连续梁 下部结构计算书

连续梁 下部结构计算书
连续梁 下部结构计算书

**公路二期工程 *大桥

3×30m连续梁下部结构计算书

1.工程概况

桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m 桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。

主梁边支点采用普通板式橡胶支座,中墩与主梁固结。

2.设计规

《城市桥梁设计准则》(CJJ11—93);

《城市桥梁设计荷载标准》(CJJ77—98);

《公路工程技术标准》(JTGB01-2003);

《公路桥涵设计通用规》(JTG D60-2004);

《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004));

《公路桥涵地基与基础设计规》(JTG D63—2007);

《公路桥梁抗震设计细则》(JTG/T B02-01-2008);

《公路桥涵施工技术规》(JTJ041-2000);

3.静力计算

3.1 计算模型

由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的力及变形。桥梁力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度

根据m法计算(m

0=1.2×105kN/m4,K

水平

=2.4×106kN/m,K

弯曲

=1.1×

107kN.m/rad)。

根据桥梁结构受力特点,其计算模型见下图。

主梁计算模型

3.2 计算荷载

3.2.1 结构自重及二期恒载

盖梁结构自重:

混凝土容重按26kN/m3计;

二期恒载:

桥面铺装0.18×11.04×25=49.7kN/m;

防撞护栏及挂板等每侧6.5kN/m

二期恒载合计:62.7kN/m。

3.2.2 汽车活载:

汽车活载:采用公路Ⅰ级车道荷载,按3车道布载

汽车冲击:正弯矩区0.273;

负弯矩区0.37;

偏载系数:1.15;

车道折减系数:0.8。

3.2.3 其它荷载

体系温差: +30℃;-30℃;

桥面日照温差: +14℃;-7℃(按规模式加载);

基础沉降:各墩柱取5mm;

混凝土收缩、徐变:按规计算

3.3 主梁预应力钢束设置

预应力钢束采用13×7φ5高强低松弛预应力钢铰线,其标准强度为1860MPa,拉控制应力为1302MPa。主梁共布置三排钢束,每排布置6束。预应力钢束的整体布置见下图。

主梁预应力钢束布置图

钢束1输入信息

钢束2输入信息

钢束3输入信息

3.4 墩柱计算结果

中墩采用C40混凝土现浇,按普通钢筋混凝土构件设计。各工况下,墩柱受力情况见下表。

左中墩墩顶力统计表

项目

恒载+

预应力收缩、

徐变

系统温度温度梯度

制动力升温降温正温差负温差

轴力(kN)4155 16 -50.5 50.5 -98.5 49.25 ±11.4 弯矩(kN.m)-1115 -442 1360 -1360 600 -300 ±314

项目

支点沉降汽车活载\

1 2 3 正温差负温差Mmin \

轴力(kN)66 -175 138 -98.5 49.25 580 \

弯矩(kN.m)-384 143.5 505 600 -300 -1305 \

左中墩墩底力统计表

右中墩墩顶力统计表

右中墩墩底力统计表

中墩各控制截面配筋验算见下表:

中墩控制截面配筋验算表

说明:墩柱斜截面抗剪强度由地震偶然组合(E2)控制,故此处不进行验算。

从上表可以看出,墩柱配筋满足规要求。

4.结构抗震验算

4.1 计算模型

建立空间杆系模型,采用Midas/Civil 2006软件进行抗震相关计算分析。其中主梁、横梁、墩柱、桩基、系梁均采用空间梁单元模拟,为简化计算,主梁边支撑仅考虑板式橡胶支座刚度,不再考虑边墩盖梁、墩柱、桩基与支座的刚度耦合。利用节点弹性支撑模拟桩—土相互作用,其顺桥向、横桥向及竖向约束刚

度采用m法计算(其中m

0=2×1.2×105kN/m4,C

z

=7.5×106kN/m2)。计算模型见

下图。

结构地震响应通过加速度反应谱分析得到,其中模态组合采用CQC法。墩柱屈服弯矩、极限承载力及顺桥向横桥向容许位移通过静力弹塑性分析得到,其中采用FEMA铰模拟墩柱塑性铰特性。

3×30m 连续梁计算模型

4.2 计算参数

根据《公路桥梁抗震设计细则》(JTG/T B02-01-2008),本桥抗震设防类别按B 类考虑。根据蓥华大桥地质勘察报告,桥址处场地抗震设防烈度为Ⅶ度,设计地震分组为第二组,设计基本地震加速度为0.15g ,地震动反应谱特征周期为0.40S 。

设防目标:E1地震作用下,一般不受损坏或不需修复可继续使用;E2地震作用下,应保证不致倒塌或产生严重结构损伤,经临时加固后可维持应急交通使用。

根据抗震规 6.1.3,本桥为规则桥梁;根据抗震规表 6.1.4,本桥E1、E2作用均可采用SM/MM

分析计算方法。

当抗震分析采用多振型反应谱法,水平设计加速度反应谱S 由下式(规5.2.1)确定:

max max max (5.50.45)0.10.1(/)g

g g S T T s

S S s T T S T T T T ?+?

