LZW编码算法详解

LZW编码算法详解
LZW编码算法详解

LZW编码算法详解

LZW(Lempel-Ziv & Welch)编码又称字串表编码,是Welch将Lemple和Ziv所提出来的无损压缩技术改进后的压缩方法。GIF图像文件采用的是一种改良的LZW 压缩算法,通常称为GIF-LZW压缩算法。下面简要介绍GIF-LZW的编码与解码方程

解:例现有来源于二色系统的图像数据源(假设数据以字符串表示):aabbbaabb,试对其进行LZW编码及解码。

1)根据图像中使用的颜色数初始化一个字串表(如表1),字串表中的每个颜色对应一个索引。在初始字串表的LZW_CLEAR和LZW_EOI分别为字串表初始化标志和编码结束标志。设置字符串变量S1、S2并初始化为空。

2)输出LZW_CLEAR在字串表中的索引3H(见表2第一行)。

3)从图像数据流中第一个字符开始,读取一个字符a,将其赋给字符串变量S2。判断S1+S2=“a”在字符表中,则S1=S1+S2=“a”(见表2第二行)。

4)读取图像数据流中下一个字符a,将其赋给字符串变量S2。判断S1+S2=“aa”不在字符串表中,输出S1=“a”在字串表中的索引0H,并在字串表末尾为

S1+S2="aa"添加索引4H,且S1=S2=“a”(见表2第三行)。

5)读下一个字符b赋给S2。判断S1+S2=“ab”不在字符串表中,输出S1=“a”在字串表中的索引0H,并在字串表末尾为S1+S2=“ab”添加索引5H,且

S1=S2=“b”(见表2第四行)。

6)读下一个字符b赋给S2。S1+S2=“bb”不在字串表中,输出S1=“b”在字串表中的索引1H,并在字串表末尾为S1+S2=“bb”添加索引6H,且S1=S2=“b”(见表2第五行)。

7)读字符b赋给S2。S1+S2=“bb”在字串表中,则S1=S1+S2=“bb”(见表2第六行)。

8)读字符a赋给S2。S1+S2=“bba”不在字串表中,输出S1=“bb”在字串表中的索引6H,并在字串表末尾为S1+S2=“bba”添加索引7H,且S1=S2=“a”(见表2第七行)。

9)读字符a赋给S2。S1+S2=“aa”在字串表中,则S1=S1+S2=“aa”(见表2第八行)。

10)读字符b赋给S2。S1+S2=“aab”不在字串表中,输出S1=“aa”在字串表中的索引4H,并在字串表末尾为S1+S2=“aab”添加索引8H,且S1=S2=“b”(见表2第九行)。

11)读字符b赋给S2。S1+S2=“bb”,在字串表中,则S1=S1+S2=“b”(见表2第十行)。

12)输出S1中的字符串"b"在字串表中的索引1H(见表2第十一行)。

13)输出结束标志LZW_EOI的索引3H,编码完毕。

最后的编码结果为"30016463“。

下面对上述编码结果"30016463"进行解码。同样先初始化字符串表,结果如表1所示。

1)首先读取第一个编码Code=3H,由于它为LZW_CLEAR,无输出(见表3第一行)。

2)读入下一个编码Code=0H,由于字符串表中存在该索引,因此输出字符串表中0H对应的字符串"a",同时使OldCode=Code=0H(见表3第二行)。

3)读下一个编码Code=0H,字符串表中存在该索引,输出0H所对应的字符串"a",然后将OldCode=0H所对应的字符串"a"加上Code=0H所对应的字符串的第一个字符"a",即"aa"添加到字串表中,其索引为4H,同时使OldCode=Code=0H (见表3第三行)。

4)读下一个编码Code=1H,字串表中存在该索引,输出1H所对应的字符串"b",然后将OldCode=0H所对应的字符串"a"加上Code=1H所对应的字符串的第一个字符"b",即"ab"添加到字串表中,其索引为5H,同时使OldCode=Code=1H (见表3第四行)。

5)读入下一个编码Code=6H,由于字串表中不存在该索引,因此输出OldCode=1H所对应的字符串"b"加上OldCode的第一个字符"b“,即"bb",同时将"bb"添加到字符串表中,其索引为6H,同时使OldCode=Code=6H(见表3第五行)。

6)读下一个编码Code=4H,字串表中存在该索引,输出4H所对应的字符串"aa",然后将OldCode=6H所对应的字符串"bb"加上Code=4H所对应的字符串的第一个字符"a",即"bba"添加到字串表中,其索引为7H,同时使OldCode=Code=4H (见表3第六行)。

7)读下一个编码Code=6H,字串表中存在该索引,输出6H所对应的字符串"bb",然后将OldCode=4H所对应的字符串"aa"加上Code=6H所对应的字符串的第一个字符"b",即"aab"添加到字串表中,其索引为8H,同时使OldCode=Code=6H (见表3第七行)。

8)读下一个编码Code=3H,它等于LZW_EOI,数据解码完毕(见表3第八行)。

最后的解码结果为aabbbaabb。

由此可见,LZW编码算法在编码与解码过程中所建立的字符串表是一样的,都是动态生成的,因此在压缩文件中不必保存字符串表。

1.LZW的全称是什么?

Lempel-Ziv-Welch (LZW).

