膜蒸馏分离技术研究进展

膜蒸馏分离技术研究进展
膜蒸馏分离技术研究进展

膜蒸馏分离技术研究进展

吴国斌3 戚俊清 吴山东

(郑州轻工业学院材料与化工学院)

摘 要 综述了膜蒸馏技术的基本原理与膜蒸馏形式、研究历史与现状、传质机理与模型以及最新应用情况,并对其存在的问题和应用前景作了分析。

关键词 膜蒸馏 分离 研究进展 理想膜 应用前景

1 引言

膜分离是近20年迅速发展的重要的化工操作单元,其应用已从早期的脱盐发展到化工、食品、医药、电子等工业的废水处理、产品分离和生产高纯水等。膜蒸馏(M D)提出于1967年,20世纪80年代开始发展,至今已在不少领域取得可喜的研究成果,尤其在水溶液的分离中更具有优越性,特别是近些年来适合膜蒸馏用的疏水膜的研制成功,使膜蒸馏过程的开发和应用得到了进一步的发展。

111 膜蒸馏基本原理及形式

膜蒸馏是膜技术与蒸发过程相结合的膜分离过程,其所用的膜为不被待处理的溶液润湿的疏水微孔膜。膜的一侧与热的待处理的溶液直接接触(称为热侧),另一侧直接或间接地与冷的水溶液接触(称为冷侧)。热侧溶液中易挥发的组分在膜面处汽化,通过膜进入冷侧并被冷凝成液相,其他组分则被疏水膜阻挡在热侧,从而实现混合物分离或提纯的目的。膜蒸馏是热量和质量同时传递的过程,传质的推动力为膜两侧透过组分的蒸汽压差。因此,实现膜蒸馏必须有两个条件:(1)膜蒸馏必须是疏水微孔膜;(2)膜两侧要有一定的温度差存在,以提供传质所需的推动力。

根据膜下游侧冷凝方式的不同,膜蒸馏可分为四种形式[1]:直接接触膜蒸馏(DC M D)、气隙式膜蒸馏(A G M D)、吹扫气膜蒸馏(SG M D)和真空膜蒸馏(VM D)。

112 膜蒸馏技术的研究历史及现状 早在20世纪60年代就开始了较系统的膜蒸馏研究。美国的Bodell[2]于1963年申请了膜蒸馏技术专利,专利中他将膜蒸馏描述为“一种将不可饮用含水流体转化为可饮用水的装置和技术”;同时,他还指出可用抽真空的方式将渗透蒸汽从装置中移走来提高效率,但受到当时技术条件的限制,他并没有给出所用膜的结构和孔径的大小,只说该膜仅能被蒸汽透过而不能被水透过,并未给出结果和定量分析。

1964年,美国的W eyl[3]发现采用空气填充的多孔疏水膜可在蒸汽压系统内从含盐水中回收去离子水,这种可提高脱盐效率的发现于1967年被授予美国专利。W eyl建议,将热的溶液与冷的渗透物与膜直接接触以消除气隙,采用厚312mm、孔径9Λm、孔隙率42%的PT FE膜,W eyl当时获得了1kg (m2?h)的通量,但距当时的反渗透5175kg (m2?h)的通量有较大的差距,因此60年代后期人们对膜蒸馏的兴趣逐渐减弱。

1971年F indley[4]第一个将膜蒸馏的研究成果公开发表,尽管F indley的实验装置和步骤相当粗糙,但还是定性地确定了膜空隙中空气的存在、膜的厚度、导热热损失和孔隙率对膜蒸馏的影响,并且预言若能找到低价位、耐高温、长寿命的理想膜,不但可以用来处理海水,而且这种膜蒸馏也一定是一种非常经济的蒸发方法。此外,科学家们在过程及组件设计方法上也一直在做着研究并且努力使其商业化[5],但由于膜材料、水通量等方面的原因还不能保证它占据诸多应用领域,因而一直难以商业化。由于其商业化的最大阻碍

3吴国斌,男,1981年3月生,硕士研究生。郑州市,450002。

来源于膜材料和膜蒸馏的过程设计,因而在这两个重要方面科学家们正在努力地工作着。早期的膜蒸馏的过程设计中,Rodger等人的工作最为出色,他在1968~1975年间有多项专利被批准[6~8]。1971年的专利设计了多效膜蒸馏分离重水,1972年的专利设计了膜蒸馏的脱盐工艺的完整系统,1975年的专利改了方向,设计了家用饮水机。

20世纪80年代早期,由于膜材料技术的发展,对膜蒸馏的研究兴趣逐渐升温,出现了孔隙率高达80%、厚为50Λm的膜[9],其通量是W eyl和F indley在60年代所用膜的100倍以上。80年代以来,先后对膜蒸馏进行了较为深入的研究,如挥发性组分的跨膜传质机理、料液或渗透液与膜表面的传热过程及温度极化现象、操作条件对膜蒸馏过程的影响、组件形式和结构对膜蒸馏传热、传质过程的影响以及系统效率、能量回收与经济评价等。这一时期,膜蒸馏技术的应用研究也取得了相当重要的成果,研究者为该技术开发出了诸如脱盐、物料浓缩、废水处理、非常规分离等诸多应用领域。值得一提的是Shneider和Schofield等人[10]用直接接触式膜蒸馏进行脱盐,分别得到了75kg (m2?h)这一足以同反渗透相竞争的跨膜通量;L aw s on等人[11]通过优化设计组件和采用性能优良的膜将脱盐通量提高到目前反渗透水平的2~3倍。单就通量的大小来说,膜蒸馏过程同反渗透相比已经具有很大的优势,同时膜蒸馏过程还具有耗能低、操作条件温和等诸多优点。人们在膜蒸馏技术上取得的成果已足以使其在工业脱盐领域中占有一席之地。

2 膜蒸馏的传质机理及模型

膜蒸馏中气态分子通过多孔介质的三种机理,即Knudsen扩散、分子扩散和Poiseuille流动。根据气体分子运动的平均自由程(Κ)和膜孔径(d p)的对比,当Κνd p时,气体分子间碰撞对传质产生重要影响,传质可用Poiseuille流动描述;当Κμd p时,气体分子与孔壁碰撞对传质产生重要影响,传质可用Knudsen扩散来描述。但是,由于存在孔径分布、温度、浓度极化等因素的影响,传质过程不能用单一的机理来描述。一般研究中采用下列两种模型。

