各种数学建模杂志及书籍

各种数学建模杂志及书籍
各种数学建模杂志及书籍

各种数学建模杂志及书籍

●国际数学和计算机建模协会

●International Association for Mathematical and Computer Modelling Home Page ●应用数学建模

●Applied Mathematical Modelling (Elsevier)

●应用数学和计算

●Applied Mathematics and Computation

●欧洲应用数学杂志

●European Journal of Applied Mathematics (Cambridge)

●IMA 应用数学杂志

●The IMA Journal of Applied Mathematics (Oxford)

●SIMA的应用数学杂志

●SIAM Journal on Applied Mathematics

●数学建模和数值分析杂志

●Journal Mathematical Modelling and Numerical Analysis-Rairo

●数学建模和分析杂志

●Journal of mathematical modelling and analysis

●美国工业和应用数学会评论

● SIAM Review

●大学生数学和应用杂志

● The Journal of Undergradute Mathematics and Applications

●高校应用数学学报

●数学的实践与认识

●书籍

●《数学模型》,姜启源著,高等教育出版社。

●《数模教育与国际数模竞赛》,叶其孝主编,工科数学杂志。

●《数学建模竞赛辅导教材》一、二、三,叶其孝主编,湖南教育出版社。

●《数学建模竞赛教材》李尚志主编,江苏教育出版社。

●《微分方程模型》

●《政治及其有关模型》

●《离散和系统模型》

●《生命科学模型》 W.F.lucas 主编,国防教育出版社。

●《数学模型计算机应用》,H.P.Williams著,国防工业出版社

●《数学建模与实验》,南京地区工科院校数建模讨论班,河海大学出版社.

●《数学模型基础》,王树禾著,中国科大出版社.

●《数学建模精品案例》,朱道元著,东南大学出版社.

●《数学模型与数学建模》,刘来福,曾文艺著,北京师范大学出版社.

●《数学建模入门》,徐全智,杨晋浩,电子科大出版社.

●《数学模型》,杨启帆,边馥萍,浙江大学出版社.

●全国大学生数学建模竞赛资料

(单价含邮费,前一单价为10本以上、后一单价为10本以下的单价)

●*1. 2003年全国大学生数学建模竞赛优秀论文集 (《工程数学学报》2003年7期) 5

元/本,10元/本

2. 2002年全国大学生数学建模竞赛优秀论文集 (《工程数学学报》2003年5期) 5

元/本,10元/本

3. 2001年全国大学生数学建模竞赛优秀论文集 (《工程数学学报》2002年5期) 8.5

元/本,10元/本

4.《全国大学生数学建模竞赛优秀论文汇编(1992-2000)》

5.《中国大学生数学建模竞赛》第二版(李大潜主编)

●*6.《2003年美国大学生数学建模竞赛(MCM、 ICM)优秀论文集》

●7.《2002年美国大学生数学建模竞赛(MCM)优秀论文集》

(资料7包括2001、2002年交叉学科建模竞赛(ICM)优秀论文集)

8.《大学生数学建模竞赛辅导教材(一)》(叶其孝主编)

9.《大学生数学建模竞赛辅导教材(二)》(叶其孝主编)

10.《大学生数学建模竞赛辅导教材(三)》(叶其孝主编)

●11.《大学生数学建模竞赛辅导教材(四)》(叶其孝主编)

数学建模与计算机的重要性

数学建模与计算机的联系及重要性 摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。本文浅谈了数学建模与计算机在人类生产和生活中的重要性。 关键词:数学建模计算机重要性 当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。 一、数学建模与计算机息息相关 其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。例如下面有这样一道

题就是利用数学软件lingo 求解的。 例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大? 解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型 为: 目标函数 12max 200300z x x =+ 约束条件 1212100,120,160, 0,1,2. i x x x x x i ≤??≤??+≤??≥=? 编写LINGO 程序如下: MODEL: SETS: SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA: A=1,2 ; B=100,120; C=200,300; ENDDATA