其中

max 2.25i s d S C C C A

=

式中:Tg —特征周期(s); T —结构自振周期(s);

S—水平设计加速度反应谱最大值;

max

Ci—抗震重要性系数;

Cs—场地系数;

Cd—阻尼调整系数;

A—水平向设计基本地震加速度峰值。反应谱拟合的相关参数见下表:

E1地震作用加速度反应谱

E2地震作用加速度反应谱

4.3 E1地震验算

地震偶然荷载作用下(E1)结构力见下图。

地震偶然荷载作用下(E1)顺桥向最不利弯矩对应轴力

地震偶然荷载作用下(E1)顺桥向最不利弯矩

地震偶然荷载作用下(E1)横桥向最不利弯矩对应轴力

地震偶然荷载作用下(E1)横桥向最不利弯矩

地震偶然荷载组合(E1)下中墩各控制截面配筋验算见下表:

中墩控制截面配筋验算表

控制截面顺桥向组合力

(kN,kN.m)

横桥向组合力

(kN,kN.m)

计算配筋

实际配筋N M N M 顺桥向横桥向

左墩顶4244 3249 5280 4216 构造配筋构造配筋35φ32 左墩底4546 2217 5585 3207 构造配筋构造配筋35φ32 右墩顶4245 3051 4915 3134 构造配筋构造配筋35φ32 右墩底4625 2114 5298 2338 构造配筋构造配筋35φ32 说明:墩柱斜截面抗剪强度由地震偶然组合(E2)控制,故此处不进行验算。

从上表可以看出,墩柱配筋满足规要求。

4.4 E2地震验算

4.4.1 E2地震作用下墩柱容许位移验算 4.4.1.1 墩柱有效抗弯刚度计算

由公式(B.0.1-2),墩柱截面屈服曲率φy 为:

00277.06

.1002

.0213.2213.2=?=

=

D

y

y εφ

通过弹塑性分析得到铰的基本铰属性,计算墩柱截面顺桥向及横桥向屈服弯矩My 。

墩柱截面顺桥向弯矩-位移曲线

墩柱截面横桥向弯矩-位移曲线

因此墩柱塑性铰区域截面顺桥有效抗弯刚度:

c

y E φy eff M I =

=7700/(0.00277×3.250×107)=0.0855(m 4)

墩柱塑性铰区域截面有限刚度系数=0.0855/(π×1.64/64)=0.266

墩柱塑性铰区域截面横桥有效抗弯刚度:

c

y E φy eff M I =

=6125/(0.00277×3.250×107)=0.0680(m 4)

墩柱塑性铰区域截面有限刚度系数=0.0680/(π×1.64/64)=0.211。 4.4.1.2 墩柱等效塑性铰长度计算

根据上式,左墩柱等效塑性铰长度为0.5m ,右墩柱等效塑性铰长度为0.6m 。 4.4.1.3 E2作用下位移计算

在E2地震作用下,墩柱顺桥向及横桥向最大位移见下图。

E2地震作用下顺桥向位移(δXmax =3.0cm )

E2地震作用下横桥向位移(δYmax=2.5cm)

4.4.1.4 墩柱容许位移计算

根据规7.4.8条建立弹塑性分析模型计算墩柱顺桥向及横桥向容许位移。

=15.3cm)

墩柱顺桥向荷载位移曲线(△

u

墩柱横桥向荷载位移曲线(△

u

=13.3cm)

4.4.1.5 墩柱容许位移验算

E2地震作用下,墩顶的顺桥向和横桥向水平位移按抗震规第6.7.6条计算,

d

=Cδ。

场地特征周期T

g =0.4S,顺桥向结构自振周期T=0.58>T

g

,查表6.7.6 c=1;

横桥向结构自振周期T=0.69>T

g

。查表6.7.6 c=1

方向E2作用墩顶位移 (cm) Δd(cm) Δu(cm) 是否满足顺桥向 3.0 3.0 15.3 满足横桥向 2.5 2.5 13.3 满足

4.4.2 E2地震作用墩柱斜截面抗剪承载力验算

4.4.2.1 墩柱顺桥向剪力设计值

墩顶、底顺桥向潜在塑性区域极限弯矩图

因此,顺桥向墩柱塑性铰区域抗剪承载力设计值:

5.8

8765

9041

2.1

+

?

=

+

=

n

s

zc

x

zc

c H

M

M

Vφ=2514kN

4.4.2.2 墩柱横桥向剪力设计值

墩顶、底横桥向潜在塑性区域极限弯矩图

因此,横桥向墩柱塑性铰区域抗剪承载力设计值:

5.8

10198

10301

2.1

+

?

=

+

=

n

s

hc

x

hc

c H

M

M

Vφ=2894kN

4.4.2.3 墩柱斜截面抗剪承载力验算

由上述计算可知,墩柱塑性铰区域斜截面抗剪承载力由横桥向控制,其承载力验算见下表。

墩柱塑性铰区域斜截面抗剪承载力验算表

V c0(kN ) 0.0023c c A f '