211 介于Knudsen和Poiseuille之间的过渡模型

由Schofield等人提出的介于Knudsen和Poiseuille 之间的过渡模型对渗透系数随温度的变化进行了量化,同时强调,如果出现渗透系数随温度升高而明显升高的现象,则Poiseuille流动可能在跨膜传质中起着很重要的作用,因为纯Poiseuille流动对应的渗透系数将会随温度的升高呈指数规律上升。这一理论在一定程度上对膜蒸馏过程进行了较好的描述,但仍存在模型中有大量经验参数,需要通过实验才可确定,缺乏预测性和通用性的不足,而且未考虑水溶液的浓度极化问题。为弥补此不足,下述一种新型的膜蒸馏模型被提出。

212 介于Knudsen和分子扩散之间的过渡模型

由L aw s on等人提出的介于Knudsen和分子扩散之间的过渡模型,在对渗透系数随温度的变化进行了量化的基础上把温度极化、浓度极化的因素考虑在内,并采用基于Stefan-M axw ell数学模型和对数平均压差法代替算术平均差法的计算方法对膜蒸馏的通量进行了更为准确的计算。蒋维钧等人[23]在上述工作的基础上,对直接接触膜蒸馏的过程机理进行过深入研究,建立了较为完善的数学模型。该模型中,除了膜组件的传热系数需经实验给出外,不包含其它需经实验才能确定的参数,有较好的预测性和通用性。其所用数学模型是以早期提出的数学模型为基础进行修饰或改进的,如基于Schofield等[24,25]提出的模型、基于经典的尘气(dusty-gas)模型[26,27],基于多组分气态扩散的Stefan-M axw ell数学模型[28,29]。

213 膜蒸馏最新模型(T PKPT、K M PT)

最近,北京化工大学与澳大利亚新南威尔士大学合作研究的基于Knudsen扩散、Poiseuille流动两参数的跨膜传质模型,即T PKPT模型,用这种模型参数计算膜在不同温度下的渗透系数,其值与实验值吻合较好,能比较好地描述膜蒸馏的跨膜传质过程,但只是对渗透系数有较好的计算。对此,D ing等人[22]提出基于Knudsen-分子扩散-Poiseuille流动的三参数模型K M PT来预测膜蒸馏系数和通量,得到较好的结果。

3 膜蒸馏过程的膜材料

目前,膜蒸馏研究只限于以水溶液为研究对象,所以膜的疏水性和微孔性是膜蒸馏的必要条件。为了得到较高的通量和较高的溶质截留系数,要求所用的疏水微孔膜具有尽可能大的孔径,但两侧的液体又不能进入膜孔。液体进入膜孔的最低压力可以用下式描述:

p=

2ΧcosΗ

R

其中Χ是液体的表面张力;Η是液体与膜的接触角;R 是膜的孔半径。为了保证在操作压力下液体不进入膜孔,所用的膜就必须有足够的疏水性和合适的孔径。实验表明,当膜的疏水性足够好时,膜的孔隙率在60%~80%之间、孔径在011~015Λm之间较为合适[7]。为了

制备疏水性的膜,常采用疏水性高分子材料,如聚四氟乙烯(PT FE)、聚丙烯(PP)、聚乙烯(PE)、聚偏氟乙烯(PVD F)等,但与亲水性膜相比,材料品种和制膜工艺都十分有限。人们还尝试各种改性方法,以期拓宽疏水微孔膜的来源,取得了一定的进展。

4 膜蒸馏技术的应用

411 超纯水的制备

由于膜的疏水性,原则上只允许水蒸汽通过膜孔,因此能得到很纯的水。而且整套设备可以使用塑料制造,克服了腐蚀问题,更可保证产品的纯度。用减压膜蒸馏对自来水一次通过处理,水质达到微电子工业用高纯水三级和医用注射水的标准。特别是,近来新型高通量无机膜(如金属膜)和有机2无机混合膜[33]的开发成功,使得用膜蒸馏方法从自来水制取纯水从可行变为具有巨大商业潜力的工业手段。最近,中澳机构合作项目“用膜蒸馏技术处理中国西北地区的苦咸水”已正式启动。

412 水溶液的浓缩与提纯

用聚偏氟乙烯毛细管膜对天然盐水进行膜蒸馏,可以将溶液中的N aC l和N a2S O4分别浓缩结晶出来,脱盐率分别达到9511%和9818%,产水率为125~140L (d m2),且膜经过500h运行表明膜的性能良好[34]。这一试验与对浓水溶液的膜蒸馏行为的研究有着相同的结果,即膜蒸馏可以处理浓度极高的水溶液,并且当溶质是易结晶的物质时,采用膜蒸馏技术可直接从溶液中分离出结晶产物,这是其它膜分离技术所难以做到的。膜蒸馏还用于处理热敏性物质的水溶液,应用减压膜蒸馏方法对透明质酸热敏性水溶液进行浓缩分离,实验结果可使原料液的浓度提高118倍以上,透明质酸的截留率为85%[35]。另外,对古龙水溶液、人参露、果汁等的浓缩也具有独特功效,显示了膜蒸馏在常温下分离浓缩热敏性物质的优越性[36]。膜蒸馏也可用于分离含挥发性有机溶质的水溶液,如氯代烃或芳香族化合物,这些挥发性有机物常以低浓度存在于地表水或工业废水中。Banat等[28]报道用A G M D可同时从水溶液中分离出丙酮和乙醇。

413 废水处理

近年来,膜蒸馏分离技术用于废水处理的研究报道较多,可用于处理被染料污染的纺织废水、被牛磺酸污染的制药废水、含重金属的工业废水及含低量放射性元素的化学废水等。如采用中空纤维膜蒸馏技术对含酚废水进行了研究,结果使浓度高达5000Λg mL的苯酚经处理可降至50Λg mL以下,苯酚的去除率可达95%以上[38]。用减压膜蒸馏技术处理丙烯腈废水,废水中丙烯腈的去除率在98%以上,出水浓度低于5 m g L,达到排放要求。这一试验结果显示了VM D在挥发性有机污染物的处理方面将会有重要的作用。

