InitList(List* L,int ms) void InitList(List* L,int ms) { L->list=(int*)malloc(LIST_INIT_SIZE*sizeof(int)); L->size=0; L->MAXSIZE=LIST_INIT_SIZE;

数据结构 单链表详解

数据结构的概念: 数据的逻辑结构+ 数据的存储结构+ 数据的操作; 数据的数值:=====》数据===》数值型数据整形浮点数ASCII 非数值型数据图片声音视频字符 =====》数据元素=====》基本项组成(字段,域,属性)的记录。 数据的结构: 逻辑结构 ----》线性结构(线性表,栈,队列) ----》顺序结构 ----》链式结构 ----》非线性结构(树,二叉树,图) ----》顺序结构 ----》链式结构 存储结构 -----》顺序存储 -----》链式存储 -----》索引存储 -----》哈希存储==散列存储 数据的操作: 增 删 改 查 DS ====》数据结构===》DS = (D,R); 数据结构中算法: 1、定义:有穷规则的有序集合。 2、特性: 有穷性 确定性

输入 输出 3、算法效率的衡量 时间复杂度计算===》算法中可执行依据的频度之和,记为:T(n)。 是时间的一种估计值不是准确值。 计算结果的分析:1 将最终结果的多项式中常数项去掉 2 只保留所有多项式中最高阶的项 3 最后的最高阶项要去掉其常数项 时间复杂度的量级关系: 常量阶====》对数阶===》线性阶===》线性对数阶====》平方阶===》立方阶===》指数阶 以上关系可以根据曲线图来判断算法对时间复杂度的要求 空间复杂度计算====》算法执行过程中所占用的存储空间的量级,记为:D(n)。 计算方法是在运行过程中申请的动态内存的量级计算。 ///////////////////////////////////////////////////////////////////////////////////////////////// 线性表 顺序存储====》顺序表(数组) 链式存储====》单链表 特征:对于非空表,a0是表头没有前驱。 an-1 是表尾没有后继 ai的每个元素都有一个直接前驱和直接后继 基本操作:创建表=====》增加元素====》删除元素====》改变元素值====》查询元素 1、顺序表的操作 1.1 创建顺序表=====》定义个指定类型的数组====》int a[100] ={0};

c数据结构单链表的建立与基本应用

#include"stdio.h" #include"stdlib.h" typedef struct node { int data; struct node *next; }Lnode,*Linklist; input(Lnode *p,int n)//实现用键盘顺序输入链表数据{ Lnode *s;int i,d; printf("请输入数据:"); for(i=1;i<=n;i++) { if(i==1) { scanf("%d",&d); p->data=d; continue; } if(n==1)break; scanf("%d",&d);

s=(Linklist)malloc(sizeof(Lnode)); s->data=d; p->next=s; s->next=NULL; p=s;//使当前指针指向链表尾部节点 } } output(Lnode *p,int n)//实现输出当前链表所有数据 { int i=1; printf("当前链表的值为:"); while(p->next!=NULL) { printf("%d ",p->data); p=p->next; i++; } if(i==n)//当是最后一个节点时,其next已经是空,所以最后一个节点数据无法用while循环写出,所以另用了一个计数器i printf("%d",p->data); }

insert(Lnode *p,int i,int e)//实现在第i个元素之后插入新元素{ int j=0;Lnode *s; while(p&&jnext;++j;}if(!p||j>i-1)return 0; s=(Linklist)malloc(sizeof(Lnode)); s->data=e;s->next=p->next;p->next=s; return 1; } delet(Lnode *p,int i)//实现删除链表中第i+1个元素 { int j=0;Lnode *q; while(p->next&&jnext;++j; } if(!(p->next)||j>i-1)return 0; q=p->next;p->next=q->next; free(q); return 1; } search(Lnode *p,int e,int n) {