V s 是否满足 备注 2894

210

3600

0.85×(210+3600)=3239>2894,满足

2根φ16HRB335 钢筋,间距10cm

4.4.3 E2地震作用桩基强度验算

E2地震作用下,桩基力按规6.8.5条及其条文说明计算,由上述计算可知,桩基配筋由横向弯矩控制。

E2地震作用下桩基最大力

E2地震作用下,桩基承载力验算见下表。

桩基配筋验算表

组合力

计算配筋 实际配筋 N (kN ) M (kN.m ) 4686

10198

56φ32

56φ32

桩基箍筋加密区采用2根φ16HRB335钢筋,间距为10cm ,对应桩基斜截面抗剪承载力可满足规要求。

变截面连续梁完整计算书

一、工程概况 上部结构采用预应力混凝土变截面连续箱梁,为双幅结构。单幅箱梁采用单箱单室截面,箱梁顶板宽11.99m,底板宽为6.99米,箱梁顶板设置1.5%的横坡。边跨端部及中跨跨中梁高均为2.0m(以梁体中心线为准),箱梁根部梁高为4.0米,梁高从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25米,箱梁悬臂根部底板厚度为0.6米,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。箱梁腹板在3.5m长度内由0.45米直线变化至0.6米。 桥台采用重力式U型桥台,桥台与道路中心线正交布置。桥台扩大基础应嵌入中风化岩面不少于0.5m,同时应满足基底持力层抗压承载力要求,桩基础应嵌入中风化岩层长度不小与2.5倍桩径,桥台台身采用C25片石混凝土浇筑,台帽混凝土采用C30钢筋混凝土。台后的填料采用压实度不小于96%的砂卵石,回填时应预设隔水层或排水盲沟。 桥墩均采用钢筋混凝土八棱形截面,基础采用桩基接承台。桥墩墩身截面为3.5×2.0m,截面四角对应切除70×50cm倒角。墩顶设盖梁,桥墩盖梁尺寸为 6.99m(长)×2.4m(宽)×2.6m(高),承台尺寸为8.4m(长)×3.4m(宽)×2.5m。每个承台接两根直径2.0m的桩基。 所有的桩基础均采用嵌岩桩,用人工挖孔成桩。桩基础应嵌入完整的中风化岩面不少于3倍桩径,并要求嵌岩岩石襟边宽度大于3.0m,同时应满足基底持力层岩石抗压强度要求。 桥型布置见图1 桥型立面布置图。 图1 桥型立面布置图 二、主要技术标准 汽车荷载:公路-I级。 人群荷载:3.5 KN/m2。 2.4.桥梁宽度:

ANSYS四跨连续梁的内力计算教程

ANSYS四跨连续梁的内力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和内力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的内力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位0.3m2,抗弯惯性矩为0.003m4,截面高度为0.1m;材料的弹性模量为1000kN/m2,泊松比为0.3。补充这些参数对于梁的内力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add按钮新建实力常量

连续梁 下部结构计算书

**公路二期工程*大桥 3×30m连续梁下部结构计算书 1.工程概况 桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长 2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。 主梁边支点采用普通板式橡胶支座,中墩与主梁固结。 2.设计规范 《城市桥梁设计准则》(CJJ11—93); 《城市桥梁设计荷载标准》(CJJ77—98); 《公路工程技术标准》(JTGB01-2003); 《公路桥涵设计通用规范》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)); 《公路桥涵地基与基础设计规范》(JTG D63—2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路桥涵施工技术规范》(JTJ041-2000); 3.静力计算 3.1 计算模型 由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的内力及变形。桥梁内力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度根据m法计算(m0=1.2×105kN/m4,K水平=2.4×106kN/m,K弯曲=1.1×107kN.m/rad)。 根据桥梁结构受力特点,其计算模型见下图。

桥梁下部结构通用图计算书

目录 第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T梁横断面 (4) 2.2.2 T梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10) 3.2.4 桥墩计算偏心距的增大系数 (11)

3.2.5 墩柱正截面抗压承载力计算 (12) 3.2.6 裂缝宽度验算 (13) 3.3 20米T梁墩柱计算 (13) 3.3.1 计算模型的选取 (13) 3.3.2 15米墩高计算 (14) 3.3.3 30米墩高计算 (18) 3.4 30米T梁墩柱计算 (22) 3.4.1 计算模型的选取 (22) 3.4.2 15米墩高计算 (23) 3.4.3 30米墩高计算 (27) 3.4.4 40米墩高计算 (32) 3.5 40米T梁墩柱计算 (36) 3.5.1 计算模型的选取 (36) 3.5.2 15米墩高计算 (37) 3.5.3 30米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值 (47) 4.2 计算分析 (47) 4.2.1 抗震计算模型 (47) 4.2.2 动力特性特征值计算结果 (48) 4.2.3 E1地震作用验算结果 (49) 4.2.4 E2地震作用验算结果 (49) 4.2.5 延性构造细节设计 (51) 4.3 抗震构造措施 (53)

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥 1.1结构设计简述 本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。 本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。 图11.1.1 箱梁构造图

图11.1.2 箱梁断面图 纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。中支点断面钢束布置如图11.1.3所示。 度 pk 图11.1.3 中支点断面钢束布置图 主要断面预应力钢束数量如下表 墩横梁预应力采用采用φs15-19,单向张拉,如下图。 1.2主要材料 1.2.1主要材料类型 (1) 混凝土:主梁采用C50砼;

(2) 普通钢筋:R235、HRB335钢筋; (3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度 f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、 pk 夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。 1.2.2主要材料用量指标 本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。 表11.2.2-1 上部结构主要材料指标 1.3结构计算分析 1.3.1计算模型 结构计算模型如下图所示。 图11.3.1-1 结构模型图

MIDAS连续梁计算书

目录 第1 章设计原始资料.................. 错误! 未定义书签 设计概况. ................... 错误!未定义书签 技术标准. ................... 错误!未定义书签 主要规范. ................... 错误!未定义书签 第2 章桥跨总体布置及结构尺寸拟定. ......... 错误! 未定义书签尺寸拟定. ................... 错误!未定义书签 桥孔分跨..................... 错误!未定义书签 截面形式..................... 错误! 未定义书签 梁高. .................... 错误!未定义书签 细部尺寸..................... 错误!未定义书签 主要材料及材料性能................ 错误!未定义书签 模型建立与分析 ................... 错误!未定义书签 计算模型错误!未定义书签