D ytnersky和Zakvze w s等[49]分别报道用M D可用来处理含放射性元素的液体废水。可以预见,膜蒸馏技术在废水处理中的潜力是巨大的。

414 共沸混合物及有机溶液的分离

共沸物的分离通过共沸蒸馏和萃取蒸馏来实现,是一个比较复杂的化工单元操作。由于膜分离技术具有操作简便和节约能源的优点,因此利用膜蒸馏技术来分离共沸物就可以达到较好的效果。孔瑛等人[32]研究过甲酸-水共沸混合物的膜蒸馏分离,结果发现甲酸-水用膜蒸馏分离时不出现共沸现象,分离系数为1193。U dri otet用M D来分离水和盐酸或丙酸的共沸物,结果使盐酸-水共沸物变成酸浓度更高的酸,而使丙酸-水物系消除了共沸现象。此外,在酿酒和制药行业里人们也在积极地利用膜蒸馏技术来提高产品性能。目前膜蒸馏在有机物混合物的分离方面报道比较少,这是膜蒸馏今后发展的一个目标。

5 膜蒸馏存在问题及应用前景

目前,虽然膜蒸馏技术得到了很大的发展,其工业化已小批量地得以实现,但还未完全实现。究其原因,膜蒸馏主要存在传质阻力较高,传质通量较小,热量主要通过热传导的形式传递因而效率较低(一般只有30%左右),传质过程机理还不够完善等不足。此外,适合膜蒸馏的膜材料还比较少,且目前所用的膜材料如PT FE膜和PVD F膜成本较高,这些也都是膜蒸馏技术未能大规模商业化的主要原因。虽然膜蒸馏技术的商业化存在着诸多技术难点,但是膜蒸馏仍具有广阔的应用前景。开发出价格及性能合理的膜以及将膜蒸馏与其他的一些膜过程(膜渗透)耦合使用,将会使得膜蒸馏的前景越发广阔。

参 考 文 献

1 刘立华.膜蒸馏技术进展.唐山师范学院学报,2003,24

(5):27~29

2 Bodell B R,Silicone rubber vapor diffusi on in saline w ater distillati on.U S:3285032,1967.

3 W eyl P K.Recovery of de m ineralinzed w ater from saline w aters.U S:3340186,1967.

4 F indley M E.V aporizati on through porous m e m branes.

P rocess D esign D evel op,1967,6(2):226~230

5 闫建民.膜蒸馏传递机理及膜组件优化研究.北京:北京化工大学,2000.

6 Rodger F A.D istillati on under hydrostic p ressure w ith vapor per m eable m e m brane.U S:3406096,1968.

7 Rpdger F A.M ulti p le effect distillati on w ith m icroporous m e m brane and distillate recirculati on.U S:3477917,1969. 8 Rpdger F A.A pp ratus for increasing the concenti on of less volatile liquid fracti on in a m ixture of liquid.U S:3652116, 1971

9 马润宇.膜蒸馏技术的回顾与展望.天津城市建设学报, 2003,9(2):12~16

10 Schofield R W,Fane A G,Fell C J D.Gas and vapor trans port through m icroporous m e m brane I.Knudsen and Poiseuille transiti on.M e m br Sci,1990,53:159~171 11 L a w s on K W,L l oyd D R.M e m brane distillati on.M e m br Sci,1997,124:1~25

12 Phattarana w ik J,J iratananon R,Fane A G.H eat trans port and m e m brane distillati on in direct contact m e m brane distillati on.J M e m br Sci,2003,212(1-2):177~193 13 Phattarana w ik J,J iratananon R,Fane A G.Effect of pore size distributi on and air flux on m ass trans port in direct contact m e m brane distillati on.J M e m br Sci,2003,215 (1-2):75~85

14 M artinez2D iez L,F l orido2D iaz F J.D esalinati on of brines by m e m brane distillati on,2002,149(1-3):303~307

15 Khayet M,Godino P,M engual J I.N ature of fl ow on s w eep ing gas m e m brane distillati on.J M e m br Sci,2000, 165(2):261~272

16 M artinez L,F l orido D F J.Theoretical and experi m ental studies on desalilnati on using m e m brane distillati on.

D esaliti on,2001,139(1-3):107~122

17 阎建民,马润宇.膜蒸馏传递过程的研究.第三届全国膜和膜过程学术报告会论文集.北京:国家教育部,1999: 390~395

18 Courel M,Dornier M,H erry J M.M odeling of w ater trans port in os motic distillati on using asymm etric m e m brane.J M e m br Sci,2000,173(1):107~122 19 M artinez L,F l orid D F J,et al.Characterizati on of three hydrophobic porouos m e m branes used in m e m brane distillati on:M odeling and evaluati on of their w ater vapour pe m eabilities.J M e m br Sci,2002203(1-2):15~27 20 Khayet M,Godino M P,M engual J I.Ther m nal boundary layer in s w eep ing gas m e m brane distillati on p rocesses.

A I CH E J,2002,48(7):1488~1497

21 Fernandez P C,Izquierdo G M A,Garcia P M C.Gas per m eati on and direct contact m e m brane distillati on experi m ents and their analysis using different models.J M e m br Sci,2002,198(1):33~49

22 D ing Z W,M a RY,Fane A G.A ne w model for m ass transfer in direct contact m e m brane distillati on.

D esalinati on,2003,151(3):217~227

23 蒋维钧,余立新,刘茂林.膜蒸馏的研究现状及发展方向.

化工进展,1991(3):1~3

24 M artinez D L,V azquez G M I.A m ethod to evaluate coefficients affecting flux in m e m brane distillati on.J M e m br Sci,2000,173(2):225~234.

25 朱圣东,吴迎.渗透蒸馏.膜科学与技术,2000,20

(5):42~48

26 Banat F A,A bu A R F,Jum ah R,et al.O n the effect of inert gases in breaking the for m ic acid-w ater azeotrope by gas2gap m e m brane distillati on.Che m Eng J,1999,73

(1):37~42

27 D ri olie E,L agana F,C riscuoli A,et al.Intergrated m e m brane operati ons in desalinati on p rocesses.

D esalinati on,1999,122(2-3):141~145

28 Banat F A,A bu A R F,et al.A pp licati on of Stefan-M axw ell app roach to azeotrop ic separati on by m e m brane distillati on.Che m Eng J,1999,73(1):71~75

29 Zhu C,L iu G L,Cheng C S,et al.U ltras onic sti m ulati on on enhance m ent of air gap m e m brane distillati on.J M e m br Sci,1999,155(2):291~307

30 A bu A R F,ShannagM.M odeling of dilute ethanol-w ater m ixture separati on by m e m brane distillati on.Sep Purif Technol,1999,16(2):119~131

31 任建勋,张信荣.中空纤维式减压膜蒸馏组件的温度压力分布及通量特性研究.膜科学与技术,2002,22(1):12 32 孔瑛,吴庸烈,徐纪平.膜蒸馏分离甲酸-水共沸混合物.