201560140140--袁若飞--实验1:线性表的基本操作及其应用

数据结构 实验1:线性表的基本操作及其应用 班级:RB软工移151 学号:201560140140 姓名:袁若飞

实验一线性表 一、实验目的 1、帮助读者复习C++语言程序设计中的知识。 2、熟悉线性表的逻辑结构。 3、熟悉线性表的基本运算在两种存储结构上的实现,其中以熟悉链表的操作为侧重点。 二、实验内容 本次实验提供4个题目,每个题目都标有难度系数,*越多难度越大,题目一、二是必做题。题目三、题目四选作。 三、实验准备知识 1、请简述线性表的基本特性和线性表的几种基本操作的机制 ①答:线性表的基本特性是:对线性表中某个元素ai来说,称其前面的元素ai-1为ai的直接前驱,称其后前面的元素ai+1为ai的直接后继。显然,线性表中每个元素最多有一个直接前驱和一个直接后继。 ②答:线性表的几种基本操作的机制有六个: (1)初始化线性表initial_List(L)——建立线性表的初始结构,即建空表。这也是各种结构都可能要用的运算。 (2)求表长度List_length(L)——即求表中的元素个数。 (3)按序号取元素get_element(L,i)——取出表中序号为i的元素。(4)按值查询List_locate(L,x)——取出指定值为x的元素,若存在该元素,则返回其地址;否则,返回一个能指示其不存在的地址值或标记。 (5)插入元素List_insert(L,i,x)——在表L的第i个位置上插入值为x的元素。显然,若表中的元素个数为n,则插入序号i应满足1<=i<=n+1。(6)删除元素List_delete(L,i)——删除表L中序号为i的元素,显然,待删除元素的序号应满足1<=i<=n。 2、掌握线性表的逻辑结构。 3、掌握线性表的链式存储结构。 4、熟练掌握线性表的插入、删除等操作。

数据结构课程设计单链表

目录 1 选题背景 (2) 2 方案与论证 (3) 2.1 链表的概念和作用 (3) 2.3 算法的设计思想 (4) 2.4 相关图例 (5) 2.4.1 单链表的结点结构 (5) 2.4.2 算法流程图 (5) 3 实验结果 (6) 3.1 链表的建立 (6) 3.2 单链表的插入 (6) 3.3 单链表的输出 (7) 3.4 查找元素 (7) 3.5 单链表的删除 (8) 3.6 显示链表中的元素个数(计数) (9) 4 结果分析 (10) 4.1 单链表的结构 (10) 4.2 单链表的操作特点 (10) 4.2.1 顺链操作技术 (10) 4.2.2 指针保留技术 (10) 4.3 链表处理中的相关技术 (10) 5 设计体会及今后的改进意见 (11) 参考文献 (12) 附录代码: (13)

1 选题背景 陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代----信息时代,形成一个新产业----信息产业,产生一个新科学----计算机科学与技术,开创一种新的科研方法----计算方法,开辟一种新文化----计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。 数据结构和算法是计算机求解问题过程的两大基石。著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”。计算机科学就是“一种关于信息结构转换的科学”。信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。

2 方案与论证 2.1 链表的概念和作用 链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。 以“结点的序列”表示线性表称作线性链表(单链表) 单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。 因此,查找第 i 个数据元素的基本操作为:移动指针,比较 j 和 i 单链表 1、链接存储方法 链接方式存储的线性表简称为链表(Linked List)。 链表的具体存储表示为: ① 用一组任意的存储单元来存放线性表的结点(这组存储单元既可以是连续的,也可以是不连续的) ② 链表中结点的逻辑次序和物理次序不一定相同。为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还必须存储指示其后继结点的地址(或位置)信息(称为指针(pointer)或链(link)) 注意: 链式存储是最常用的存储方式之一,它不仅可用来表示线性表,而且可用来表示各种非线性的数据结构。 2、链表的结点结构 ┌───┬───┐ │data │next │ └───┴───┘ data域--存放结点值的数据域 next域--存放结点的直接后继的地址(位置)的指针域(链域) 注意: ①链表通过每个结点的链域将线性表的n个结点按其逻辑顺序链接在一起的。 ②每个结点只有一个链域的链表称为单链表(Single Linked List)。

单链表的建立及其基本操作的实现(完整程序)

