实验5红外光谱法结构分析初步

实验5红外光谱法结构分析初步
实验5红外光谱法结构分析初步

实验5红外吸收光谱法结构分析初步

一、实验目的

1.掌握一般固体固体试样的制样方法以及压片机的使用方法。

2.了解红外光谱仪的工作原理。

3.掌握红外光谱仪的一般操作。

二、实验原理

红外吸收光谱是由于分子中振动能级的跃迁(同时伴随着转动能级的跃迁)而产生的。由于不同物质或同一物质的不同聚集态中各基团固有的振动频率不同或结构的不同,导致所产生的吸收谱带的数目、位置、形状以及强度的不同,因此我们可根据物质的红外吸收光谱来判断该物质或其某个或某些官能团是否存在。

本实验是根据间硝基苯甲酸上几个官能团的特征吸收峰来鉴别该物质的。

三、仪器和试剂

1.仪器:MB104、FTIR2000或其他型号的红外光谱仪,压片机,模具和试样,玛瑙研钵,不锈钢药匙,不锈钢镊子,红外烘灯。

2.试剂:间硝基苯甲酸(AR),KBr(光谱纯),无水乙醇(AR),棉球。

四、实验内容

1.准备工作

(1)打开红外分光光度计开关,预热20min,打开电脑。

(2)用无水乙醇棉球擦洗玛瑙研钵,用红外烘灯烘干。

2.试样的制备

(1)试样处理取试样1-2mg,加大约100倍试样量的KBr于玛瑙研钵中研磨,在红外烘灯下边烘边研。一般试样用力研磨20min,高分子试样需要更长时间。

(2)装模取出模具,准确套上模膛,放好垫片,将制好的试样均匀的抖入模膛内,试样量以能压片为准,在能成片的基础上越薄越好。再放入另一个垫片,装上插杆。

(3)压片将模具置于压片机工作台中心,旋动压力丝杆将模具顶紧,顺时针关闭放油阀,摇动油泵把手,使压力上升至15MPa,保持5min。

(4)脱模逆时针拧开放油阀,旋松压力丝杆,轻轻地取出模具,与装模顺序相反取出试样。将试样放在固体试样池上。

3.吸收光谱

(1)打开灯电源

(2)点击GRAMS AI图标,红外分光光度计软件。

(3)背景扫描:点击Collect→Collect→Background.spc→进入自己的文件夹(或新建文件夹),并输入文件名保存→Background→Ok Collect 得到试样的红外光谱图。

(4)试样图谱扫描:将试样放在仪器的试样夹上,点击Collect→Collect→normal →%Trans→输入试样名→Ok Collect得到试样的红外光谱图。

(5)谱图后处理:点击Edit→Peak picker→Show peak marks for all traces→选择合适的参数,给图谱标峰。若需要打印点击File→Print

(6)将盐片或研钵擦洗干净,收拾桌面。关闭主机上的灯电源。

4.结束工作

(1)关闭红外工作软件,电脑电源

(2)用水清洗玛瑙研钵、不锈钢镊子、药匙,然后用酒精棉球擦拭,在红外烘灯下烘干。

(3)清理台面,填写仪器使用记录。

由图可知:间硝基苯甲酸的特征峰如下,硝基:1530cm-1和1353 cm-1 ,羰基:1694cm-1 ,苯环:1618cm-1 和1484cm-1 ,3091 cm-1处出现苯环的C-H伸缩振动 , 3500cm-1以上的多重叠峰是形成氢键而蒂合的-OH伸缩振动,苯的间位取代:704 cm-1 和721 cm-1 。

五、思考题

1、试样颗粒大小对谱图的测定有何影响?

答:试样颗粒小,使得制得的薄片的厚度太小,那么会使一些弱的吸收峰和光谱的细微部分不能显示出来,反之,过大的试样颗粒,又会使强的吸收峰超过标尺刻度而无法确定它的真实位置,所以试样的颗粒大小在尽量小的情况下,要大小均匀,在分散剂中才能得到好的分散。

2、用压片法制样,研磨时不在红外灯下操作,谱图上会出现什么情况?