2. LZW的简介和压缩原理是什么?

LZW压缩算法是一种新颖的压缩方法,由Lemple-Ziv-Welch 三人共同创造,用他们的名字命名。它采用了一种先进的串表压缩,将每个第一次出现的串放在一个串表中,用一个数字来表示串,压缩文件只存贮数字,则不存贮串,从而使图象文件的压缩效率得到较大的提高。奇妙的是,不管是在压缩还是在解压缩的过程中都能正确的建立这个串表,压缩或解压缩完成后,这个串表又被丢弃。

LZW算法中,首先建立一个字符串表,把每一个第一次出现的字符串放入串表中,并用一个数字来表示,这个数字与此字符串在串表中的位置有关,并将这个数字存入压缩文件中,如果这个字符串再次出现时,即可用表示它的数字来代替,并将这个数字存入文件中。压缩完成后将串表丢弃。如"print" 字符串,如果在压缩时用266表示,只要再次出现,均用266表示,并将"print"字符串存入串表中,在图象解码时遇到数字266,即可从串表中查出266所代表的字符串"print",在解压缩时,串表可以根据压缩数据重新生成。

3.在详细介绍算法之前,先列出一些与该算法相关的概念和词汇

1)'Character':字符,一种基础数据元素,在普通文本文件中,它占用1个单独的byte,而在图像中,它却是一种代表给定像素颜色的索引值。

2)'CharStream':数据文件中的字符流。

3)'Prefix':前缀。如这个单词的含义一样,代表着在一个字符最直接的前一个字符。一个前缀字符长度可以为0,一个prefix和一个character可以组成一个字符串(string),

4)'Suffix':后缀,是一个字符,一个字符串可以由(A,B)来组成,A是前缀,B是后缀,当A 长度为0的时候,代表Root,根

5)'Code:码,用于代表一个字符串的位置编码

6)'Entry':一个Code和它所代表的字符串(string)

4.压缩算法的简单示例,不是完全实现LZW算法,只是从最直观的角度看lzw算法的思想

对原始数据ABCCAABCDDAACCDB进行LZW压缩

原始数据中,只包括4个字符(Character),A,B,C,D,四个字符可以用一个2bit的数表示,0-A,1-B,2-C,3-D,从最直观的角度看,原始字符串存在重复字符:ABCCAABCDDAACCDB,用4代表AB,5代表CC,上面的字符串可以替代表示为:45A4CDDAA5DB,这样是不是就比原数据短了一些呢!

5.LZW算法的适用范围

为了区别代表串的值(Code)和原来的单个的数据值(String),需要使它们的数值域不重合,上面用0-3来代表A-D,那么AB就必须用大于3的数值来代替,再举另外一个例子,原来的数值范围可以用8bit来表示,那么就认为原始的数的范围是0~255,压缩程序生成的标号的范围就不能为0~255(如果是0-255,就重复了)。只能从256开始,但是这样一来就超过了8位的表示范围了,所以必须要扩展数据的位数,至少扩展一位,但是这样不是增加了1个字符占用的空间了么?但是却可以用一个字符代表几个字符,比如原来255是8bit,但是现在用256来表示254,255两个数,还是划得来的。从这个原理可以看出LZW 算法的适用范围是原始数据串最好是有大量的子串多次重复出现,重复的越多,压缩效果越好。反之则越差,可能真的不减反增了。

6.LZW算法中特殊标记

随着新的串(string)不断被发现,标号也会不断地增长,如果原数据过大,生成的标号集(string table)会越来越大,这时候操作这个集合就会产生效率问题。如何避免这个问题呢?Gif在采用lzw算法的做法是当标号集足够大的时候,就不能增大了,干脆从头开始再来,在这个位置要插入一个标号,就是清除标志CLEAR,表示从这里我重新开始构造字典,以前的所有标记作废,开始使用新的标记。

这时候又有一个问题出现,足够大是多大?这个标号集的大小为比较合适呢?理论上是标号集大小越大,则压缩比率就越高,但开销也越高。一般根据处理速度和内存空间连个因素来选定。GIF规范规定的是12位,超过12位的表达范围就推倒重来,并且GIF为了提高压缩率,采用的是变长的字长。比如说原始数据是8位,那么一开始,先加上一位再说,开始的字长就成了9位,然后开始加标号,当标号加到512时,也就是超过9为所能表达的最大数据时,也就意味着后面的标号要用10位字长才能表示了,那么从这里开始,后面的字长就是10位了。依此类推,到了2^12也就是4096时,在这里插一个清除标志,从后面开始,从9位再来。

GIF规定的清除标志CLEAR的数值是原始数据字长表示的最大值加1,如果原始数据字长是8,那么清除标志就是256,如果原始数据字长为4那么就是16。另外GIF还规定了一个结束标志END,它的值是清除标志CLEAR再加1。由于GIF规定的位数有1位(单色图),4位(16色)和8位(256色),而1位的情况下如果只扩展1位,只能表示4种状态,那么加上一个清除标志和结束标志就用完了,所以1位的情况下就必须扩充到3位。其它两种情况初始的字长就为5位和9位。

7、用lzw算法压缩原始数据的示例分析

输入流,也就是原始的数据

为:255,24,54,255,24,255,255,24,5,123,45,255,24,5,24,54..................

这个正好可以看到是gif文件中像素数组的一部分,如何对它进行压缩

因为原始数据可以用8bit来表示,故清除标志Clear=255+1 =256,结束标志为

End=256+1=257,目前标号集为

0 1 2 3 .................................................................................255 CLEAR END

第一步,读取第一个字符为255,在标记表里面查找,255已经存在,我们已经认识255了,不做处理

第二步,取第二个字符,此时前缀为A,形成当前的Entry为(255,24),在标记集合不存在,我们并不认识255,24好,这次你小子来了,我就记住你,把它在标记集合中标记为258,

然后输出前缀A,保留后缀24,并作为下一次的前缀(后缀变前缀)

第三步,取第三个字符为54,当前Entry(24,54),不认识,记录(24,54)为标号259,并输出24,后缀变前缀

第四部:取第四个字符255,Entry=(54,255),不认识,记录(54,255)为标号260,输出54,后缀变前缀

第五步取第5个字符24,entry=(255,24),啊,认识你,这不是老258么,于是把字符串规约为258,并作为前缀

第六步取第六个字符255,entry=(258,255),不认识,记录(258,255)为261,输出258,后缀变前缀

.......