第3 章荷载内力计算.................. 错误! 未定义书签荷载工况及荷载组合.................. 错误!未定义书签作用效应计算. ................. 错误!未定义书签 永久作用计算 .................... 错误!未定义书签 作用效应组合. ................. 错误!未定义书签第4 章预应力钢束的估算与布置. .......... 错误! 未定义书签力筋估算. ................... 错误!未定义书签 计算原理...................... 错误!未定义书签预应力钢束的估算 ................. 错误!未定义书签预应力钢束的布置(具体布置图见图纸).......... 错误!未定义书签第5 章预应力损失及有效应力的计算. ........ 错误! 未定义书签预应力损失的计算................... 错误!未定义书签 摩阻损失. .................. 错误!未定义书签 锚具变形损失 .................... 错误!未定义书签

MIDAS连续梁计算书

目录 第1章设计原始资料 (1) 设计概况 (1) 技术标准 (1) 主要规范 (1) 第2章桥跨总体布置及结构尺寸拟定 (2) 尺寸拟定 (2) 桥孔分跨 (2) 截面形式 (2) 梁高 (3) 细部尺寸 (4) 主要材料及材料性能 (6) 模型建立与分析 (7) 计算模型 (8) 第3章荷载内力计算 (9) 荷载工况及荷载组合 (9) 作用效应计算 (10) 永久作用计算 (10) 作用效应组合 (16) 第4章预应力钢束的估算与布置 (20) 力筋估算 (20)

计算原理 (20) 预应力钢束的估算 (24) 预应力钢束的布置(具体布置图见图纸) (27) 第5章预应力损失及有效应力的计算 (29) 预应力损失的计算 (29) 摩阻损失 (29) 锚具变形损失 (30) 混凝土的弹性压缩 (30) 钢束松弛损失 (31) 收缩徐变损失 (31) 有效预应力的计算 (32) 第6章次内力的计算 (33) 徐变次内力的计算 (33) 预加力引起的次内力 (33) 第7章内力组合 (35) 承载能力极限状态下的效应组合 (35) 正常使用极限状态下的效应组合 (38) 第8章主梁截面验算 (41) 正截面抗弯承载力验算 (41) 持久状况正常使用极限状态应力验算 (44) 正截面抗裂验算(法向拉应力) (44)

斜截面抗裂验算(主拉应力) (46) 混凝土最大压应力验算 (49) 预应力钢筋中的拉应力验算 (50) 挠度的验算 (51) 小结 (53)

第1章设计原始资料 设计概况 设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。施工方式采用满堂支架现浇,采用变截面连续箱梁。 技术标准 公路等级:一级公路,双向2车道; 设计荷载:公路-I级; 桥面宽度:×2+×2; 安全等级:二级; 主要规范 1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004); 2)《公路桥涵设计通用规范》(JTG D60-2004); 3)《公路工程技术标准》(JTG B01-2003); 4)《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 5)《公路桥涵地基与基础设计规范》(JTG D63-2007); 6)《城市桥梁设计规范》(CJJ11-2011);

渡槽结构计算书

目录 1. 工程概况.............................................. 错误!未定义书签。2.槽身纵向内力计算及配筋计算............................ 错误!未定义书签。 (1)荷载计算..........................................错误!未定义书签。 (2)内力计算..........................................错误!未定义书签。 (3)正截面的配筋计算..................................错误!未定义书签。 (4)斜截面强度计算....................................错误!未定义书签。 (5)槽身纵向抗裂验算..................................错误!未定义书签。3.槽身横向内力计算及配筋计算............................ 错误!未定义书签。 (1)底板的结构计算....................................错误!未定义书签。 (2)渡槽上顶边及悬挑部分的结构计算 ....................错误!未定义书签。 (3)侧墙的结构计算....................................错误!未定义书签。 (4)基地正应力验算....................................错误!未定义书签。

1. 工程概况 重建渡槽带桥,原渡槽后溢洪道断面下挖,以满足校核标准泄洪要求。目前,东方红干渠已整修改造完毕,东方红干渠设计成果显示,该渡槽上游侧渠底设计高程为165.50m,下游侧渠底设计高程为165.40m。本次设计将现状渡槽拆除,按照上述干渠设计底高程,结合溢洪道现状布置及底宽,在原渡槽位重建渡槽带桥,上部桥梁按照四级道路标准,荷载标准为公路-Ⅱ级折减,建筑材料均采用钢筋砼,桥面总宽5m。 现状渡槽拆除后,为满足东方红干渠的过流要求及溢洪道交通要求,需重建跨溢洪道渡槽带桥。新建渡槽带桥轴线布置于溢洪道桩号0+,同现状渡槽桩号,下底面高程为165.20m,满足校核水位+0.5m超高要求,桥面高程167.40m,设计为现浇结合预制混凝土结构,根据溢洪道设计断面,确定渡槽带桥总长51m,8.5m×6跨。上部结构设计如下:渡槽过水断面尺寸为×1.6m,同干渠尺寸,采用C25钢筋砼,底及侧壁厚20cm,顶壁厚30cm,筒型结构,顶部两侧壁水平挑出1.25m,并在顺行车方向每隔2m设置一加劲肋,维持悬挑板侧向稳定,桥面总宽5m,路面净宽4.4m,设计荷载标准为公路-Ⅱ级折减,两侧设预制C20钢筋砼栏杆,基础宽0.5m。下部结构设计如下:下部采用C30钢筋混凝土双柱排架结构,并设置横梁, 由于地基为砂岩,基础采用人工挖孔端承桩,尺寸为×1.2m,基础深入岩层弱风化层1.0m,盖梁尺寸为4××1.2m。 2.槽身纵向内力计算及配筋计算 根据支承形式,跨宽比及跨高比的大小以及槽身横断面形式等的不同,槽身应力状态与计算方法也不同,对于梁式渡槽的槽身,跨宽比、跨高比一般都比较大,故可以按