#include "stdio.h"/*单链表方式的实现*/ #include "malloc.h" typedef char ElemType ; typedef struct LNode/*定义链表结点类型*/ { ElemType data ; struct LNode *next; }LNode,*LinkList;/*注意与前面定义方式的异同*/ /*建立链表,输入元素,头插法建立带头结点的单链表(逆序),输入0结束*/ LinkList CreateList_L(LinkList head) { ElemType temp; LinkList p; printf("请输入结点值(输入0结束)"); fflush(stdin); scanf("%c",&temp); while(temp!='0') { if(('A'<=temp&&temp<='Z')||('a'<=temp&&temp<='z')) { p=(LinkList)malloc(sizeof(LNode));/*生成新的结点*/ p->data=temp; p->next=head->next; head->next=p;/*在链表头部插入结点,即头插法*/ } printf("请输入结点值(输入0结束):"); fflush(stdin); scanf("%c",&temp); } return head; } /*顺序输出链表的内容*/ void ListPint_L(LinkList head) { LinkList p; int i=0; p=head->next; while(p!=NULL) { i++; printf("单链表第%d个元素是:",i);

实验一 线性表的基本操作

实验一线性表的基本操作 一、实验目的 1. 熟悉C/C++语言上机环境; 2. 掌握线性表的基本操作:查找、插入、删除等运算在顺序存储、链式存储结构上的运算。 二、实验环境 1. 装有Visual C++6.0的计算机。 2. 本次实验共计2学时。 三、实验内容 1. 建立顺序表,基本操作包括:初始化、建立顺序表、输出顺序表、判断是否为空、取表中第i个元素、查找、插入和删除。并在主函数中完成对各种函数的测试。 2. 设有两个非递增有序的线性表A和B,均已顺序表作为存储结构。编写算法实现将A表和B表合并成一个非递增有序排列的线性表(可将线性表B插入线性表A中,或重新创建线性表C)。 3. 建立单链表,基本操作包括:初始化、判断是否为空、取表中第i个元素、查找、插入和删除。并在主函数中完成对各种函数的测试。 四、源程序 #include #include #include #define MaxSize 50 typedef char ElemType; //-------存储结构---------- typedef struct { ElemType elem[MaxSize]; //存放顺序表中的元素 int length; //存放顺序表的长度 } SqList; //-------初始化线性表---------- void InitList(SqList *&L) //初始化线性表,构造一个空的线性表,并将长度设置为0 { L=(SqList *)malloc(sizeof(SqList)); L->length=0;

数据结构单链表输入输出(c++)

#include template class link { public: T date; link *next; link(const T info, link *nextvalue=NULL) { date=info; next=nextvalue; } link(link *nextvalue) { next=nextvalue; } }; templateclass inklist{ private: link *head,*tail; link *setpos(const int p); public: inklist(); ~inklist(); bool append(const T value); bool insert(const int p,const T value); bool remove(const int p); void print(); }; template inklist::inklist() { head=tail=new link(NULL); } template inklist::~inklist() { link *tmp; while(head!=NULL) { tmp=head; head=head->next; delete tmp; }

} template link *inklist::setpos(int i) { int count=0; if(i==-1) return head; link *p=new link(head->next); while( p!=NULL && countnext; count++; } return p; } template bool inklist::insert(const int i,const T value) { link *p,*q; if((p=setpos(i-1))==NULL){ cout<<"非法插入点"<(value,p->next); p->next=q; if(p==tail) tail=q; return true;} template bool inklist::remove(const int i) { link *p,*q; if((p=setpos(i-1))==NULL||p==tail) { cout<<"非法删除点"; return false; } q=p->next; if(q==tail) { tail=p; p->next=NULL; delete q; }