一直处理到最后一个字符,

用一个表记录处理过程

CLEAR=256,END=257

第几步前缀后缀Entry 认识(Y/N) 输出标号

1 255 (,255)

2 255 24 (255,24) N 255 258

3 2

4 54 (24,54) N 24 259

4 54 25

5 (54,255) N 54 260

5 255 24 (255,24) Y

6 258 255 (258,255) N 258 261

7 255 255 (255,255) N 255 262

.....

上面这个示例有些不能完整体现,另外一个例子是

原输入数据为:A B A B A B A B B B A B A B A A C D A C D A D C A B A A A B A B .....

采用LZW算法对其进行压缩,压缩过程用一个表来表述为:

注意原数据中只包含4个character,A,B,C,D

用两bit即可表述,根据lzw算法,首先扩展一位变为3为,Clear=2的2次方+1=4; End=4+1=5;

初始标号集因该为

0 1 2 3 4 5

A B C D Clear End

而压缩过程为:

第几步前缀后缀Entry 认识(Y/N) 输出标号

1 A (,A)

2 A B (A,B) N A 6

3 B A (B,A) N B 7

4 A B (A,B) Y

5 6 A (6,A) N 6 8

6 A B (A,B) Y

7 6 A (6,A) Y

8 8 B (8,B) N 8 9

9 B B (B,B) N B 10

10 B B (B,B) Y

11 10 A (10,A) N 10 11

12 A B (A,B) Y

.....

当进行到第12步的时候,标号集应该为

0 1 2 3 4 5 6 7 8 9 10 11

A B C D Clear End AB BA 6A 8B BB 10A LZW算法

LZW就是通过建立一个字符串表,用较短的代码来表示较长的字符串来实现

压缩. LZW压缩算法是Unisys的专利,有效期到2003年,所以对它的使用是有限制的

字符串和编码的对应关系是在压缩过程中动态生成的,并且隐含在压缩数据中,解压的时候根据表来进行恢复,算是一种无损压缩.

根据Lempel-Ziv-Welch Encoding ,简称LZW 的压缩算法,用任何一中语言来实现它.

LZW压缩算法的基本概念:LZW压缩有三个重要的对象:数据流(CharStream)、编码流(CodeStream)和编译表(String Table)。在编码时,数据流是输入对象(文本文件的据序列),编码流就是输出对象(经过压缩运算的编码数据);在解码时,编码流则是输入对象,数据流是输出对象;而编译表是在编码和解码时都须要用借助的对象。字符(Character):最基础的数据元素,在文本文件中就是一个字节,在光栅数据中就是一个像素的颜色在指定的颜色列表中的索引值;字符串(String):由几个连续的字符组成;前缀(Prefix):也是一个字符串,不过通常用在另一个字符的前面,而且它的长度可以为0;根(Root):一个长度的字符串;编码(Code):一个数字,按照固定长度(编码长度)从编码流中取出,编译表的映射值;图案:一个字符串,按不定长度从数据流中读出,映射到编译表条目.

LZW压缩算法的基本原理:提取原始文本文件数据中的不同字符,基于这些字符创建一个编译表,然后用编译表中的字符的索引来替代原始文本文件数据中的相应字符,减少原始数据大小。看起来和调色板图象的实现原理差不多,但是应该注意到的是,我们这里的编译表不是事先创建好的,而是根据原始文件数据动态创建的,解码时还要从已编码的数据中还原出原来的编译表.

LZW算法

LZW算法基于转换串表(字典)T,将输入字符串映射成定长(通常为12位)的码字。在12位4096种可能的代码中,256个代表单字符,剩下3840给出现的字符串。

LZW字典中的字符串具有前缀性,即ωK∈T=>ω∈T。

LZW算法流程:

1)初始化:将所有的单字符串放入串表

2)读第一个输入字符给前缀串ω

3)Step: 读下一个输入字符K;

if 没有这样的K(输入已穷尽):

码字(ω) 输出;结束。

If ωK 已存在于串表中:

ω:=ωK;repeat Step;

else ωK不在于串表中:

码字(ω) 输出;

ωK加进串表;

ω:=K;repeat Step.

例子:ababcbababaaaaaaa

LZW编码:a,b,c,ab,ba,abc,cb,bab,baba,aa,aaa,aaaa

LZW压缩的特点

LZW码能有效利用字符出现频率冗余度进行压缩,且字典是自适应生成的,但通常不能有效地利用位置冗余度。

具体特点如下:

l)LZW压缩技术对于可预测性不大的数据具有较好的处理效果,常用于GIF格式的图像压缩,其平均压缩比在2)1以上,最高压缩比可达到3:1。

2)对于数据流中连续重复出现的字节和字串,LZW压缩技术具有很高的压缩比。

3)除了用于图像数据处理以外,LZW压缩技术还被用于文本程序等数据压缩领域。

4)LZW压缩技术有很多变体,例如常见的ARC、RKARC、PKZIP高效压缩程序。

5)对于任意宽度和像素位长度的图像,都具有稳定的压缩过程。压缩和解压缩速度较快。

6)对机器硬件条件要求不高,在Intel 80386的计算机上即可进行压缩和解压缩。

中衡算法分析与【设计明细】-实验二-哈夫曼编码

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:算法设计与分析开课实验室:年月日 一、上机目的及内容 1.上机内容 设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。 2.上机目的 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)证明哈夫曼树满足最优子结构性质; (2)设计贪心算法求解哈夫曼编码方案; (3)设计测试数据,写出程序文档。 数据结构与算法: typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 程序流程图:

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件

四、实验方法、步骤(或:程序代码或操作过程) 程序代码: #include #include #include typedef struct { unsigned int weight; unsigned int parent,LChild,RChild; } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0 && i!=(*s1)) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0 && i!=(*s1)) { if((*ht)[i].weight<(*ht)[min].weight)

LZW编码算法

班级 __ __ 学号__姓名 __ ___评分__________ 1.实验名称 LZW编码与解码算法 2.实验目的 2.1通过实验进一步掌握LZW编码的原理; 2.2 用C/C++等高级程序设计语言实现LZW编码。 3.实验内容步骤或记录(包括源程序或流程和说明等) 3.1 实验原理 (1)在压缩过程中动态形成一个字符列表(字典)。 (2)每当压缩扫描图像发现一个词典中没有的字符序列,就把该字符序列存到字典中,并用字典的地址(编码)作为这个字符序列的代码,替换原图像中的字符序列,下次再碰到相同的字符序列,就用字典的地址代替字符序列 3.2实验步骤 LZW编码算法的具体执行步骤如下: 步骤1:开始时的词典包含所有可能的根(Root),而当前前缀P是空的; 步骤2:当前字符(C) :=字符流中的下一个字符; 步骤3:判断缀-符串P+C是否在词典中 (1) 如果“是”:P := P+C // (用C扩展P) ; (2) 如果“否” ①把代表当前前缀P的码字输出到码字流;

②把缀-符串P+C添加到词典; ③令P := C //(现在的P仅包含一个字符C); 步骤4:判断码字流中是否还有码字要译 (1) 如果“是”,就返回到步骤2; (2) 如果“否” ①把代表当前前缀P的码字输出到码字流; ②结束。 3.3 源程序 #include #include using namespace std;

const int N=200; class LZW{ private: string Dic[200];//存放词典 int code[N];//存放编码过的码字 public: LZW(){//设置词典根 Dic[0]='a'; Dic[1]='b'; Dic[2]='c'; string *p=Dic;//定义指针指向词典中的字符} void Bianma(string cs[N]);//进行编码 int IsDic(string e);//判断是否在词典中 int codeDic(string f); void display(int g);//显示结果 }; void LZW::Bianma(string cs[N]){ string P,C,K; P=cs[0]; int l=0; for(int i=1;i

常用字符集编码详解:ASCII 、GB2312、GBK、GB18030、...

ASCII ASCII码是7位编码,编码范围是0x00-0x7F。ASCII字符集包括英文字母、阿拉伯数字和标点符号等字符。其中0x00-0x20和0x7F共33个控制字符。 只支持ASCII码的系统会忽略每个字节的最高位,只认为低7位是有效位。HZ字符编码就是早期为了在只支持7位ASCII系统中传输中文而设计的编码。早期很多邮件系统也只支持ASCII编码,为了传输中文邮件必须使用BASE64或者其他编码方式。 GB2312 GB2312是基于区位码设计的,区位码把编码表分为94个区,每个区对应94个位,每个字符的区号和位号组合起来就是该汉字的区位码。区位码一般用10进制数来表示,如1601就表示16区1位,对应的字符是“啊”。在区位码的区号和位号上分别加上0xA0就得到了GB2312编码。 区位码中01-09区是符号、数字区,16-87区是汉字区,10-15和88-94是未定义的空白区。它将收录的汉字分成两级:第一级是常用汉字计3755个,置于16-55区,按汉语拼音字母/笔形顺序排列;第二级汉字是次常用汉字计3008个,置于56-87区,按部首/笔画顺序排列。一级汉字是按照拼音排序的,这个就可以得到某个拼音在一级汉字区位中的范围,很多根据汉字可以得到拼音的程序就是根据这个原理编写的。 GB2312字符集中除常用简体汉字字符外还包括希腊字母、日文平假名及片假名字母、俄语西里尔字母等字符,未收录繁体中文汉字和一些生僻字。可以用繁体汉字测试某些系统是不是只支持GB2312编码。 GB2312的编码范围是0xA1A1-0x7E7E,去掉未定义的区域之后可以理解为实际编码范围是0xA1A1-0xF7FE。 EUC-CN可以理解为GB2312的别名,和GB2312完全相同。 区位码更应该认为是字符集的定义,定义了所收录的字符和字符位置,而GB2312及EUC-CN是实际计算机环境中支持这种字符集的编码。HZ和ISO- 2022-CN是对应区位码字符集的另外两种编码,都是用7位编码空间来支持汉字。区位码和GB2312编码的关系有点像Unicode和UTF-8。 GBK GBK编码是GB2312编码的超集,向下完全兼容GB2312,同时GBK收录了Unicode基本多文种平面中的所有CJK汉字。同GB2312一样,GBK也支持希腊字母、日文假名字母、俄语字母等字符,但不支持韩语中的表音字符(非汉字字符)。GBK还收录了GB2312不包含的汉字部首符号、竖排标点符号等字符。 GBK的整体编码范围是为0x8140-0xFEFE,不包括低字节是0×7F的组合。高字节范围是0×81-0xFE,低字节范围是0x40-7E和0x80-0xFE。

实验三.哈夫曼编码的贪心算法设计

实验四 哈夫曼编码的贪心算法设计(4学时) [实验目的] 1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法; 2. 编程实现哈夫曼编译码器; 3. 掌握贪心算法的一般设计方法。 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 核心源代码 #include #include #include typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 ∑=j i k k a

//选择两个parent为0,且weight最小的结点s1和s2 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++)