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模的经典模板

一、摘要 内容: (1)用1、2句话说明原问题中要解决的问题; (2)建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点; (3)算法思想(求解思路),特色; (4)主要结果(数值结果,结论);(回答题目的全部“问题”) (5)模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广 要求 (1)特色和创新之处必须在这里强调; (2)长度 (3)要确保准确、简明、条理、清晰、突出特色和创新点; 二、问题的提出 内容: 用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求; 要求: (1)不是题目的完整拷贝 (2)根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求; 三、条件假设 内容 (1)根据题目中的条件做出假设 (2)根据题目中的要求做出假设; 要求 (1)合理性最重要; (2)假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺; (3)合理假设作用: 简化问题,明确问题,限定模型的适用范围 四、符号约定 五、问题分析 1.名词解释 2.问题的背景分析 3.问题分析 六、模型建立 抽象要求 (1)模型的主要类别:初等模型、微分方程模型、差分方程模型、概率模型、统计预测模型、

优化模型、决策模型、图论模型等 (2)几种常见的建模目的:(对应相对(1)的方法) 描述或解释现实世界的各类现象,常采用机理型分析方法,探索研究对象的内在规律性; 预测感兴趣的时间爱你是否会发生,或者事物的房展趋势,常采用数理统计或模拟的方法; 优化管理、决策或者控制事物,需要合理地定义可量化的评价指标及评价方法; (3)建模过程常见的几个要点: 模型的整体设计、合理的假设、建立数学结构、建立数学表达式; (4)模型的要求: 明确、合理、简洁、具有一般性; 例如:有些论文不给出明确的模型,只是就赛题所给的特殊情况,用凑得方法给出结果,虽然结果大致对,但缺乏一般性,不是建模的正确思路;((与第三点对应)) (5)鼓励创新,特别欣赏独树一帜、标新立异,但要合理 (6)避免出现罗列一系列的模型,又不做评价的现象; 具体要求: (1)基本模型:首先要有数学模型:数学公式、方案等;基本模型,要求完整,正确,简明(2)简化模型:要明确说明,简化思想,依据;简化后的模型尽可能给出; 七、模型求解 每一块内容包括:计算方法设计或选择、算法设计或选择、算法思想依据、步骤及实现、计算框图、所采用的软件名称 写作要求: 1、需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密 2、需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称 3、计算过程,中间结果可要可不要的,不要列出 4、设法算出合理的数值结果 5、最终数值结果的正确性或合理性是第一位的 6、对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进 7、题目中要求回答的问题,数值结果,结论,须一一列出 8、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据 9、结果表示:要集中,一目了然,直观,便于比较分析 ▲数值结果表示:精心设计表格;可能的话,用图形图表形式 ▲求解方案,用图示更好 10、必要时对问题解答,作定性或规律性的讨论。最后结论要明确 内容 (1)算法设计或选择,算法的思想依据,步骤; (2)引用或建立必要的数学命题和定理; (3)在不能给出精确解的情况下,需要给出不知一种解法(算法),并进行测试比较,给出

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模参考书大全

专业性参考书(这方面书籍很多,仅列几本供参考) : 1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版,2011年第四版;第一版在1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2.数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3.数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991). 4.数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5.数学模型,濮定国、田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7.数学模型,陈义华编著,重庆大学出版社,(1995) 8.数学模型建模分析,蔡常丰编著,科学出版社,(1995). 9.数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10.数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11.数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12.数学模型基础,王树禾编著,中国科学技术大学出版社,(1996). 13.数学模型方法,齐欢编著,华中理工大学出版社,(1996). 14.数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996). 15.数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社。 17.数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18.数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模活动策划书

数学建模活动策划方案(初稿) 一、活动背景 数学建模协会面向全校招新活动圆满完成。为了促进协会会员对数学建模的了解,增强对数学建模的认识,数学建模协会对近期一年时间策划此次活动,希望通过活动,增强新会员对数学建模协会的兴趣和认识度,是新会员对数学建模的活动、工作有一定了解和一个全新的认识。 二、活动目的及意义 为了让同学们对数学建模及竞赛有一个初步的了解,激发广大学子学习数学建模的热情,促进我校大学生课外科技活动的蓬勃开展,提高大学生的创新意识及运用数学知识和计算机技术解决实际问题的能力,推广数学建模精神,让同学们了解数学建模,接近数学建模,喜欢数学建模。活动对培养同学们应用数学知识解决实际问题的兴趣,开拓眼界等都有着十分重要的意义。活动的开展不仅为民院学子提供了一次施展才华和挑战自我的机会,也为学子创造了一个学习实践与思想交流的平台。 三、活动主题 走进数学建模 四、主办单位 社团联合会数学建模协会 五、承办单位