线性表的基本操作实验报告

实验一:线性表的基本操作 【实验目的】 学习掌握线性表的顺序存储结构、链式存储结构的设计与操作。对顺序表建立、插入、删除的基本操作,对单链表建立、插入、删除的基本操作算法。 【实验内容】 1.顺序表的实践 1) 建立4个元素的顺序表s=sqlist[]={1,2,3,4,5},实现顺序表建立 的基本操作。 2) 在sqlist []={1,2,3,4,5}的元素4和5之间插入一个元素9,实现 顺序表插入的基本操作。 3) 在sqlist []={1,2,3,4,9,5}中删除指定位置(i=5)上的元素9, 实现顺序表的删除的基本操作。 2.单链表的实践 3.1) 建立一个包括头结点和4个结点的(5,4,2,1)的单链表,实现单链 表建立的基本操作。 2) 将该单链表的所有元素显示出来。 3) 在已建好的单链表中的指定位置(i=3)插入一个结点3,实现单链表插 入的基本操作。 4) 在一个包括头结点和5个结点的(5,4,3,2,1)的单链表的指定位置 (如i=2)删除一个结点,实现单链表删除的基本操作。 5) 实现单链表的求表长操作。 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了刚创

建的工程之中。 4.写好代码 5.编译->链接->调试 1、#include "stdio.h" #include "malloc.h" #define OK 1 #define OVERFLOW -2 #define ERROR 0 #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef int ElemType; typedef int Status; typedef struct { ElemType *elem; int length; int listsize; } SqList; Status InitList( SqList &L ) { int i,n; L.elem = (ElemType*) malloc (LIST_INIT_SIZE*sizeof (ElemType)); if (!L.elem) return(OVERFLOW); printf("输入元素的个数:"); scanf("%d",&n); printf("输入各元素的值:"); for(i=0;i

数据结构-单链表实验报告

单链表实验报告 一、实验目的 1、帮助读者复习C++语言程序设计中的知识。 2、熟悉线性表的逻辑结构。 3、熟悉线性表的基本运算在两种存储结构上的实现,其中以熟悉链表的操作为侧重点。 二、实验内容 [问题描述] 实现带头结点的单链表的建立、求长度,取元素、修改元素、插入、删除等单链表的基本操作。 [基本要求] (1)依次从键盘读入数据,建立带头结点的单链表; (2)输出单链表中的数据元素 (3)求单链表的长度; (4)根据指定条件能够取元素和修改元素; (5)实现在指定位置插入和删除元素的功能。 三、算法设计 (1)建立带表头结点的单链表;首先输入结束标志,然后建立循环逐个输入数据,直到输入结束标志。 (2)输出单链表中所有结点的数据域值;首先获得表头结点地址,然后建立循环逐个输出数据,直到地址为空。 (3)输入x,y在第一个数据域值为x的结点之后插入结点y,若无结点x,则在表尾插入结点y;建立两个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,建立循环扫描链表。当当前结点指针域不为空且数据域等于x的时候,申请结点并给此结点数据域赋值为y,然后插入当前结点后面,退出函数;当当前结点指针域为空的时候,申请结点并给此结点数据域赋值为y,插入当前结点后面,退出函数。 (4)输入k,删除单链表中所有的结点k,并输出被删除结点的个数。建立三个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,最后一个备用;建立整形变量l=0;建立循环扫描链表。当当前结点指针域为空的时候,如果当前结点数据域等于k,删除此结点,l++,跳出循环,结束操作;如果当前结点数据域不等于k,跳出循环,结束操作。当当前结点指针域不为空的时候,如果当前结点数据域等于k,删除此结点,l++,继续循环操作;如果当前结点数据域不等于k,指针向后继续扫描。循环结束后函数返回变量l的值,l便是删除的结点的个数。

单链表的基本操作

上机实验报告 学院:计算机与信息技术学院 专业:计算机科学与技术(师范)课程名称:数据结构 实验题目:单链表建立及操作 班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号

一、实验目的: (1)动态地建立单链表; (2)掌握线性表的基本操作:求长度、插入、删除、查找在链式存储结构上的实现; (3)熟悉单链表的应用,明确单链表和顺序表的不同。 二、实验环境: Windows 8.1 Microsoft Visual c++ 6.0 三、实验内容及要求: 建立单链表,实现如下功能: 1、建立单链表并输出(头插法建立单链表); 2、求表长; 3、按位置查找 4、按值查找结点; 5、后插结点; 6、前插结点 7、删除结点; 四、概要设计: 1、通过循环,由键盘输入一串数据。创建并初始化一个单链表。 2、编写实现相关功能函数,完成子函数模块。 3、调用子函数,实现菜单调用功能,完成顺序表的相关操作。