LZW编码算法详解

LZW编码算法详解 LZW(Lempel-Ziv & Welch)编码又称字串表编码,是Welch将Lemple和Ziv所提出来的无损压缩技术改进后的压缩方法。GIF图像文件采用的是一种改良的LZW 压缩算法,通常称为GIF-LZW压缩算法。下面简要介绍GIF-LZW的编码与解码方程 解:例现有来源于二色系统的图像数据源(假设数据以字符串表示):aabbbaabb,试对其进行LZW编码及解码。 1)根据图像中使用的颜色数初始化一个字串表(如表1),字串表中的每个颜色对应一个索引。在初始字串表的LZW_CLEAR和LZW_EOI分别为字串表初始化标志和编码结束标志。设置字符串变量S1、S2并初始化为空。 2)输出LZW_CLEAR在字串表中的索引3H(见表2第一行)。

3)从图像数据流中第一个字符开始,读取一个字符a,将其赋给字符串变量S2。判断S1+S2=“a”在字符表中,则S1=S1+S2=“a”(见表2第二行)。 4)读取图像数据流中下一个字符a,将其赋给字符串变量S2。判断S1+S2=“aa”不在字符串表中,输出S1=“a”在字串表中的索引0H,并在字串表末尾为 S1+S2="aa"添加索引4H,且S1=S2=“a”(见表2第三行)。 5)读下一个字符b赋给S2。判断S1+S2=“ab”不在字符串表中,输出S1=“a”在字串表中的索引0H,并在字串表末尾为S1+S2=“ab”添加索引5H,且 S1=S2=“b”(见表2第四行)。 6)读下一个字符b赋给S2。S1+S2=“bb”不在字串表中,输出S1=“b”在字串表中的索引1H,并在字串表末尾为S1+S2=“bb”添加索引6H,且S1=S2=“b”(见表2第五行)。 7)读字符b赋给S2。S1+S2=“bb”在字串表中,则S1=S1+S2=“bb”(见表2第六行)。 8)读字符a赋给S2。S1+S2=“bba”不在字串表中,输出S1=“bb”在字串表中的索引6H,并在字串表末尾为S1+S2=“bba”添加索引7H,且S1=S2=“a”(见表2第七行)。 9)读字符a赋给S2。S1+S2=“aa”在字串表中,则S1=S1+S2=“aa”(见表2第八行)。 10)读字符b赋给S2。S1+S2=“aab”不在字串表中,输出S1=“aa”在字串表中的索引4H,并在字串表末尾为S1+S2=“aab”添加索引8H,且S1=S2=“b”(见表2第九行)。 11)读字符b赋给S2。S1+S2=“bb”,在字串表中,则S1=S1+S2=“b”(见表2第十行)。 12)输出S1中的字符串"b"在字串表中的索引1H(见表2第十一行)。 13)输出结束标志LZW_EOI的索引3H,编码完毕。 最后的编码结果为"30016463“。

字符编码方式介绍及编码方式测试

第一部分编码方式介绍 一、编码: 美国标准信息交换标准码( , ) 在计算机内部,所有地信息最终都表示为一个二进制地字符串.每一个二进制位()有和两种状态.一个字节()共由八个二进制位来组成,共有种状态,从到. 阿拉伯数字、英文字母、标点符号等这些字符,怎么定义才能让计算机识别呢?因为计算机只识别二进制位和,所以以上这些字符就必须与二进制位(和)建立关系,才能让计算机识别. 年代初,计算机界制定了一套统一地字符编码,来表示字符与二进制位之间地关系.这种统一地字符编码就叫做编码.码一共规定了个字符地编码,比如空格是(二进制),大写地字母是(二进制).这个符号(包括个不能打印出来地控制符号),只占用了一个字节地后面位,最前面地位统一规定为. 在英语国家,个编码足以表达所有字符,但其它非英语国家,字符不是由英文字符组成,这样就需要增加编码以表达这些字符,对于超过个字符地编码被称为非编码.比如:在中国,我们用简体中文,字符编码方式为.个人收集整理勿做商业用途 二、编码: 看到上面地介绍后,我们了解了最早编码是码.它只用个二进制位来表示,由于那个时期生产地大多数计算机使用位大小地字节,因此用户不仅可以存放所有可能地字符,而且有整整一位空余下来.如果你技艺高超,可以将该位用做自己离奇地目地:中那个发暗地灯泡实际上设置这个高位,以指示一个单词中地最后一个字母,同时这也宣示了只能用于英语文本. 由于字节有多达位地空间,因此许多人在想:“呀!我们可以把之间地编码用做个人地应用目地.”问题在于,同时产生这种想法地人相当多,而且在之间地各个位置上应该存放什么这一问题上,真是仁者见仁智者见智.事实上,只要人们开始在美国以外地地方购买计算机,那么各种各样地不同字符集都会进入规划设计行列,并且各人都会根据自己地需要使用高位地个字符.如此一来,甚至在同语种地文档之间就不容易实现互换. 可被扩展,最优秀地扩展方案是,通常称之为.包括了足够地附加字符集来写基本地西欧语言. 最后,这个人参与地终于以标准地形式形成文件.在标准中,每个人都认同如何使用低端地个编码,这与相当一致.不过,根据所在国籍地不同,处理编码以上地字符有许多不同地方式.这些不同地系统称为代码页. 同时,甚至更为令人头疼地事情正在逐步上演,亚洲国家地字符表有成千上万个字符,这样地字符表是用位二进制无法表示地.该问题地解决通常有赖于称为(,双字节字符集)地繁杂字符系统. 不过,仍然需要指出一点,多数人还是姑且认为一个字节就是一个字符,以及一个字符就是个二进制位,并且只要确保不将字符串从一台计算机移植到另一台计算机,或者说一种以上地语言,那么这几乎总是可以凑合.当然,只要一进入,从一台计算机向另一台计算机移植字符串就成为家常便饭了,而各种复杂状况也随之呈现出来.令人欣慰地是,随即问世了.个人收集整理勿做商业用途 字符集(简称为),国际标准组织于年月成立工作组,针对各国文字、符号进行统一性编码.年美国跨国公司成立,并于年月与达成协议,采用同一编码字集.目前是采用位编码体系,其字符集内容与地()相同.于年月通过(),目前版本于公布,内容包含符号个,汉字个,韩文拼音个,造字区个,保留个,共计个.编码后地大小是一样地.例如一个英文字母"" 和一个汉字"好",编码后都是占用地空间大小是一样地,都是两个字节!个人收集整理勿做商业用途 可以用来表示所有语言地字符,而且是定长双字节(也有四字节地)编码,包括英文字