地下室外墙的计算书(理正工具箱,连续梁)

地下车库外墙WQ1计算书 ============================================ 一.配筋计算 1 计算简图: 2 计算条件: 荷载条件: 均布恒载标准值: 0.00kN/m 活载准永久值系数: 0.50 均布活载标准值: 0.00kN/m 支座弯矩调幅系数: 100.0% 梁容重 : 25.00kN/m3计算时考虑梁自重: 不考虑 恒载分项系数: 1.35 活载分项系数 : 1.40 配筋条件: 抗震等级 : 非抗震纵筋级别 : HRB400 混凝土等级 : C30 箍筋级别 : HRB400 配筋调整系数: 1.0 上部保护层厚度 : 40mm 面积归并率 : 0.0% 下部保护层厚度 : 25mm 最大裂缝限值: 0.000mm 挠度控制系数C : 200 截面配筋方式: 双筋 3 计算结果: 单位说明: 弯矩:kN.m 剪力:kN 纵筋面积:mm2箍筋面积:mm2/m 裂缝:mm 挠度:mm ----------------------------------------------------------------------- 梁号 1: 跨长 = 4100 B×H = 1000 × 300 左中右弯矩(-) : 0.000 0.000 -97.487 弯矩(+) : 0.000 47.163 0.000 剪力: 48.639 -14.322 -134.016 上部as: 50 50 50 下部as: 35 35 35

上部纵筋: 600 600 1184 下部纵筋: 600 608 600 箍筋Asv: 953 953 953 ----------------------------------------------------------------------- 4 所有简图:

(40+56+40)m连续梁三角形挂篮计算书

(40+56+40)m连续梁 三角形挂篮计算书 兰州华丰建筑器材有限公司 2016年05月

1.三角形挂篮结构形式,主要性能参数及特点 1.1.挂篮总体结构 挂篮由三角形主桁架、底模平台、模板系统、悬吊系统、锚固系统及走行系统六大部分组成。 图1挂篮总体结构 主桁架:主桁架是挂篮的主要受力结构。由2榀三角主桁架、横向联结系组成。2榀主桁架中

心间距为6.22米,每榀桁架前后节点间距分别为4.85m、4.1m,总长9.67m,主桁架杆件采用槽钢焊接的格构式,节点采用承压型高强螺栓联结。横向联结系设于两榀主桁架的竖杆上,其作用是保证主桁架的横向稳定,并在走行状态悬吊底模平台后横梁。 图2 主桁架 底模平台:底模平台直接承受梁段混凝土重量,并为立模,钢筋绑扎,混凝土浇筑等工序提供操作场地。其由底模板、纵梁和前后横梁组成。底模板采用大块钢模板;其中纵梁采用双[32槽钢和单I32工字钢,横梁采用双[36b槽钢,前后横梁中心距为5.1m,纵梁与横梁螺栓联接。

图3 底模平台 模板系统:外侧模的模板采用大块钢模板拼组,内模采用组合钢模板拼组。外模板长度为4.3m。内模板为抽屉式结构,可采用手拉葫芦从前一梁段沿内模走行梁整体滑移就位。 图4 外侧模

图5 内模 悬吊系统:悬吊系统用于悬吊底模平台、外模和内模。并将底模平台、外模、内模的自重、梁段混凝土重量及其它施工荷载传递到主构架和已成梁段上。悬吊系统包括底模平台前后吊杆、外模走行梁前后吊杆、内模走行梁前后吊杆、垫梁、扁担梁及螺旋千斤顶。底模前后横梁各设4个吊点,采用双Φ25精轧螺纹钢筋。底模平台前端悬吊在挂篮前上横梁上,前上横梁上设有由垫梁、扁担梁和螺旋千斤顶组成的调节装置,可任意调整底模标高。底模平台后端悬吊在已成梁段的底板上和翼缘板上。外模走行梁和内模走行梁的前后吊杆均采用单根Φ25精轧螺纹钢筋。其中外模走行梁前吊点与走行梁销接,以避免吊杆产生弯曲次应力。 锚固系统:锚固系统设在2榀主桁架的后节点上,共2组,每组锚固系统包括2根后锚扁担梁、2根后锚横梁、6根后锚杆。其作用是平衡浇筑混凝土时产生的倾覆力矩,确保挂篮施工安全。锚固系统的传力途径为主桁架后节点→后锚横梁→后锚上扁担梁→后锚杆→箱梁顶板、翼板。 图6 主桁架后锚 走行系统: 走行系统包括垫枕、轨道、前支座、后支座、内外走行梁、滚轮架、牵引设备。挂篮走行时前支座在轨道顶面滑行,联结于主构架后节点的后支座反扣在轨道翼缘下并沿翼缘行走。挂篮走行由2台YCL60型千斤顶牵引主桁架并带动底模平台和外侧模一同前移就位。走行过程中的抗倾覆力传力途径为主桁架后节点→后支座→轨道→垫枕→竖向预应力钢筋。 内模在钢筋绑扎完成后采用手拉葫芦沿内模走行梁滑移就位。