应用化学,1999,10(2):35~37

33 于德贤,等.膜蒸馏海水淡化研究.膜科学与技术,2002

(2):135-137

34 W on Kevin W,H all M attehe w S,Loyd Dougla R.

Compatoong of m icroporousm e m branes used in m e m brane

distillati on2.effect on gas per m esbility.J M e m Sci,1999,

101:99~108

35 毛尚良.减压膜蒸馏法的研究.水处理技术,1994,20

(5):67~270

36 Kuroka w a H,Ebara K,Kuroda O,et al.V apo per m eate characteristics of m e m brane distillati on.Separati on Sci& Tech,1990,25:1349~1359

37 孙宏伟,郑冲,等.膜蒸馏方法分离浓缩透明质酸水溶液的实验研究.水处理技术,1998,24(2):92~94

38 张凤君,等.膜蒸馏法处理污水中酚的研究.水处理技术, 1999(10):25~27

39 Reif F.Funda m ental of Statistical and Ther m al,Physics, N e w York:M cGra w-H ill,1965.

40 谢全灵,何煦敏,夏海平,蓝伟光.膜分离技术在制药行业中的应用.膜科学与技术,2003,23(4):11~17 41 唐娜,刘家祺,马进环.用于膜蒸馏的膜材料的现状.化工进展,2003,22(8):808~812

(收稿日期:2005207221)

动态膜分离技术研究进展

文章编号:1007-8924(2007)04-0091-05专题综述 动态膜分离技术研究进展 李晓波,胡保安,顾 平 (天津大学环境科学与工程学院,天津300072) 摘 要:介绍动态膜分离技术的概念,着重讨论影响动态膜分离性能的相关因素以及动态膜 在污水处理中的应用效果,指出动态膜技术具有良好的应用前景,但目前仍处于试验阶段,尚需深入研究. 关键词:动态膜;污水处理;研究进展中图分类号:TQ028.8 文献标识码:A 膜分离技术是当今水处理领域研究的热点,国内外均做了大量的研究工作[1-5],然而,膜污染及膜组件昂贵的价格是阻碍膜技术广泛应用的主要原因.动态膜分离技术采用大孔径材料制作膜组件,降低了膜组件的造价;同时,已有研究表明,动态膜的渗透性能更佳、抗污染能力显著提高[6-8].因此,动态膜作为一项新型的特殊膜分离技术正越来越多地受到国内外水处理技术研究者的关注[9-13]. 1 动态膜分离技术 动态膜作为一种分离技术,包含动态膜的载体 及动态膜分离层本身.动态膜的载体指用来承载动态膜的大孔径材料,一般价格低廉、易得,常见的有不锈钢丝网、普通筛网、工业滤布、筛绢等多孔材料和一些高分子材料,如烧结聚氯乙烯管等.动态膜分离层是动态膜分离技术的主体,指依附于动态膜载体之上、执行分离功能的滤饼层或污泥层.它是通过错流过滤或死端过滤的方式将某种固体或胶体微粒沉淀在载体表面上形成的.用于形成动态膜的粒子种类较多,有粘土类矿物、粉状活性炭(PAC )、ZrO 2、MnO 2、聚乙烯醇(PVA )等,也可用被处理的废液中的某种物质作为成膜物质沉淀在载体上形成动态膜,如自生生物动态膜的成膜物质为污水中的活性污泥.目前国内外关于动态膜分离技术的研究主要 集中在影响动态膜分离性能的因素及操作参数的优化方面. 2 影响动态膜分离性能的因素 2.1 pH 的影响 p H 对ZrO 2动态膜和MnO 2动态膜的影响较为 明显,这是由于MnO 2动态膜和大多数ZrO 2动态膜都是通过化学反应来生成膜粒子的. ZrO 2粒子的形成有两种方法:一种是提高含Zr 4+溶液,如无水ZrCl 4的水溶液的p H 来形成[14], 另一种是将ZrOCl 2加入到硫酸溶液中而形成[15].Zr 的水合氧化物在不同p H 下的特性不同,其粒子大小也不同.p H 较低时所生成的粒子粒径较小,随着p H 升高,粒径也逐渐升高.由于小颗粒需要更长的时间堵塞载体的孔隙,所以形成动态膜所需的时间也更长.Altman 等[16]的研究表明,动态膜的形成时间从p H 为3.5时的120min 减少到p H 为6时的45min ;Rumyantsev 等[16]的研究结果则分别是100min 和小于45min.蛋白质的截留率与p H 的关系不是很明显,p H 为3.5、5和6时形成的动态膜的截留率大于p H 为4时的动态膜. MnO 2是KMnO 4的还原产物,其反应式为4KMnO 4+6HCOONa =4MnO 2↓+2K 2CO 3+ 3Na 2CO 3+3H 2O +CO 2↑ 收稿日期:2005-09-06;修改稿收到日期:2006-01-17 作者简介:李晓波(1970-),男,河南省人,博士生,主要从事水污染治理技术的研究. 第27卷 第4期膜 科 学 与 技 术 Vol.27 No.4 2007年8月MEMBRAN E SCIENCE AND TECHNOLO GY Aug.2007