五、代码: #include #include typedef char datatype; typedef struct node { datatype data; struct node *next; }linklist; linklist *head,*p; //头插法建立单链表 linklist *Creatlistf() { char ch; linklist *head,*s; head=NULL; ch=getchar(); printf("请输入顺序表元素(数据以$结束):\n"); while(ch!='$') { s=(linklist *)malloc(sizeof(linklist)); s->data=ch; s->next=head; head=s; ch=getchar(); } return head; } //求单链表的长度 void get_length(struct node *head) { struct node *p=head->next; int length=0;

实验一 线性表基本操作的编程实现

实验一线性表基本操作的编程实现 【实验目的】 线性表基本操作的编程实现 要求: 线性表基本操作的编程实现(2学时,验证型),掌握线性表的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找、逆序、排序等操作,存储结构可以在顺序结构或链表结构中任选,可以完成部分主要功能,也可以用菜单进行管理完成大部分功能。还鼓励学生利用基本操作进行一些更实际的应用型程序设计。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 把线性表的顺序存储和链表存储的数据插入、删除运算其中某项进行程序实现。建议实现键盘输入数据以实现程序的通用性。为了体现功能的正常性,至少要编制遍历数据的函数。 【注意事项】 1.开发语言:使用C。 2.可以自己增加其他功能。 【思考问题】 1.线性表的顺序存储和链表存储的差异?优缺点分析? 2.那些操作引发了数据的移动? 3.算法的时间效率是如何体现的? 4.链表的指针是如何后移的?如何加强程序的健壮性? 【参考代码】(以下内容,学生任意选择一个完成即可) (一)利用顺序表完成一个班级学生课程成绩的简单管理 1、预定义以及顺序表结构类型的定义 (1) #include #include #define ListSize 100 //根据需要自己设定一个班级能够容纳的最大学生数 (2) typedef struct stu { int num; //学生的学号 char name[10]; //学生的姓名 float physics; //物理成绩 float math; //数学成绩 float english; //英语成绩 }STUDENT; //存放单个学生信息的结构体类型 typedef struct List { STUDENT stu[ListSize]; //存放学生的数组定义,静态分配空间

链表的基本操作(基于C)

#include #include struct Student { char cName[20]; int iNumber; struct Student* pNext; }; int iCount; struct Student* Create() { struct Student* pHead=NULL; struct Student* pEnd,*pNew; iCount=0; pEnd=pNew=(struct Student*)malloc(sizeof(struct Student)); printf("please first enter Name ,then Number\n"); scanf("%s",&pNew->cName); scanf("%d",&pNew->iNumber); while(pNew->iNumber!=0) { iCount++; if(iCount==1) { pNew->pNext=pHead; pEnd=pNew; pHead=pNew; } else { pNew->pNext=NULL; pEnd->pNext=pNew; pEnd=pNew; } pNew=(struct Student*)malloc(sizeof(struct Student)); scanf("%s",&pNew->cName); scanf("%d",&pNew->iNumber); } free(pNew); return pHead; }

void Print(struct Student* pHead) { struct Student *pTemp; int iIndex=1; printf("----the List has %d members:----\n",iCount); printf("\n"); pTemp=pHead; while(pTemp!=NULL) { printf("the NO%d member is:\n",iIndex); printf("the name is: %s\n",pTemp->cName); printf("the number is: %d\n",pTemp->iNumber); printf("\n"); pTemp=pTemp->pNext; iIndex++; } } struct Student* Insert(struct Student* pHead) { struct Student* pNew; printf("----Insert member at first----\n"); pNew=(struct Student*)malloc(sizeof(struct Student)); scanf("%s",&pNew->cName); scanf("%d",&pNew->iNumber); pNew->pNext=pHead; pHead=pNew; iCount++; return pHead; } void Delete(struct Student* pHead,int iIndex) { int i; struct Student* pTemp; struct Student* pPre; pTemp=pHead; pPre=pTemp; printf("----delete NO%d member----\n",iIndex); for(i=1;i