9米路宽30m连续箱梁下部结构计算书

桥涵通用图 30米现浇预应力混凝土箱梁 下部构造(路基宽9.0米,R=80m) 计 算 书 计算:汪晓霞 复核: 审核: 二〇一九年八月

第一部分基础资料 一、计算基本资料 1技术标准与设计规范: 1)中华人民共和国交通部标准《公路工程技术标准》(JTG B01-2014) 2)中华人民共和国交通部标准《公路桥涵设计通用规范》(JTG D60-2015) 3)中华人民共和国交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规 范》(JTG 3362-2018) 4)交通部标准《公路桥涵地基与基础设计规范》(JTG D63-2007) 2桥面净空:净-8.0米 3汽车荷载:公路Ⅰ级,结构重要性系数1.1 4材料性能参数 1)混凝土C30砼:墩柱、墩柱系梁, 主要强度指标: 强度标准值f ck=20.1MPa,f tk=2.01MPa 强度设计值f cd=13.8MPa,f td=1.39MPa 弹性模量E c=3.0x104Mpa 2)普通钢筋 a)HPB300钢筋其主要强度指标为: 抗拉强度标准值f sk=300MPa 抗拉强度设计值f sd=250MPa 弹性模量E s=2.1x105MPa b)HRB400钢筋其主要强度指标为: 抗拉强度标准值f sk=400MPa 抗拉强度设计值f sd=330MPa 弹性模量E s=2.0x105MPa c)HRB500钢筋其主要强度指标为: 抗拉强度标准值f sk=500MPa

抗拉强度设计值f sd=415MPa 弹性模量E s=2.0x105MPa 5主要结构尺寸 上部结构为2×30m~4×30m一联,现浇连续预应力箱形梁。每跨横向设2个支座。 桥墩墩柱计算高取10、15、17米,直径1.4、1.6米。因无法预计各桥的实际布置情况及地形、地质因素,墩顶纵向水平力,分别按2跨一联、3跨一联、4跨一联,墩柱取等高度及等刚度计算。应用本通用图时,应根据实际分联情况,核实桥墩构造尺寸及配筋是否满足受力要求。本次验算不含桩基计算。 二、计算采用程序 下部结构计算数据采用桥梁博士对上部结构的分析结果。 三、计算说明与计算模型 1.计算说明 计算中,外荷载数据取自上部结构电算结果。 2.桥墩计算模型 根据上部箱梁计算所得相关数据,进行手工计算。 第二部分墩柱计算结果 Ⅰ、墩柱计算 按2跨一联、3跨一联、4跨一联分别进行计算,一联两端为桥台,中间为双柱式墩桥台上设活动支座,桥墩墩顶均为盆式橡胶支座,一排支座为2个。桥墩墩柱D1=1.4、1.6m。 经核算2X30米箱梁下部因水平力(主要是制动力、离心力)过大,采用双圆柱墩无法满足受力要求,故墩柱形式拟采用花瓶墩,不进行本次双圆柱墩计算分析。经对3X30米及4X30米箱梁下部受力分析比较,以3跨一联下部构造双圆柱墩计

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书 第一章概述 1.1、工程简介 上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。 1.1.1、采用的主要规范及技术标准 ①、《工程建设标准强制性条文》建标【2000】202号 ②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011 ③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015 ④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007 ⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 ⑥、建设部部颁标准《城市道路设计规范》CJJ37-90 技术标准: 1、道路等级:主干路 2、设计车速:主线60km/h。 3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。 5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m 6、桥梁结构设计安全等级:一级 7、路面类型:沥青混凝土路面。 1.1.2、应用的计算软件 Midas CIVIL 1.1.3、主要参数及荷载取值 1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载: 结构部分:155KN/m; 装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m 3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。 4)管道每米局部偏差对摩擦的影响系数:0.0015 k=; μ=; 5)预应力钢筋与管道壁的摩擦系数:0.17 ζ=; 6)钢筋松弛系数,Ⅱ级(低松弛),0.3 7)锚具变形、钢筋回缩和接缝压缩值:6mm l?=(单端); 8)混凝土加载龄期:7天; 9)收缩徐变效应计算至3650天 10)端横梁支座不均匀沉降为采用5.6mm,次中横梁支座不均匀沉降为采

现浇连续梁支架计算书

目录 1工程概况 (2) 2计算依据 (2) 3方案介绍 (3) 4材料规格 (4) 5模型建立 (5) 5.1模型简化 (5) 5.2荷载计算 (5) 6模板检算 (9) 6.1模板竹胶板检算 (9) 6.2肋木验算 (10) 6.3顶托方木检算 (11) 7钢材检算 (13) 7.1荷载组合 (13) 7.2脚手架钢管检算 (14) 7.3I16分配梁检算 (16) 7.4贝雷梁检算 (16) 7.5横垫梁检算 (19) 7.6钢管立柱检算 (20) 7.6.115m跨地铁钢支撑检算......................................... 错误!未定义书签。 7.7连接系及斜撑检算 (23) 8柱底扩大基础检算 (23) 9钢筋砼桩基检算 (25) 101#、4#墩桩基偏压检算 (28) 11结论 (31)