社团联合会数学建模协会 六、活动内容 (一)数学建模知识讲座 (二)新老会员见面交流会 (三)团队娱乐游戏活动 (四)小型数学建模大赛 七、活动步骤 (一)数学建模知识讲座 1、前期准备:邀请相关老师并协调好时间、通知协会会员及兴趣 爱好者 2、中期过程:(1)安排知识讲座时间、地点以及准备相关物品 (2)内容:数学建模思想、数学建模理论 3、后期安排:相关工作人员做工作总结 (二)新老会员见面交流会 1、前期准备:邀请相关人员为交流会做准备、通知协会会员 2、中期过程:安排见面交流会的时间、地点以及准备相关物品 3、后期安排:相关工作人员做工作总结 (三)团队娱乐游戏活动(待定) (四)小型数学建模大赛 1、前期准备:对举行小型数学建模大赛的意义进行宣传,并通知 比赛时间地点、比赛模式,邀请相关老师参与 2、中期过程:由相关老师批阅后进行表彰

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

数学建模读书笔记

数学建模是通过对实际问题进行抽象、简化,反复探索,构件一个能够刻划客观原形的本质特征的数学模型,并用来分析、研究和解决实际问题的一种创新活动过程。 数学建模的几个过程: 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。 模型分析:对所得的结果进行数学上的分析。 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,在次重复建模过程。 模型应用:应用方式因问题的性质和建模的目的而异 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程,数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 数学模型的分类 (1)按模型的应用领域分类: 生物数学模型,医学数学模型,地质数学模型,数量经济学模型,数学社会学模型等。(2)按是否考虑随机因素分类: 确定性模型与随机性模型 (3)按是否考虑模型的变化分类: 静态模型与动态模型 (4)按应用离散方法或连续方法分类: 离散模型与连续模型 (5)按建立模型的数学方法分类: 几何模型,微分方程模型,图论模型,规划论模型,马氏链模型等。 (6)按人们对是物发展过程的了解程度分类: 白箱模型:指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。灰箱模型:指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如气象学、生态学经济学等领域的模型。 黑箱模型:指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。 数学建模方法

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

全国大学生数学建模竞赛参考书籍

数学建模教材目录 (2007年12月整理) 1982 年以来国内正式出版的数学建模教材、译著及竞赛辅导材料,及与数学建模相关的数学实验教材(仅据各地告知的统计): 1. E. A. Bender, 数学模型引论,朱尧辰、徐伟宣译,科学普及出版社,198 2. 2. 近藤次郎,数学模型,宫荣章等译,机械工业出版社,1985. 3. C. L. 戴姆, E. S. 艾维著, 数学构模原理,海洋出版社,1985. 4. 姜启源,数学模型,高等教育出版社,1987. 5. 任善强,数学模型,重庆大学出版社,1987. 6. M. Braun, C. S. Coleman, D. A. Drew, 微分方程模型,朱煜民、周宇虹译,国防科技大学出版社,(本书为 W. F. Lucas 主编的 Modules in Applied Mathematics 一书的第一卷),1988. 7. 谌安琦,科技工程中的数学模型,中国铁道出版社,1988. 8. 江裕钊、辛培清,数学模型与计算机模拟,电子科技大学出版社,1989. 9. 杨启帆、边馥萍,数学模型,浙江大学出版社,1990. 10. 董加礼、曹旭东、史明仁,数学模型,北京工业大学出版社,1990. 11. 唐焕文、冯恩民、孙育贤、孙丽华,数学模型引论,大连理工大学出版社,1990. 12. 姜启源,数学模型(第二版),高等教育出版社,1991. 13. H. P. Williams, 数学规划模型建立与计算机应用,国防工业出版社,1991. 14. 李文,应用数学模型,华中理工大学出版社,1993. 15. 叶其孝主编,大学生数学建模竞赛辅导教材,湖南教育出版社,1993. 16. 寿纪麟,数学建模 - 方法与范例,西安交通大学出版社,1993. 17. 叶其孝主编,数学建模教育与国际数学建模竞赛,《工科数学》杂志社,1994.