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

新型膜分离技术的研究进展

收稿日期:2011-04-18 作者简介:陈默(1986—),硕士研究生,从事含能化合物的合成研究;王建龙,教授,博士生导师,通讯联系人,主要从事含能化合物合成及炸药中间体的制备、 应用及开发。新型膜分离技术的研究进展 陈 默,曹端林,李永祥,王建龙 (中北大学化工与环境学院,山西太原030051) 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、 电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。关键词:膜分离;原理;应用;进展中图分类号:TQ028.8 文献标识码:A 文章编号:1008-021X (2011)05-0031-03 Research Progress of Membrane Technology CHEN Mo ,CAO Duan -lin ,LI Yong -xiang ,WANG Jian -long (College of Chemical Engineering and Environment ,North University of China ,Taiyuan 030051,China )Abstract :The membrane extraction technique is a new type extraction technique with high efficiency ,high speed and saving energy.Membrane separation technology is applied widely as a new kind of separation technology.The separation mechanism and characteristics of different kinds of membrane technologies were introduced ,including electrodialysis ,reverse osmosis ,nanofiltration ,ultrafiltration ,microfiltration ,gas separation ,pervaporation ,membrane reactor.Further more ,the application and current problems of different membrane technologies were extensively summarized.Finally ,application prospect of membrane separation technology was presented.Key words :membrane separation ;principle ;application ;progress 膜分离技术主要是采用天然或人工合成高分子 薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。1膜分离技术的分离原理和特点1.1 纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200 1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技 术, 是国内外研究的热点。余跃等[1] 对纳滤技术处理印染废水进行了去除COD 和脱色的研究。结果 表明, 纳滤技术可有效地去除印染废水中的色度和COD 。Salzgitter Flachstahl 电镀厂采用膜技术处理 镀锌废水, 回收其中的Zn 2+ 和H 2SO 4,其结果达到了设计要求[2]。常江等[3] 在完成用新型纳滤膜处 理模拟含Ni 2+ 废水实验室研究的基础上,进行了电 镀镍漂洗废水的纳滤膜处理及镍和水回收利用的工业试验,为大规模工业应用提供了参考数据。杨青等[4] 研究报道将DK 型与NF90型纳滤膜组合可适用于治理高浓度、高盐分的吡啉农药废水污染。1.2 超滤 超滤的截留相对分子质量在1000 100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。 徐超等 [5] 在中试中采用浸没式超滤膜代替传 统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果, 设备费用降低了。罗涛等[6] 采用混凝沉淀-超滤工艺对微污染原水进行试验,结果表明,组合

膜分离技术及其研究

摘要 膜分离技术是指在某种驱动力的作用下利用膜对混合物中各组分的选择透过性的差异实现物质分离的技术。膜分离技术的驱动力可以是膜两侧的压力差、电位差或浓度差。膜分离现象中的物质迁移现象是一种不可逆的传质过程。膜分离现象早在250多年以前就被发现但是膜分离技术的工业应用是在20世纪60 年代以后。 中国的膜分离技术的发展是从1958年对离子交换膜的研究开始的数十年来取得了长足的进步。目前中国研究所涉及的领域遍及膜科学与技术从材料的应用到产品的开发等方面。经过20年的努力中国在膜分离技术的研究开发方面已涌现出一批具有实用价值接近或达到国际先进水平的成果。但从总体上讲中国的膜分离技术和世界先进水平相比还有不小的差距还有待于进一步研究开发。

1 膜分离技术概述 1.1 膜分离技术 目前己经深入研究和开发的膜分离技术有微滤、超滤、纳滤、反渗透、电渗析、渗透汽化和气体分离、膜蒸馏、支撑液膜、膜萃取、膜生物反应器、控制释放膜、仿生膜以及生物膜等过程。表 1 列出了工业应用膜过程的分类及其基本特性。 微滤是最早使用的膜分离技术是在压力差作用下进行的筛孔分离、使不溶物浓缩的过程主要用于滤除0.05~10um的悬浊物质颗粒。主要应用于截留颗粒物、液体澄清以及除菌。 超滤是在压力差作用下进行的筛孔分离过程。 纳滤是从水溶液中分离除去中小分子物质的过程( 分子量为300~500)其原理是在超滤和反渗透间提供了一种选择性媒介在浓缩有机溶质的同时也可脱盐。 反渗透是以压力差为推动力的膜分离过程渗透与反渗透都是通过半透膜来完成。 电渗析是在直流电作用下以电位差为推动力实现溶液的精制、纯化或淡化。 液膜是依据溶解、扩散等原理通过液相薄膜将两个组成不同而又互溶的溶液

生物化工及膜分离技术研究进展

动态与信息 专题报道 生物化工及膜分离技术研究进展 现代生物技术是新兴高技术领域中的重要技术之一,是21世纪高新技术的核心。它在生物学、分子生物学、细胞生物学和生物化学等基础上发展起来,是以重组DNA技术和细胞融合技术为基础,基因工程、细胞工程、酶工程和发酵工程四大先进技术所组成的新技术群。大力发展生物技术及其产业已成为世界各国经济发展的战略重点,目前最具代表性的应用领域是生物医药和农业。生物技术与化学工程相结合而形成的生物化工技术已成为生物技术的重要组成部分。生物化工技术为生物技术提供了多种高效率的反应器、新型分离介质、工艺控制技术和后处理技术,从而可以促进生物技术不断更新和提高;因而新兴的生物化工技术已经成为当今世界高技术竞争的重要焦点之一。生物化工产品的分离技术也被称为生物技术的下游加工术,是整个生物技术的重要组成部分,它的成功与否,是决定生物技术成果能否转变为具有实用价值和竞争力的产品的重要因素。生物化工产品的分离与化学物质的分离相比具有一定的特殊性,产品大多要求高纯度并具有一定的生物活性,因其易受化学、物理和生物等外界环境因素的破坏而发生变性,因而生化分离过程一般要求在快速、低温、洁净的条件下进行。总之,生物化工产品的分离技术具有一定特殊性。 1 生物化工分离过程的重要性及一般步骤生物化工分离过程是生物化学工程的重要组成部分,一般指的是从发酵液或酶反应液中分离生物产品,它是生物技术转化为生产力过程中不可或缺的重要环节。生物产品一般是从杂质含量远远高于产物的悬浮液中进行分离的,而且产品要求纯度较高,只有经过分离加工过程,才可以制得符合规定要求的产品,因此分离是生物化工工业化的必需手段。与此同时,进行生化分离过程十分困难,这是由于产物原料液的含量极低与产物的高纯度要求之间的差异造成的,而且分离的方法复杂,因此,开发新的分离工艺手段也是提高经济效益的手段。由于生物化工产品不同(如酶或代谢产物),所采用的分离方法也不同。但大多数生物化工分离过程常采用4个分离步骤:1)对发酵液或酶反应液预处理,进行固液分离。在这个步骤中过滤和离心是常用的基本单元操作。在过滤操作中有时为了减少过滤介质的阻力,采用了膜分离技术。但该过程对产物的含量改善作用很小。2)进一步分离。此步骤使产物的含量增加。常用的分离方法有吸附、萃取等,如合成ATP 时用颗粒活性炭作吸附剂。3)高度分离。在这个步骤中分离技术对产物具有一定的选择性,典型方法有层析、电泳等。4)精制,先进行结晶析出再干燥即可。合成ATP时,用离子交换树脂进行浓缩,最后用五氧化二磷干燥器进行减压干燥,可得ATP成品。生物化工过程中常用的分离方法如蒸馏、萃取、过滤、结晶、 元操作过程,而另一些则为新近发展的分离技术,如细胞膜破碎技术(包括球磨破碎和化学破碎等)、膜分离、色层分离等。在此着重介绍膜分离技术。 2 膜分离技术概述 膜分离技术被认为是20世纪末至21世纪中期最有发展前途,甚至会导致一次工业革命的高新技术之一,成为当今世界各国研究热点。膜分离作为一种新发展的高新分离技术,其应用领域不断扩大,广泛应用于化工、食品、水加工业、医药、环境保护、生物技术、能源工程等领域,并发挥了巨大的作用。我国对膜分离技术的研究是从20世纪60年代对离子交换膜的研究开始的。从60年代的反渗透技术到90年代的渗透汽化技术,我国的膜分离技术得到了迅速的发展。经过几十年的努力,目前我国在膜分离技术研究开发方面已成功地研制出一批具有实用价值、接近或达到国际先进水平的成果,如无机膜反应分离技术等。 3 膜分离技术的原理及优点 膜分离是指用半透膜作为障碍层,借助于膜的选择渗透作用,在能量、浓度或化学位差的作用下对混合物中的不同组分进行分离提纯。由于半透膜中滤膜孔径大小不同,可以允许某些组分透过膜层,而其它组分被保留在混合物中,以达到一定的分离效果。利用膜分离技术来进行分离具有如下优点:膜分离过程装置比较简单,同时操作方 032化 学 试 剂2008年3月