XX大道XX线 现浇连续梁支架计算书 1工程概况 XX大道XX线XX桥位于XX镇与XX镇交界处,全桥孔跨布置为1×25+(33+56+33)+1×25预应力砼简支箱梁和预应力砼现浇箱梁,起点桩号K10+311,终点桩号K10+491,桥梁全长180米,桥宽80米,横向布置为分离式四幅,每幅宽20m,桥梁与道路正交,设计纵坡1.5%,桥面横坡为双向1.5%。 主桥为33+56+33连续梁,横跨XX河,主墩基础为Φ1800桩承台基础,桥墩为拱形3柱式墩,设计桩长18m,墩高10.78m~13.00m。上部结构为变截面预应力混凝连续箱梁,每幅箱梁为单箱四室结构,箱梁顶宽20m,底宽14.985m,腹板厚度70cm、45cm,中间5m范围内过渡,主墩处梁高6m,跨中及边墩处梁高1.7m,成3次抛物线过渡,底板厚度由70cm按三次抛物线变化至跨中24cm,单幅现浇C50砼2900m3。 地质情况:主桥跨XX河,河床砂卵石覆盖层较薄30~50cm,砂卵石以下约2.5m厚强风化砂岩,承载力300kPa;强风化砂岩以下为中风化砂岩,承载力700kPa。 2计算依据 (1)《公路桥涵施工技术规范》(JTGT F50-2011); (2)《公路桥涵设计通用规范》(JTJ021-04); (3)《混凝土结构设计规范》(GB50010-2010); (4)《建筑施工碗扣式脚手架安全技术规范》(JGJ 166-2008); (5)《钢结构设计规范》(GB 50017-2003); (6)《木结构设计规范》(GB50005-2003) (7)《建筑施工模板安全技术规范》(JGJ162-2008); (8)《建筑地基基础设计规范》(GB50007-2011) (9)《公路桥涵地基与基础设计规范》(JTG D63-2007) (10)《装配式公路钢桥制造》(JT/T728-2008) (11)《装配式公路钢桥多用途使用手册》

连续梁 下部结构计算书

**公路二期工程 *大桥 3×30m连续梁下部结构计算书 1.工程概况 桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m 桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。 主梁边支点采用普通板式橡胶支座,中墩与主梁固结。 2.设计规 《城市桥梁设计准则》(CJJ11—93); 《城市桥梁设计荷载标准》(CJJ77—98); 《公路工程技术标准》(JTGB01-2003); 《公路桥涵设计通用规》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004)); 《公路桥涵地基与基础设计规》(JTG D63—2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路桥涵施工技术规》(JTJ041-2000); 3.静力计算 3.1 计算模型 由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的力及变形。桥梁力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度 根据m法计算(m 0=1.2×105kN/m4,K 水平 =2.4×106kN/m,K 弯曲 =1.1× 107kN.m/rad)。 根据桥梁结构受力特点,其计算模型见下图。

简支梁桥下部结构计算书

计算书 工程名称: 设计编号: 计算内容:桥梁计算书 共页 计算年月日校核年月日审核年月日专业负责年月日

目录 一、计算资料.......................................... 错误!未定义书签。 二、桥梁纵向荷载计算.................................. 错误!未定义书签。 1.永久作用........................................... 错误!未定义书签。 2.可变作用........................................... 错误!未定义书签。 三、桥墩、桥台盖梁抗弯、抗剪承载力计算及裂缝宽度计算.. 错误!未定义书签。 四、墩台桩基竖向承载力计算............................ 错误!未定义书签。 五、桥台桩身内力计算.................................. 错误!未定义书签。 1、桥台桩顶荷载计算................................... 错误!未定义书签。 2、桥台桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥台桩身内力............................... 错误!未定义书签。 六、桥墩桩身内力计算.................................. 错误!未定义书签。 1、桥墩墩柱顶荷载计算................................. 错误!未定义书签。 2、桥墩桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥墩桩身内力............................... 错误!未定义书签。 七、桥台、桥墩桩基桩身强度校核........................ 错误!未定义书签。 1、桥台桩基桩身强度校核............................... 错误!未定义书签。 2、桥墩桩基桩身强度校核............................... 错误!未定义书签。 一、计算资料

1、60 100 60m连续梁悬臂t构墩梁临时固结方案计算书

新建铁路沈阳至丹东客运专线太子河特大桥(60+100+60)m连续梁悬臂T构临时固结 抗倾覆结构设计计算书 计算:刘东跃 复核: 审定:刘东跃 中铁九局集团有限公司 2011年5月16日

一、工程概况 新建沈阳-丹东铁路客运专线本溪枢纽工程太子河特大桥,位于本溪市明山区,中心里程为DK56+899.82,桥梁全长1345.96m。其中跨越本溪市滨河南路为一联(60+100+60)m连续梁,桥墩牌号为27#~30#,28#和29#墩为悬臂梁O#段主墩。 连续梁桥墩为双线圆端型实体桥墩。28#墩墩高为19m、29#墩墩高为11.5m;边墩27#墩高为21.5m、30#墩墩高9m。28#墩和29#墩墩顶横向长度为10m,纵向宽度为4m,其中两端为半径2m圆弧。 连续梁截面采用单箱单室、变高度、变截面直腹板形式。箱梁顶宽12.2m,底宽6.7m。顶板厚度除梁端附近外均为400mm,腹板厚度600—1000mm,按折线变化,底板厚度由跨中的400mm变化至根部的1200mm。中支点处梁高7.85m,跨中10m直线段及边跨15.75m直线段梁高为4.85m。 0#块长度为14m,边跨现浇段长度9.75m,采用支架法现浇。边跨合拢段和中跨合拢段长度均为2m。1#~13#节段及合拢段梁段采用挂篮悬浇。为悬臂浇筑稳定,T构设置临时固结。 二、墩梁临时固结设计荷载 新建沈阳-丹东铁路客运专线无砟轨道预应力混凝土连续梁(双线悬浇)(60+100+60)m施工设计图《沈丹客专桥通-Ⅰ-04》设计说明书“七章施工方法及注意事项、(八)款”中“墩梁临时固结措施:各中墩梁临时固结措施(或临时支墩),应能承受中支点处最大不平衡弯矩70941KN -m和相应竖向反力57301KN(本值为参考值,施工单位应结合具体荷载情况进行计算和检算),墩梁固结或临时支墩在横桥向必须对应箱梁腹板范