答: 不在红外光下操作,就不能保证试样的绝对干燥,可能残留水分的羟基峰会影响对图谱的判断。

七、误差分析

研磨不够充分,压片效果不好。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

常规样品的红外光谱分析

常规样品的红外光谱分析 PB07206298龚智良 实验目的 1.初步掌握两种基本样品制备技术及傅立叶变换光谱仪器的简单操作; 2.通过图谱解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 实验原理 红外光谱:红外光谱是分子的振动转动光谱,也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动引起的偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些区域的光透射强度减弱。记录红外光的百分透射比或波长关系曲线,就得到红外光谱。从分子的特征吸收可以鉴定化合物和分子结构,进行定性和定量分析。红外光谱尤其在物质定性分析中应用广泛,它操作简便,分析速度快,样品用量少且不破坏样品,能提供丰富的结构信息,因此红外光谱法往往是物质定性分析中优先考虑的手段。 能产生红外吸收的分子为红外活性分子,如CO?分子;不能产生红外吸收的分子为非红外活性分子,如O?分子。 中红外区为基本振动区:4000-400cm-1研究应用最多。 红外吸收的波数与相应振动的力常数关系密切。双原子分子的基本频率计算公式为 ??=12????? 其中?为约化质量 μ=m??m? m?+m? 对于多原子分子,其振动可以分解为许多简单的基本振动,即简正振动。一般将振动形式分为两类:伸缩振动和变形振动。 各种振动都具有各自的特征吸收。 仪器结构和测试技术 Fourier变换红外光谱仪(FTIR仪):能够同时测定所有频率的信息,得到光强随时间变化的谱图,称时域图,这样可以大大缩短扫描时间。由于不采用传统的色散元件,其分辨率和波数精度都较好。傅立叶变换红外谱仪主要由光源(硅碳棒、高压汞灯)、Michellson干涉仪、检测器、计算机和记录仪组成。测试样品时,由于样品对某些频率的红外光吸收,从而得到不同样品的干涉图。红外光是复合光,检测器接收到的信号是所有频率的干涉图的加合。 对试样的要求:试样应该为纯物质,纯度大于98%,以便于和纯化合物进行比较;样品中不能含游离水;试样的浓度和测试厚度应选择适当,以使大多数吸收峰的透射比处于10%-80%。 制样方法:对于液体样品有液膜法、液体吸收池法;对于固体样品有压片法、糊状法;对于特殊的样品还有薄膜法(包括熔融法和热压成膜法、溶液制膜法);对于气态样品一般都灌注于气体池中进行测试。 除了常规的测试技术外,红外光谱测试还有衰减全发射和偏振红外光谱等特殊的测试技术。 实验步骤、现象及讨论 固体样品制备:使用KBr压片法。用一个玛瑙研钵将少量KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀,并使其颗粒大小比所检测的光波长更小(约2μm以下)。在一个具有抛光面的金属模具上方一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。KBr压片形成后,用夹具固定测试。注意样品制备过程中一定要将粉末研得足够细,判断的标准是粉末粘在研钵壁上比较紧。整个操作过程在红外灯下进行,这样可以减少样品制备过程中吸水的量。在制备固体样品之前,要用酒精棉球把刮勺、研钵、研杵擦干净。 液体样品的制备:取一对NaCl窗片,用刮勺沾一滴未知液体在一块窗片上,然后用另外一块窗片覆

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

红外光谱分析77952

红外光谱分析 二十世纪初叶,Coblentz 发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1 列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。 表1 常用的有机光谱及对应的微观运动

红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。通常红外光谱系指2-25 μ之间的吸收光谱,常用的为中红外区4000-650cm-1(2.5-15.4 μ) 或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振 动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分 子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱 对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C 为光速(3 ×1010cm/s) 。设υ为波数,其含义是单位长度(1cm) 中所含的波的个数,并应具有以下关系:波数(cm-1) =104/ 波长( μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的 波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%) 表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动( υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的 吸收频率相对在高波数区。 (2)弯曲振动( δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm -1(高) 400cm -1(低) 3、红外光谱吸收峰主要的几种类型 (1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。 (2)倍频峰:出现在基频峰波数二倍处。如基频为900cm-1,倍频为