数学建模中的重要问题解答

数模模拟赛论文 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为:B12 职务姓名学号学院专业和班级 队长张林10251003201 数学与计算科学学院2010数学与应用数 学2班 队员陈强10251003106 数学与计算科学学院2010数学与应用数 学1班 队员庞阳华10251003230 数学与计算科学学院2010数学与应用数 学2班

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 北京市水资源短缺风险综合评价 一.摘要 本文以北京地区水资源短缺风险问题及北京市水资源短缺情况数据来进行综合评价,首先构造隶属函数]5[以评价水资源系统的模糊性,其次利用logistic 回归模型模拟和预测水资源短缺风险发生的概率,而后建立了基于模糊概率的水资源短缺风险评价模型,最后利用判别分析识别出水资源短缺风险敏感因子并提出改进方案。 本文最大的亮点是采用采用Logistic回归模型来模拟缺水量系列的概率分布,logistic回归方法具有对因变量数据要求低、计算结果唯一、模型精度高等优点。 二.问题重述 近年来,我国水资源短缺问题日趋严重,尤其是北京水资源短缺已成为焦

数学建模 自习室管理系统

一.问题重述: 近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多,这要求提供一种最节约、最合理的管理方法。根据题目所给出的数据,有以下问题。数据见表。 1.假如学校有8000名同学,每个同学是否上自习相互独立,上自习的可能性为0.7. 要使需要上自习的同学满足程度不低于95%,开放的教室满座率不低于4/5,同时尽量不超过90%。问该安排哪些教室开放,能达到节约用电的目的。 2.在第一问基础上,假设这8000名同学分别住在10个宿舍区,现有的45个教室分为9个自习区,按顺序5个教室为1个区,即1,2,3,4,5为第1区,…, 41,42,43,44,45为第9区。这10个宿舍区到9个自习区的距离见表2。学生到各教室上自习的满意程度与到该教室的距离有关系,距离近则满意程度高,距离远则满意程度降低。假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同。请给出合理的满意程度的度量,并重新考虑如何安排教室,既达到节约用电目的,又能提高学生的满意程度。另外尽量安排开放同区的教室。3.假设临近期末,上自习的人数突然增多,每个同学上自习的可能性增大为0.85,要使需要上自习的同学满足程度不低于99%,开放的教室满座率不低于4/5,同时尽量不超过95%。这时可能出现教室不能满足需要,需要临时搭建几个教室。 假设现有的45个教室仍按问题2中要求分为9个区。搭建的教室紧靠在某区,每个区只能搭建一个教室,搭建的教室与该区某教室的规格相同(所有参数相同),学生到该教室的距离与到该区任何教室的距离假设相同。问至少要搭建几个教室,并搭建在什么位置,既达到节约用电目的,又能提高学生的满意程度。

推荐:数学建模参赛真实经验(强烈推荐)1

数学建模参赛真实经验(强烈推荐) 本文档节选自: Matlab在数学建模中的应用,卓金武等编著,北航出版社,2011年4月出版 以下内容根据作者的讲座整理出来,多年数学建模实践经历证明这些经验对数学建模参赛队员非常有帮助,希望大家结合自己的实践慢慢体会总结,并祝愿大家在数学建模和Matlab世界能够找到自己的快乐和价值所在。 一、如何准备数学建模竞赛 一般,可以把参加数学建模竞赛的过程分成三个阶段:第一阶段,是个人的入门和积累阶段,这个阶段关键看个人的主观能动性;第二阶段,就是通常各学校都进行的集训阶段,通过模拟实战来提高参赛队员的水平;第三阶段是实际比赛阶段。这里讲的如何准备数学建模竞赛是针对第一阶段来讲的。 回顾作者自己的参赛过程,认为这个阶段是真正的学习阶段,就像是修炼内功一样,如果在这个阶段打下深厚的基础,对后面的两个阶段非常有利,也是个人是否能在建模竞赛中占优势的关键阶段。下面就分几个方面谈一下如何准备数学建模竞赛。 首先是要有一定的数学基础,尤其是良好的数学思维能力。并不是数学分数高就说明有很高的数学思维能力,但扎实的数学知识是数学思维的根基。对大学生来说,有高等数学、概率和线性代数就够了,当然其它数学知识知道的越多越好了,如图论、排队论、泛函等。我大一下学期开始接触数学建模,大学的数学课程只学习过高等数学。说这一点,主要想说明只要数学基础还可以,平时的数学考试都能在80分以上就可以参加数学建模竞赛了,数学方面的知识可以在以后的学习中逐渐去提高,不必刻意去补充单纯的数学理论。 真正准备数学建模竞赛应该从看数学建模书籍开始,要知道什么是数学建模,有哪些常见的数学模型和建模方法,知道一些常见的数学建模案例,这些方面都要通过看建模方面的书籍而获得。现在数学建模的书籍也比较多,图书馆和互联网上都有丰富的数学建模资料。作者认为姜启源、谢金星、叶齐孝、朱道元等老师的建模书籍都非常的棒,可以先看二三本。刚开始看数学建模书籍时,一定会有很多地方看不懂,但要知道基本思路,时间长了就知道什么问题用什么建模方法求解了。这里面需要提的一点是,运筹学与数学建模息息相关,最好再看一二本运筹学著作,仍然可以采取诸葛亮的看书策略,只观其大略就可以了,等知道需要具体用哪块知识后,再集中精力将其消化,然后应用之。 大家都知道,参加数学建模竞赛一定要有些编程功底,当然现在有Matlab这种强大的工程软件,对编程的的要求就降低了,至少入门容易多了,因为很容易用1条Matlab命令解决以前要用20行C语言才能实现的功能。因为Matlab的强大功能,Matlab在数学建模中已经有了非常广泛的应用,在很多学校,数学建模队员必须学习Matlab。当然Matlab的入门也非常容易,只要有本Matlab参考书,照猫画虎可以很快实现一些基本的数学建模功能,如数据处理、绘图、计算等。我的一个队友,当年用一天时间把一本二百多页的Matlab 教程操作完了,然后在经常运用中,慢慢地就变成了一名Matlab高手了。 对于有些编程基础的同学,最好再看一些算法方面的书籍,了解常见的数据结构和基本