桥梁下部结构通用图计算书

第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T 梁横断面 (4) 2.2.2 T 梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10)

3.2.4 桥墩计算偏心距的增大系数................. 错误!未定义书签。

3.2.5 墩柱正截面抗压承载力计算. (12) 3.2.6 裂缝宽度验算. (13) 3.3 20 米T 梁墩柱计算 (13) 3.3.1 计算模型的选取. (13) 3.3.2 15 米墩高计算 (14) 3.3.3 30 米墩高计算 (18) 3.4 30 米T 梁墩柱计算 (22) 3.4.1 计算模型的选取. (22) 3.4.2 15 米墩高计算 (23) 3.4.3 30 米墩高计算 (27) 3.4.4 40 米墩高计算 (32) 3.5 40 米T 梁墩柱计算 (36) 3.5.1 计算模型的选取. (36) 3.5.2 15 米墩高计算 (37) 3.5.3 30 米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值. (47) 4.2 计算分析. (47) 4.2.1 抗震计算模型. (47) 4.2.2 动力特性特征值计算结果. (48) 4.2.3 E1 地震作用验算结果 (49) 4.2.4 E2 地震作用验算结果 (49) 4.2.5 延性构造细节设计. (51) 4.3 抗震构造措施. (53) 第一部分项目概况及基本设计资料 1.1 项目概况 贵州省余庆至安龙高速公路罗甸至望谟段,主线全长77.4 公里,项目地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、结构耐久、施工方便、维修便利及施工标准化等因素。主线普通桥梁结构主要选择20m 30m 40m装配式预应力砼T梁。

预应力简支板桥下部结构计算书

第四章下部结构计算书 4.1 设计资料 设计荷载:公路Ⅱ级;桥面净空:12.5+2×0.5=13.5m 计算跨径: 09.6 l m 上部构造:钢筋混凝土空心板桥 4.1.2 水文地质条件 本桥桥位处地下水位埋深较浅,当采用天然地基挖方时将揭露地下水,且表层一般为发育软土层,施工难度较大,建议本段桥梁采用桩基础。 4.1.3 材料 钢筋:盖梁主筋用HRB335钢筋,其他均用R235钢筋 混凝土:盖梁用C30混凝土,桥台桩基用C25混凝土 4.1.4 桥墩尺寸 考虑原有标准图,选用下图所示结构尺寸: 图4—1 4.1.5 设计依据 《公路桥涵地基与基础设计规范》(JTG D6—2007) 4.2 盖梁计算 上部结构荷载及支座反力表4—1 每片边梁自重(KN/m)每片中梁自重 (KN/m)一孔上部构造自重 (KN) 每一个支座恒载反力(KN) 1、13号2—12号边板1、13号中板2—12号 18.60 16.46 2182.6 93.0 82.3 4.2.2 盖梁自重及内力计算 图4—2 盖梁内力计算表表4—2

截面编号 自重弯矩剪力(KN)(KN/m)(K N·m)Q左Q右 1-1 截面 -15.6-15.6 2-2 截面 -54-54 3-3 截面 -73.797.6 4-4 截面 81.181.1 5-5 截面 6.02 6.02 6-6 截面 -69.06-69.06 7-7 截面 -85.6-85.6

4.2.3 活载计算 (1)活载横向分配系数计算,荷载对称布置时用杠杆原理法,非对称布置 时用铰接板法 1)对称布置时 a) 单列车对称布置时 图4—3 b) 双列车对称布置时 图4—4 c)三列车对称布置时 图4—5 d) 四列车对称布置时 图4—6 2) 非对称布置时 a) 单列车非对称布置时 b) 双列车非对称布置时 c) 三列车非对称布置时 d) 四列车非对称布置时 (2)按顺桥向活载移动情况,求得支座活载反力的最大值 本桥计算跨径为9.6m ,考虑到桥面连续处也可布载,布载长度为: 图4—7 a) 单孔荷载 单列车时:11.0150+9.8 1.07.875=188.592 B KN =???? 当为两列车时,则:22188.59=377.18B KN =? 当为三列车时,则:33188.59=565.77B KN =? 当为四列车时,则:44188.59=754.36B KN =? b )双孔荷载

ANSYS四跨连续梁的内力计算教程

ANSYS四跨连续梁的力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位0.3m2,抗弯惯性矩为0.003m4,截面高度为0.1m;材料的弹性模量为1000kN/m2,泊松比为0.3。补充这些参数对于梁的力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add 按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic 3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add 按钮新建实力常量

相关文档
最新文档