实验一 线性表基本操作

实验一线性表基本操作 (4课时) 一、实验目的 掌握线性表的顺序表和链表的基本操作:建立、插入、删除、查找、合并、打印等运算。 二、实验要求 1.格式正确,语句采用缩进格式; 2.设计子函数实现题目要求的功能; 3.编译、连接通过,熟练使用命令键; 4.运行结果正确,输入输出有提示,格式美观。 5.输入数据至少三组,分别代表不同的情况,以测试程序的正确性。 6.将运行结果截图,并粘在文档的相应位置。 三、实验环境 1.turboc2,win-tc,VC++ 四、实验内容和步骤 1.编程实现在顺序存储的有序表中插入一个元素。 2.编程实现把顺序表中从i个元素开始的k个元素删除。 3.编程序实现将单链表的数据逆置,即将原表的数据(a1,a2….an)变成(an,…..a2,a1)。4.约瑟夫环问题。 约瑟夫问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个整数作为报数上限值m,从第一个人开始顺时针自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有的人全部出列为止。试设计一个程序,求出出列顺序。 利用单向循环链表作为存储结构模拟此过程,按照出列顺序打印出各人的编号。 例如m的初值为20;n=7,7个人的密码依次是:3,1,7,2,4,8,4,出列的顺序为6,1,4,7,2,3,5。 五、根据实验过程填写下面内容 1.写出第1题的程序并写出运行结果和分析。 #include "stdio.h" #include "malloc.h" #define OK 1 #define ERROR 0 #define ElemType int #define MAXSIZE 100 typedef struct//顺序表申明 { ElemType elem[MAXSIZE]; int last; }SeqList;

单链表的基本操作 C语言课程设计

课程设计(论文) 题目名称单链表的基本操作 课程名称C语言程序课程设计 学生姓名 学号 系、专业信息工程系、网络工程专业 指导教师成娅辉 2013年6月6 日

目录 1 前言 (3) 2 需求分析 (3) 2.1 课程设计目的 (3) 2.2 课程设计任务 (3) 2.3 设计环境 (3) 2.4 开发语言 (3) 3 分析和设计 (3) 3.1 模块设计 (3) 3.2 系统流程图 (4) 3.3 主要模块的流程图 (6) 4 具体代码实现 (9) 5 课程设计总结 (12) 5.1 程序运行结果 (12) 5.2 课程设计体会 (12) 参考文献 (13) 致谢 (13)

1 前言 我们这学期学习了开关语句,循环语句、链表、函数体、指针等的应用,我们在完成课程设计任务时就主要用到这些知识点,本课题是单链表的简单操作,定义四个子函数分别用来创建链表、输出链表、插入数据以及删除数据,主函数中主要用到开关语句来进行选择调用哪个子函数,下面就是课程设计的主要内容。 2 需求分析 2.1 课程设计目的 学生在教师指导下运用所学课程的知识来研究、解决一些具有一定综合性问题的专业课题。通过课程设计(论文),提高学生综合运用所学知识来解决实际问题、使用文献资料、及进行科学实验或技术设计的初步能力,为毕业设计(论文)打基础。 2.2 课程设计任务 输入一组正整数,以-1标志结束,用函数实现:(1)将这些正整数作为链表结点的data域建立一个非递减有序的单链表,并输出该单链表;(2)往该链表中插入一个正整数,使其仍保持非递减有序,输出插入操作后的单链表;(3)删除链表中第i个结点,输出删除操作后的单链表,i从键盘输入。 2.3 设计环境 (1)WINDOWS 7系统 (2)Visual C++ 2.4 开发语言 C语言 3 分析和设计 3.1 模块设计 定义链表结点类型struct node表示结点中的信息,信息包括数据域data(用于存放结点中的有用数据)以及指针域next(用于存放下一个结点的地址),并将链表结点类型名改为NODE。如下所示:

相关文档
最新文档