膜分离技术及其原理的介绍

膜分离技术及其原理的介绍

人们对膜进行科学研究是近几十年来的事。反渗透膜是膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:20世纪30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。此外,以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程也日益得到重视和发展。 一、膜分离原理 膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)等。 二、膜分离技术 反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。这里主要以反渗透膜和超滤膜为代表介绍一下。 反渗透膜(RO)

反渗透膜使用的材料,最初是醋酸纤维素(CA),1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。CA膜耐氯性强,但抗菌性较差。合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。这两种材料耐热性较差,高温度大约是60℃左右,这使其在食品加工领域的应用中受到限制。 超滤膜(UF) 超滤膜也是使用CA做材料,后来各种合成高分子材料得以广泛应用。其材料多种多样,共同特点是具有耐热、耐酸碱、耐生物腐蚀等优点。 以上就是为大家介绍的全部内容,希望对大家有帮助。

新型膜分离技术的研究与发展(1)

膜分离技术的研究与发展 化学专业学生:刘洋 摘要:从现代化工和新技术发展的需求出发 ,论述了化工分离技术的重要性, 各新型分离技术的原理应用及发展现状, 并对当代化工新型分离技术的发展特点进行了探讨。 关键词: 新型分离技术 ; 膜分离 ; 集成过程; 应用 化工分离工程是高等学校化学工程及工艺专业的专业基础课和必修课,主要研究各种分离过程的原理与分离物系质量、热量、动量传递过程即设备内同时进行的物理变化和化学变化的基本规律,该门课程的开设不仅要求学生具备化工原理、物理化学、化工热力学等学科基础知识,同时,还要求学生掌握一定的数值计算方法,具有一定计算机能力[1-3]。文章就近年来在化工分离工程课程教学实践,结合对化工分离工程课程的相关认识,探索了课程教学改革。 世界万物都是由有序自发地走向无序,所有的纯物质都逐渐变成混合物。分离技术是研究生产过程中混合物的分离、产物的提纯或纯化的一门新型学科,正是这种需求,推动了人们对新型分离技术不懈的探索。新型分离技术目前受到材料开发、生产成本及其他学科发展的限制,工业化应用程度还不高,但它们已经在某些高新领域显示出良好的分离性能和强劲的发展势头。 1 膜分离技术的概念与原理 借助于具有分离性能的膜而实现分离的过程称为膜分离过程。由于膜分离过程一般没有相变,既节约能耗,又适用于热敏性物料的处理,因而在生物、食品、医药、化工、水处理过程中备受欢迎。膜分离是利用一张特殊制造的、具有选择透过性能的薄膜,在外力推动下对液相或者气相混合物内的不同成分进行分离、提纯、浓缩的先进加工技术。根据膜分离过程的不同特征可分为微滤( MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、渗透蒸发(PV)、渗析(D)、电渗析(ED)、电去离子技术(EDI)和气体分离(Gs)等过程。 膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透3种。膜分离技术以其节能效果显著、设备简单、操作方便、容易控制而受到广大用户的普遍欢迎。选择适当的膜分离过程,可替代鼓式真空过滤、板框压滤、离子交换、离心分离、溶媒抽提、静电除尘、袋式过滤、吸附/再生、絮凝/共聚、倾析/沉淀、蒸发、结晶等多种传统的分离与过滤方法。 2 国外分离技术的发展及研究进展[4] 早在上世纪 30 年代,硝酸纤维素微滤膜已商品化,近年来开发出聚四氟乙烯为材料的微滤膜新品种,它使用范围非常广,销售额居于各类膜的首位. 从上世纪 70 年代,超滤应用于工业领域,现在应用领域非常广泛.上世纪 80 年代,新型含氟离子膜在氯碱工业应用成功.第三代低压反渗透复合膜,性能大幅提高,已在药液浓缩、化工废液、超纯水制造等领域得到广泛应用.1979 年 Monsanto 公司成功研制出