哈夫曼编码算法实现完整版

实验三树的应用 一.实验题目: 树的应用——哈夫曼编码 二.实验内容: 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。 三、程序源代码: #include #include #include #include typedef struct{ char data; int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * * HuffmanCode; void Select(HuffmanTree &HT,int n,int m) {HuffmanTree p=HT; int tmp; for(int j=n+1;j<=m;j++) {int tag1,tag2,s1,s2; tag1=tag2=32767; for(int x=1;x<=j-1;x++) { if(p[x].parent==0&&p[x].weights2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;} p[s1].parent=j;

lzw压缩算法的c语言实现

lzw压缩算法的c语言实现 1 程序由五个模块组成。 (1) lzw.h 定义了一些基本的数据结构,常量,还有变量的初始化等。 #ifndef __LZW_H__ #define __LZW_H__ //------------------------------------------------------------------------------ #include #include #include #include //------------------------------------------------------------------------------ #define LZW_BASE 0x102// The code base #define CODE_LEN 12 // Max code length #define TABLE_LEN 4099 // It must be prime number and bigger than 2^CODE_LEN=4096. // Such as 5051 is also ok. #define BUFFERSIZE 1024 //------------------------------------------------------------------------------ typedef struct { HANDLE h_sour; // Source file handle. HANDLE h_dest; // Destination file handle. HANDLE h_suffix; // Suffix table handle. HANDLE h_prefix; // Prefix table handle. HANDLE h_code; // Code table handle. LPWORD lp_prefix; // Prefix table head pointer. LPBYTE lp_suffix; // Suffix table head pointer. LPWORD lp_code; // Code table head pointer. WORD code; WORD prefix; BYTE suffix; BYTE cur_code_len; // Current code length.[ used in Dynamic-Code-Length mode ] }LZW_DATA,*PLZW_DATA;

哈夫曼编码步骤

哈夫曼编码步骤: 一、对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F= {T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算法,一般还要求以Ti的权值Wi的升序排列。) 二、在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。 三、从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。 四、重复二和三两步,直到集合F中只有一棵二叉树为止。 /*------------------------------------------------------------------------- * Name: 哈夫曼编码源代码。 * Date: 2011.04.16 * Author: Jeffrey Hill+Jezze(解码部分) * 在Win-TC 下测试通过 * 实现过程:着先通过HuffmanTree() 函数构造哈夫曼树,然后在主函数main()中 * 自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在 * 父结点左侧,则置码为0,若在右侧,则置码为1。最后输出生成的编码。*------------------------------------------------------------------------*/ #include #include #define MAXBIT 100 #define MAXVALUE 10000 #define MAXLEAF 30 #define MAXNODE MAXLEAF*2 -1 typedef struct { int bit[MAXBIT]; int start;} HCodeType; /* 编码结构体*/ typedef struct{ int weight; int parent; int lchild; int rchild; int value;} HNodeType; /* 结点结构体*/ /* 构造一颗哈夫曼树*/ void HuffmanTree (HNodeType HuffNode[MAXNODE], int n){ /* i、j:循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/ int i, j, m1, m2, x1, x2; /* 初始化存放哈夫曼树数组HuffNode[] 中的结点*/ for (i=0; i<2*n-1; i++)

LZW编码算法matlab实现

LZW编码算法,尝试使用matlab计算 %encoder LZW for matlab %yu 20170503 clc; clear; close all; %初始字典 dic = cell(512,1); for i = 1:256 dic{i} = {num2str(i)}; end %输入字符串a,按空格拆分成A,注意加1对应围1~256 a = input('input:','s'); a = deblank(a); A = regexp(a,'\s+','split'); L = length(A); for j=1:L A{j} = num2str(str2num(A{j})+1); end A_t = A{1};%可识别序列 B_t = 'test';%待验证词条 d = 256;%字典指针 b = 1;%输出指针 B = cell(L,1);%输出初始 output = ' ';%输出初始 j=1; for j = 2:L m=1; B_t =deblank([A_t,' ',A{j}]);%合成待验证词条 while(m <= d) if strcmp(dic{m},B_t) A_t = B_t; break else m=m+1; end end while(m == d+1) d = d+1;

dic{d} = B_t; q=1; for q=1:d if strcmp(dic{q},A_t) B{b} = num2str(q); b = b+1; end end A_t = A{j}; end end for q=1:d%处理最后一个序列输出 if strcmp(dic{q},A_t) B{b} = num2str(q); b = b+1; end end for n = 1:(b-1) B{n} =num2str(str2num(B{n})-1); output=deblank([output,' ',B{n}]); end output 运算结果 计算结果为39 39 126 126 256 258 260 259 257 126