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

第五章红外吸收光谱分析

第五章红外吸收光谱分析 §5-1概述 红外光谱分析是现代仪器分析中历史悠久并且还在不断发展的分析技术,对于未知物的定性、定量以及结构分析都是一种非常重要的手段,广泛应用于药物、染料、香料、农药、感光材料、橡胶、高分子合成材料、环境监测、法医鉴定等领域。近年来,由于红外光谱技术的不断发展,红外光谱仪的不断完善,红外光谱和色谱、核磁共振、质谱的连用使红外光谱的应用开辟了更为广阔的途径。 红外吸收光谱又称为分子振动光谱。这是因为分子振动、转动能级跃迁所吸收的电磁波谱正好处于红外区。 一、红外吸收光谱 红外吸收光谱:记录物质对红外光的吸收程度与波长或波数关系图。用T-λ曲线或T-σ曲线来表示。 波数(σ)每cm长光波中波的数目,用CM-1表示。红外光谱图的利用,可提供三方面信息: ①吸收峰的数目②吸收峰的位置(σ)③吸收峰强度(透光率) 红外光区中红外区远红外区波长/μm 0.78~2.5 2.5~50 50~300 波数/cm-112820~4000 4000~200 200~33 三、红外光谱的优点与缺点 1、优点 ①使用范围 g、s、l 无机、有机大分子 ②操作方便③样品用量少④不破坏样品⑤重现性好 2、缺点 ①定量时灵敏度低,准确性差②谱带复杂 §5-2 红外光谱分析基本原理 (同系物难区别,只可判断出属于哪种物质) 一、产生红外吸收的条件 1、能量相等条件:振动或转动能级跃迁的能量与红外辐射光子能量相等。 即△E=-△vhυ△E L =hυL△E=△E LυL=△vυ 2、偶合作用(能量传递条件) 二、双原子分子的振动 振动方程式:库克定律 式中:C-光速(2. 998×10cm·s-1) K-化学键力常数(N·cm-1) μ-折合质量(g)μ=m1m2/(m1+m2) σ=1300

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除 无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁 波谱。波长在0.78?300卩m通常又把这个波段分成三个区域, 即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长入表征外,更常用波数 (wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收 谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

苯甲酸红外光谱的测定实验报告

苯甲酸红外光谱的测定实验报告 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握傅立叶红外光谱仪的结构和操作方法。 3、掌握基本且常用的KBr 压片制样技术。 4、通过实验巩固对常见有机化合物基团特征吸收峰的记忆。 二、仪器及试剂 1、仪器:Nexus 670型傅里叶变换红外光谱仪;BS 124S电子分析天平 2、试剂:苯甲酸样品(分析纯);KBr(光谱纯)。 三、实验原理 苯甲酸为无色,无味片状晶体。熔点122.13℃,沸点249℃,相对密度1.2659。苯甲酸是重要的酸型食品防腐剂。在酸性条件下,对霉菌、酵母和细菌均有抑制作用,但对产酸菌作用较弱。在食品工业用塑料桶装浓缩果蔬汁,最大使用量不得超过2.0g/kg;在果酱(不包括罐头)、果汁(味)型饮料、酱油、食醋中最大使用量1.0g/kg;在软糖、葡萄酒、果酒中最大使用量0.8g/kg;在低盐酱菜、酱类、蜜饯,最大使用量0.5g/kg;在碳酸饮料中最大使用量0.2g/kg。由于苯甲酸微溶于水,使用时可用少量乙醇使其溶解。 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; -1

红外光谱分析

红外光谱分析 序言 二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。 红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振

动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ) 波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动(υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的吸收频率相对在高波数区。 (2)弯曲振动(δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm-1(高) 400cm-1(低) 3、红外光谱吸收峰主要的几种类型 (1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。 (2)倍频峰:出现在基频峰波数二倍处。如基频为900cm-1,倍频为 1800cm-1。 4、红外光谱吸收峰的强度

光谱分析报告 实验报告材料

实 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁 波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

现代仪器分析 第五章

第五章红外吸收光谱分析 5.1红外光谱法概述 5.11红外光谱与红外光谱分析法 红外吸收光谱:又称分子振动-转动光谱,是物质的分子在吸收了红外辐射后引起分子的振动-转动能级跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。 红外吸收光谱分析法:是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法,即利用红外光谱进行定性、定量分析的方法。 5.12红外光区的划分 红外辐射(即红外光)是波长接近于可见光但能量比可见光低的电磁辐射,其波长范围约为0.75μm?1000μm。 根据所采用的实验技术和获得信息的不同,可将红外光按波长分为三个区(表),其中大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红