数学建模__SPSS_典型相关分析

典型相关分析 在对经济问题的研究和管理研究中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关性。典型相关分析就是测度两组变量之间相关程度的一种多元统计方法。 典型相关分析计算步骤 (一)根据分析目的建立原始矩阵 原始数据矩阵 ?? ????????? ???nq n n np n n q p q p y y y x x x y y y x x x y y y x x x 2 1 2 1 222212221 1121111211 (二)对原始数据进行标准化变化并计算相关系数矩阵 R = ?? ? ? ??22211211 R R R R 其中11R ,22R 分别为第一组变量和第二组变量的相关系数阵,12R = 21 R '为第一组变量和第二组变量的相关系数 (三)求典型相关系数和典型变量 计算矩阵=A 111-R 12R 122-R 21R 以及矩阵=B 122-R 21R 1 11-R 12R 的特征值和特征向量,分 别得典型相关系数和典型变量。 (四)检验各典型相关系数的显著性 第五节 利用SPSS 进行典型相关分析 第一步,录入原始数据,如下表:X1 X2 X3 X4 X5 分别代表多孩率、综合节育率、初中及以上受教育程度的人口比例、人均国民收入和城镇人口比例。

1、点击“Files→New→Syntax”打开如下对话框。 2、输入调用命令程序及定义典型相关分析变量组的命令。如图

输入时要注意“Canonical correlation.sps”程序所在的根目录,注意变量组的格式和空格。 第三步,执行程序。用光标选择这些命令,使其图黑,再点击运行键,即可得到所有典型相关分析结果。

数学模型数学建模重点

数学模型:对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。 数学建模: 建立数学模型的全过程 (包括表述、求解、解释、检验等) 静 态 优 化 模 型 现实世界中普遍存在着优化问题 静态优化问题指最优解是数(不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数 求解静态优化模型一般用微分法 数学规划模型 实际问题中的优化模型 m i x g t s x x x x f z Max Min i T n ,2,1,0)(..),(),()(1=≤==或 x ~决策变量 f (x )~目标函数 g i (x )≤0~约束条件 多元函数条件极值:决策变量个数n 和约束条件个数m 较大 最优解在可行域的边界上取得 线性规划 非线性规划 整数规划 重点在模型的建立和结果的分析 稳定性模型 对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势 ——平衡状态是否稳定。 不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。 离散模型 离散模型:差分方程(第7章)、整数规划(第4章)、图论、对策论、网络流、… … 分析社会经济系统的有力工具 只用到代数、集合及图论(少许)的知识 ——层次分析模型 日常工作、生活中的决策问题 涉及经济、社会等方面的因素 作比较判断时人的主观选择起相当大的作用,各因素的重要性难以量化 AHP ——一种定性与定量相结合的、系统化、层次化的分析方法 1. 将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素, 各层 元素间的关系用相连的直线表示。 2. 通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

相关文档
最新文档