膜分离技术综述

膜分离技术应用综述 摘要:膜分离工程技术是一项新兴的高效分离技术,已广泛应用于化工、电子、轻工、纺织、石油、食品、医药等工业,被认为是20世纪末到21世纪中期最有发展前途的高技术之一。由于膜分离的优势,越来越多的中药研究者正致力于开发膜技术在中药工业中的应用。膜分离技术 (微滤、超滤、纳滤、反渗透膜技术)在中药领域中发挥着非常重要的作用,可应用于中药提取液的纯化、浸膏制剂的制备、口服液的生产、注射剂的制备以及热原的去除等。膜分离技术将在中药现代化进程中发挥重大作用,并对中药的规范化和标准化生产起到一定的促进作用。由于历史的原因,生物技术发展初期,绝大多数的投资是在上游过程的开发,而下游处理过程的研究投入要比上游过程少得多,因而使得下游处理过程的研究明显落后,已成为生物技术整体优化的瓶颈,严重地制约了生物技术工业的发展,因此,当务之急是要充实和强化下游处理过程的研究,以期有更多的积累和突破,使下游处理过程尽快达到和适应上游过程的技术水平和要求。 关键词:生物分离下游工程膜分离 正文: 1、常用的膜分离过程 1.1微滤 鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。 1.2超滤 早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。1.3纳滤 纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保净水和污水处理及其资源化工业。1.4反渗透 由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。 1.5其他常用膜分离过程 除了以上四种常用的膜分离过程,另外还有渗析、控制释放、膜传感器、膜法气体分离等。

膜分离技术研究进展+文献名称

膜分离技术研究进展 组员:吴佳曦、张雯辉、郭志新、李耀睿、刘汉飞、王伦、张振斌膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。 膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。 膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。 在环境过程中膜分离技术以其独特的作用而被广泛用于水的净化与纯化过程中。下面分类介绍一下膜分离技术的研究现状。 1 电渗析技术研究现状(刘汉飞) 电渗析是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择渗透性(与膜电荷相反的离子透过膜,相同的离子则被膜截留),使溶液中的离子作定向移动以达到脱除或富集电解质的膜分离操作。它可使电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。电渗析技术普遍应用于食品生化行业以及废水处理。下面分类对这几方面的应用现状做一介绍。 1.1 电渗透技术在食品行业中的应用 利用电渗析技术对酱油进行脱盐处理,可以制得低盐酱油并基本保持酱油原有风味,但要损失一部分作为酱油指标的氨基酸态氮和有机酸等有效成分,从而将酱油的含盐量降低。但国内尚无这方面的报导,刘贤杰等采用电渗析技术进行了酱油脱盐的研究。研究结果显示:原酱油食盐含量19.4%,经电渗析处理后,酱油含量降至约9%,食盐以外的有效成分也有一些被除去,比较明显的是作为酱油品质指标的氨基酸态氮,有约8%的损失。酱油风味大致不变,证明了电渗

膜分离技术的应用现状及发展前景

膜分离技术的应用现状及发 展前景 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

膜分离技术的应用现状及发展前景 摘要:膜分离技术( Membrane Separation Technologies)是近十几年发展起来的一种高新技术,随着膜设备和技术的不断发展和成熟,其在各行业中有着广泛的应用。本文介绍了膜分离技术的特性,阐述了膜分离技术在食品工业、水处理、生物技术、医药工业和医疗设备方面的应用,并展望膜分离技术应用领域的发展前景,分析膜分离技术在膜材料、新的膜过程和膜通量等方面的发展趋势,同时指出膜分离技术将在人类社会的发展史上起到不可替代的作用。 关键词:膜分离技术;膜生物反应器;选择透过性膜;膜材料; 前言: 膜分离技术是指用天然或人工合成的具有选择透过性膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的边缘学科高新技术[1]。由于膜分离技术具有节能、高效、简单、造价低、无相变、可在常温下连续操作等优点,而且特别适合热敏性物质的处理的特点,其应用已渗透到人们生活和生产的各个方面,现已被广泛应用于化工、环保、生物工程、医药和保健、食品和生化工程等行业[2]。虽然膜分离技术的应用在许多方面离产业化要求还有很长的距离,但是随着新型膜材料的不断开发、高效的强化膜过程分离技术研究的不断深入, 膜分离技术应将得到更加广泛的应用,其在未来是世界各国研究的热点,它将在各个领域发挥更引人注目的作用。 现本文对膜技术的特点、类型及其在各方面的应用现状进行综述,并且提出了膜分离技术的发展前景。 1 膜分离技术的特点 膜分离技术作为一种新型的分离技术, 具有以下特点[3]: 1.1 在常温下进行,特别适用于热敏性物质的分离、分级、提纯和浓缩,且可 以同步进行能较好地保持产品原有的色、香、味和营养成分; 1.2 分离过程中不发生相变,挥发性物质损失少,节约能源; 1.3 具有冷杀菌作用,保存期长,无二次污染; 1.4 选择性好,应用范围广,但要选择相应的膜类型; 1.5 设备简单,易于操作,可连续进行,效率高。 2 膜分离技术的类型

膜分离技术及应用新进展

膜分离技术及应用新进展

膜分离技术及其应用新进展 The development of membrane separation technology and its application prospect 摘要:介绍了纳滤、超滤、微滤、反渗透、渗透汽化等膜分离技术原理、膜技术设备组成及其特点;综合概述了膜分离技术在生物农药、化工生产中的应用进展,展望了膜分离技术的发展趋势。 关键词:膜分离, 原理, 应用, 进展 Abstract: The membrane separation mechanism and characteristics of different kinds of separation technologies were introduced, including nanofiltration, ultrafiltration, microfiltration, reverse osmosis, pervaporation. Further more, the progress of the application of membrane separation technologies in bio-pesticides, chemical production were extensively summarized. Finally, the development trend of membrane separation technology in the future was prospected. Key words: membrane separation, principle, application, progress

膜分离技术及其应用领域分析

膜分离技术及其应用领域分析 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。 一、膜分离技术原理及特点 膜分离技术以选择性透过膜为分离介质,如图1所示,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。膜分离技术以其低能耗、高效率被认为是理想的分离技术之一。 图1膜分离技术原理 利用膜分离技术进行分离所具有的特点包括:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。 基于膜分离技术所具有上述特点,是现代生物化工分离技术中一种效率较高的分离手段,完全可以取代传统的过滤、吸附、蒸发、冷凝等分离技术,所以膜分离技术在生物化工分离工程中起着很大的作用。 二、膜分离技术种类分析 按照膜孔径和成膜材料分类,常用的膜分离技术主要有微滤、超滤、纳滤、反渗透以及气体分离等。各种膜过程具有不同的分离机理,可适用于不同的对象和要求。按分离原理和按被分离物质的大小区分的分离膜种类,从下表可以看出,几乎所有的分离膜技术均可应用于任何分离、提纯和浓缩领域。反渗透和纳滤作为主要的水及其它液体分离膜之一,在分离膜领域内占重要地位。