哈夫曼树建立、哈夫曼编码算法的实现

#include /*2009.10.25白鹿原*/ #include /*哈夫曼树建立、哈夫曼编码算法的实现*/ #include typedef char* HuffmanCode;/*动态分配数组,存储哈夫曼编码*/ typedef struct { unsigned int weight ; /* 用来存放各个结点的权值*/ unsigned int parent, LChild,RChild ; /*指向双亲、孩子结点的指针*/ }HTNode, * HuffmanTree; /*动态分配数组,存储哈夫曼树*/ void select(HuffmanTree *ht,int n, int *s1, int *s2) { int i; int min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s1 = min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) {

if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s2 = min; } void CrtHuffmanTree(HuffmanTree *ht , int *w, int n) { /* w存放已知的n个权值,构造哈夫曼树ht */ int m,i; int s1,s2; m=2*n-1; *ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); /*0号单元未使用*/ for(i=1;i<=n;i++) {/*1-n号放叶子结点,初始化*/ (*ht)[i].weight = w[i]; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } for(i=n+1;i<=m;i++) { (*ht)[i].weight = 0; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } /*非叶子结点初始化*/ /* ------------初始化完毕!对应算法步骤1---------*/ for(i=n+1;i<=m;i++) /*创建非叶子结点,建哈夫曼树*/ { /*在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2返回*/ select(ht,i-1,&s1,&s2); (*ht)[s1].parent=i; (*ht)[s2].parent=i; (*ht)[i].LChild=s1; (*ht)[i].RChild=s2; (*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight; } }/*哈夫曼树建立完毕*/ void outputHuffman(HuffmanTree HT, int m) { if(m!=0) {

LZW编码编程实现(C++版)

LZW编码的编程和实现 一、实验目的 编写源程序,实现LZW的编码和解码 二、实验要求 1.编码输入若干字母(如abbababac),输出相应的编码 2.解码输入若干数字(如122473),输出相应的字母 三、编程思想 1.编码 根缀表已知 1 A 2 B 3 C 编码 分析字符串流,从词典中寻找最长匹配串,即字符串P在词典中,而字符串P+后一个字符C不在词典中 此时,输出P对应的码字,将P+C放入词典中。 如第一步: 输入A 此时,A在表中,而AB不在表中,则输出A对应的码字1,同时将AB写入表中,此时表为 1 A 2 B 3 C 4 AB 编码输出为1 (A已编码) 第二步,输入B,B在词典中,而BB不在词典中,则输出2,将BB写入表中,此时表为 1 A 2 B 3 C 4 AB 5 BB 编码输出为12 (AB已经编码) .... 2.解码 根缀表为 1 A 2 B 3 C 定义如下变量 StringP :前一步码字流 pW : StringP的第一个字符 StringC :当前的码字流 cW : StringC的第一个字符 第一步 输出StringC 并StringP = StringC 如: 1解码为A,则StringC = A

那么 输出A,并令St ringP = A --------------------------------------------------------------------------- 第二步 1.解码得到StringC,并输出StringC 2.将StringP + cW放入词典(如果当前码字不在词典中,则将StringP + cP放入词典中) 3.StringP = StringC 如: 第二步要解码为2,解码为B,则StringC=B,输出B (此时St ringP = A) 将StringP+cW放入表中,即将AB放入表中,此时表为 1 A 2 B 3 C 4 AB 四、实验情况及分析 编码解码 错误提示 附:源代码 #include #include #include

0023算法笔记——【贪心算法】哈夫曼编码问题

0023算法笔记——【贪心算法】哈夫曼编码问题 1、问题描述 哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。一个包含100,000个字符的文件,各字符出现频率不同,如下表所示。 有多种方式表示文件中的信息,若用0,1码表示字符的方法,即每个字符用唯一的一个0,1串表示。若采用定长编码表示,则需要3位表示一个字符,整个文件编码需要300,000位;若采用变长编码表示,给频率高的字符较短的编码;频率低的字符较长的编码,达到整体编码减少的目的,则整个文件编码需要(45×1+13×3+12×3+16×3+9×4+5×4)×1000=224,000位,由此可见,变长码比定长码方案好,总码长减小约25%。 前缀码:对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。编码的前缀性质可以使译码方法非常简单;例如001011101可以唯一的分解为0,0,101,1101,因而其译码为aabe。

译码过程需要方便的取出编码的前缀,因此需要表示前缀码的合适的数据结构。为此,可以用二叉树作为前缀码的数据结构:树叶表示给定字符;从树根到树叶的路径当作该字符的前缀码;代码中每一位的0或1分别作为指示某节点到左儿子或右儿子的“路标”。 从上图可以看出,表示最优前缀码的二叉树总是一棵完全二叉树,即树中任意节点都有2个儿子。图a表示定长编码方案不是最优的,其编码的二叉树不是一棵完全二叉树。在一般情况下,若C是编码字符集,表示其最优前缀码的二叉树中恰有|C|个叶子。每个叶子对应于字符集中的一个字符,该二叉树有|C|-1个内部节点。 给定编码字符集C及频率分布f,即C中任一字符c以频率f(c)在数据文件中出现。C的一个前缀码编码方案对应于一棵二叉树T。字符c在树T中的深度记为d T(c)。d T(c)也是字符c的前缀码长。则平均码长定义为:

哈夫曼编码_贪心算法

淮海工学院计算机工程学院实验报告书 课程名:《算法分析与设计》 题目:实验3 贪心算法 哈夫曼编码 班级:软件102班 学号:11003215 姓名:鹿迅

实验3 贪心算法 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 实验环境 Turbo C 或VC++ 实验学时 2学时,必做实验 数据结构与算法 struct huffman { double weight; //用来存放各个结点的权值 int lchild,rchild,parent; //指向双亲、孩子结点的指针 }; 核心源代码 #include #include using namespace std; struct huffman { double weight; int lchild,rchild,parent; }; static int i1=0,i2=0; int Select(huffman huff[],int i) { ∑=j i k k a