膜分离技术应用综述

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :2009407010122 学生姓名 :齐莹 学生邮箱 :963894228@https://www.360docs.net/doc/4f1398581.html, 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 2009407010122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~ 0. 005μm) 超滤膜(0. 001 ~ 0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、液体膜、气体分离膜、电极膜等。他们对应不同的分离机理,不同的设备,有不同的应用对象。膜本身可以由聚合物,或无机材料,或液体制成,其结构可以是均质或非均质的,多孔或无孔的,固体的或液体的,荷电的或中性的。膜的厚度可以薄至100μm ,厚至几毫米。不同的膜具有不同的微观结构和功能,需要用不同的方法制备。制膜方法一直是膜领域的核心研究课题,也是各公司严格保密的核心技术。 1. 3 膜分离技术的定义 把上述的膜制成适合工业使用的构型,与驱动设备(压力泵、或电场、或加热器、或真空泵) 、阀门、仪表和管道联成设备。在一定的工艺条件下操作,就可以来分离水溶液或混和气体。透过膜的组分被称为透过流分。这种分离技术被称为膜分离技术。 1.4 原理 膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透3 种。 1.5 膜分离技术的特点: 膜分离技术具有如下特点[2]:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。

膜分离技术的发展简史及研究现状

膜分离技术的发展简史及研究现状人类对于膜现象的研究源于1748年,然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。1950年W.Juda 试制出选择透过性能的离子交换膜,奠定了电渗析的实用化基础。1960年 Loeb和Souriringan首次研制成世界上具有历史意义的非对称反渗透膜,这在膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:30年代微孔过滤,40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。此外以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程(Integrated Membrane Process)也日益得到重视和发展。几种主要膜技术发展近况大致如下: 微滤在30年代硝酸纤维素微滤膜商品化,60年代主要开发新品种。近年来以四氟乙烯和聚偏氟乙烯制成的微滤膜已商品化,具有耐高温、耐溶剂、化学稳定性好等优点,使用温度在-100~260℃。目前销售量居第一位。 超滤从70年代进入工业化应用后发展迅速,已成为应用领域最广的技术。日本开发出孔径为5~50nm的陶瓷超滤膜, 截留分子量为2万, 并开发成功直径为1~2mm, 壁厚200~400的陶瓷中空纤维超滤膜,特别适合于生物制品的分离提

纯。 离子交换膜和电渗析技术主要用于苦咸水脱盐,近年市场容 量也近饱和。80年代新型含氟离子膜在氯碱工业成功应用后, 引起氯碱工业的深刻变化。离子膜法比传统的隔膜法节约总能耗30%,节约投资20%。90年世界上已有34个国家近140套离子膜电解装置投产, 到2019年全世界将1/3氯碱生产转向膜法。 60年洛布(Loeb)与索里拉简(Sourirajan)发明了第一代高 性能的非对称性醋酸纤维素膜, 把反渗透(RO)首次用于海 波及苦咸水淡化。70年代开发成功高效芳香聚酰胺中空纤维反渗透膜,使RO膜性能进一步提高。90年代出现低压反渗 透复合膜, 为第三代RO膜,膜性能大幅度提高,为RO 技术发展开辟了广阔的前景。目前RO 已在许多领域得到广泛应用,例如,超纯水制造、锅炉水软化,食品、医药的浓缩,城市污水处理,化工废液中有用物质回收。 1979年Monsanto公司用于H2/N2分离的Prism系统的建立, 将气体分离推向工业化应用。1985年Dow化学公司向市场提供以富N2为目的空气分离器“Generon”气体分离用于石油、化工、天然气生产等领域, 大大提高了过程的经济效益。80年代后期进入工业应用的膜分离技术是用渗透汽化进行 醇类等恒沸物脱水,由于该过程的能耗仅为恒沸精馏的 1/3~1/2,且不使用苯等挟带剂,在取代恒沸精馏及其它脱

膜分离技术的应用现状及发展前景

膜分离技术的应用现状及发 展前景(总6页) 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

膜分离技术的应用现状及发展前景 摘要:膜分离技术( Membrane Separation Technologies)是近十几年发展起来的一种高新技术,随着膜设备和技术的不断发展和成熟,其在各行业中有着广泛的应用。本文介绍了膜分离技术的特性,阐述了膜分离技术在食品工业、水处理、生物技术、医药工业和医疗设备方面的应用,并展望膜分离技术应用领域的发展前景,分析膜分离技术在膜材料、新的膜过程和膜通量等方面的发展趋势,同时指出膜分离技术将在人类社会的发展史上起到不可替代的作用。 关键词:膜分离技术;膜生物反应器;选择透过性膜;膜材料; 前言: 膜分离技术是指用天然或人工合成的具有选择透过性膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的边缘学科高新技术[1]。由于膜分离技术具有节能、高效、简单、造价低、无相变、可在常温下连续操作等优点,而且特别适合热敏性物质的处理的特点,其应用已渗透到人们生活和生产的各个方面,现已被广泛应用于化工、环保、生物工程、医药和保健、食品和生化工程等行业[2]。虽然膜分离技术的应用在许多方面离产业化要求还有很长的距离,但是随着新型膜材料的不断开发、高效的强化膜过程分离技术研究的不断深入, 膜分离技术应将得到更加广泛的应用,其在未来是世界各国研究的热点,它将在各个领域发挥更引人注目的作用。 现本文对膜技术的特点、类型及其在各方面的应用现状进行综述,并且提出了膜分离技术的发展前景。 1 膜分离技术的特点 膜分离技术作为一种新型的分离技术, 具有以下特点[3]: 1.1 在常温下进行,特别适用于热敏性物质的分离、分级、提纯和浓缩,且 可以同步进行能较好地保持产品原有的色、香、味和营养成分; 1.2 分离过程中不发生相变,挥发性物质损失少,节约能源; 1.3 具有冷杀菌作用,保存期长,无二次污染; 1.4 选择性好,应用范围广,但要选择相应的膜类型; 1.5 设备简单,易于操作,可连续进行,效率高。 2 膜分离技术的类型

相关文档
最新文档