int min=11000; int min1; for(int k=0;k

lzw实验报告

多媒体实验 LZW编码算法 1.实验目的 1)通过实验进一步掌握LZW编码的原理; 2)用C/C++等高级程序设计语言实现LZW编码。 2.实验设备 硬件:装有32M以上内存MPC; 软件:Windows 9X/NT/XP/2000操作系统、 TC 或C++等高级语言环境。3.实验设计原理 LZW编码思想: (1)在压缩过程中动态形成一个字符列表(字典)。 (2)每当压缩扫描图像发现一个词典中没有的字符序列,就把该字符序列存到字典中,并用字典的地址(编码)作为这个字符序列的代码,替换原图像中的字符序列,下次再碰到相同的字符序列,就用字典的地址代替字符序列。 LZW编码算法的具体执行步骤如下: 步骤1:开始时的词典包含所有可能的根(Root),而当前前缀P是空的; 步骤2:当前字符(C):=字符流中的下一个字符; 步骤3:判断缀-符串P+C是否在词典中 (1)如果“是”:P:=P+C//(用C扩展P); (2)如果“否” ①把代表当前前缀P的码字输出到码字流; ②把缀-符串P+C添加到词典; ③令P:=C//(现在的P仅包含一个字符C); 步骤4:判断码字流中是否还有码字要译 (1)如果“是”,就返回到步骤2; (2)如果“否” ①把代表当前前缀P的码字输出到码字流; ②结束。

4.程序框图 5.程序设计代码#include #include using namespace std; const int N=200;

class LZW{ private: string Dic[200]; int code[N]; public: LZW(){ Dic[0]='a'; Dic[1]='b'; Dic[2]='c'; string *p=Dic; } void Bianma(string cs[N]); int IsDic(string e); int codeDic(string f); void display(int g); }; void LZW::Bianma(string cs[N]){ string P,C,K; P=cs[0]; int l=0; for(int i=1;i

数字图像实验 哈夫曼编码的方法和实现1234

实验八哈夫曼编码的方法和实现 一、实验目的 1.掌握哈夫曼编码的基本理论和算法流程; 2. 用VC++6.0编程实现图像的哈夫曼编码。 二、实验内容 1.画出哈夫曼编码的算法流程; 2.用VC++6.0编程实现哈夫曼编码。 三、实验步骤 (1)启动VC++6.0,打开Dip工程。 (2)在菜单栏→insert→resouce→dialog→new,在对话框模版的非控制区点击鼠标右键,在弹出的对话框中选properties,设置为ID:IDD_DLG_Huffman,C标题:哈夫曼编码表。 (3)在弹出的对话框中,添加如下的按钮等控件: (4)在ResourceView栏中→Menu→选IDR_DIPTYPE ,如图 在图像编码菜单栏下空的一栏中,右键鼠标,

在弹出的对话框中选属性properties,在弹出的对话框中,进行如下的设置 (5)右击哈夫曼编码表菜单栏,在建立的类向导中进行如下设置 (6)在DipDoc.cpp中找到void CDipDoc::OnCodeHuffman()添加如下代码void CDipDoc::OnCodeHuffman() { int imgSize; imgSize = m_pDibObject->GetWidth()*m_pDibObject->GetHeight(); //在点处理CPointPro类中创建用来绘制直方图的数据 CPointPro PointOperation(m_pDibObject ); int *pHistogram = PointOperation.GetHistogram(); //生成一个对话框CHistDlg类的实例 CDlgHuffman HuffmanDlg;

哈夫曼编码的方法

1.哈夫曼编码的方法 编码过程如下: (1) 将信源符号按概率递减顺序排列; (2) 把两个最小的概率加起来, 作为新符号的概率; (3) 重复步骤(1) 、(2), 直到概率和达到1 为止; (4) 在每次合并消息时,将被合并的消息赋以1和0或0和1; (5) 寻找从每个信源符号到概率为1处的路径,记录下路径上的1和0; (6) 对每个符号写出"1"、"0"序列(从码数的根到终节点)。 2.哈夫曼编码的特点 ①哈夫曼方法构造出来的码不是唯一的。 原因 ·在给两个分支赋值时, 可以是左支( 或上支) 为0, 也可以是右支( 或下支) 为0, 造成编码的不唯一。 ·当两个消息的概率相等时, 谁前谁后也是随机的, 构造出来的码字就不是唯一的。 ②哈夫曼编码码字字长参差不齐, 因此硬件实现起来不大方便。 ③哈夫曼编码对不同的信源的编码效率是不同的。 ·当信源概率是2 的负幂时, 哈夫曼码的编码效率达到100%; ·当信源概率相等时, 其编码效率最低。 ·只有在概率分布很不均匀时, 哈夫曼编码才会收到显著的效果, 而在信源分布均匀的情况下, 一般不使用哈夫曼编码。 ④对信源进行哈夫曼编码后, 形成了一个哈夫曼编码表。解码时, 必须参照这一哈夫编码表才能正确译码。 ·在信源的存储与传输过程中必须首先存储或传输这一哈夫曼编码表在实际计算压缩效果时, 必须考虑哈夫曼编码表占有的比特数。在某些应用场合, 信源概率服从于某一分布或存在一定规律

使用缺省的哈夫曼编码表有

解:为了进行哈夫曼编码, 先把这组数据由大到小排列, 再按上方法处理 (1)将信源符号按概率递减顺序排列。 (2)首先将概率最小的两个符号的概率相加,合成一个新的数值。 (3)把合成的数值看成是一个新的组合符号概率,重复上述操作,直到剩下最后两个符号。 5.4.2 Shannon-Famo编码 Shannon-Famo(S-F) 编码方法与Huffman 的编码方法略有区别, 但有时也能编 出最佳码。 1.S-F码主要准则 符合即时码条件; 在码字中,1 和0 是独立的, 而且是( 或差不多是)等概率的。 这样的准则一方面能保证无需用间隔区分码字,同时又保证每一位码字几乎有 1位的信息量。 2.S-F码的编码过程 信源符号按概率递减顺序排列; 把符号集分成两个子集, 每个子集的概率和相等或近似相等;

相关文档
最新文档