5.13红外光谱的表示方法 当用一定波长的红外光作用于物质时,物质分子将吸收一定频率的红外辐射。将分子吸收红外辐射的情况用仪器纪录下来,即得到红外光谱图。 红外光谱图一般用T-σ或T-λ曲线来表示,其中横坐标为波长λ(μm) 及波数 σ(cm-1) ,表示吸收峰所在的位置;纵坐标一般为透射比T(%)。 波数σ和波长λ的关系为: 5.14红外光谱法的特点 ①. 红外光谱是分子振动-转动光谱,主要研究在分子振动中伴随有偶极矩变化的化合物。因此,除单原子分子和同核分子(如Ne、He、O2、N2、Cl2等少数

分子)外,几乎所有的化合物均可用红外光谱法进行研究。 ②.气态、液态和固态样品均可进行红外光谱测定。 ③.分析速度快、灵敏度高、样品用量少(可减少到微克级)且不破坏样品。 ④.常规红外光谱仪价格低廉,易于购置。 ⑤. 针对特殊样品的测试要求,发展了多种测量新技术,如光声光谱(PAS)、衰减反射光谱(ATR)、漫反射、红外显微镜等。 5.15红外光谱的应用 红外光谱法还广泛应用于化学、化工、催化、石油、地矿、材料、生物、医药和环境保护等许多领域。 红外光谱的应用大体上可分为两个方面: 用于分子结构的技术研究:如应用红外光谱可以测定分子的键长、键角,以此推断出分子的立体结构;根据所得的力学常数可以知道化学键的强弱;由简正振动的频率来计算热力学函数等。 用于化学组成的分析:根据光谱中吸收峰的位置和形状来推断未知物结构;依照特征吸收峰的强度来测定混合物中各组分的含量。 5.16红外光谱发展 红外辐射是在1800年由英国的威廉.赫谢尔发现的。一直到1903年,才有人研究了纯物质的红外吸收光谱。 二次世界大战期间,由于对合成橡胶的迫切需求,红外光谱才引起了化学家的重视和研究,并因此而迅速发展。 随着计算机的发展,以及红外光谱仪与其它大型仪器的联用,使得红外光谱在结构分析、化学反应机理研究以及化学组成分析中发挥着极其重要的作用,是“四大波谱”中应用最多、理论最为成熟的一种方法。 5.2红外光谱分析基本原理 5.21红外吸收光谱的产生 1.红外光谱的产生条件 物质分子吸收红外辐射而发生振动-转动能级跃迁必须满足两个条件:一是辐射光子的能量必须与发生振动和转动能级间的跃迁所需的能量相等;二是分子振动必须伴随有偶极矩的变化,辐射与物质之间必须有相互作用。

红外实验报告

红外实验报告 篇一:红外遥控实验报告 红外遥控开关 小组成员: 指导教师: 掌握电子电路设计的基本方法;了解各种红外收发器件;掌握红外遥控的收发方式;掌握红外遥控的编码、解码方式;掌握开关量信号对强电设备的控制方式设计要求及技术指标: 基本部分: [1] 红外遥控器采用现成的家用电器的红外遥控器,遥控距离不小于5米; [2] 遥控开关接收端的工作电源为220V 交流电; [3] 遥控开关使用发光二极管指示有无220V交流电源及遥控开关的开关状态; [4] 遥控开关能够控制台灯、电扇等家用电器,输出功率不超过200W。发挥部分: [1] 自制红外遥控器,包括至少4路遥控按键; [2] 遥控开关能够控制至少4路家用电器 设计任务 [1] 设计、安装、调试所设计的电路; [2] 画出完整电路图,详细说明电路原理,写出设计总

结报告 设计思路 红外遥控→红外接收→信号处理→开关驱动及显示 红外遥控器的发射端具有键盘矩阵,每按下一个键,即产生具有不同的编码的数字脉冲,这种代码指令信号调制在38kHZ的载波上,激励红外光二极管产生具有脉冲波串的红外波,通过空间的传送送到受控机内的遥控接收器。在接收过程中红外波信号通过滤波器和光电二极管转换为38kHZ的电信号,此信号经过放大、检波、整形、解调,送到解码器与接口电路,从而完成相应的遥控功能。 “红外线遥控器”设计方案 直流稳压电源部分 直流稳压电源的基本结构 设计电路 整流电路虽然已经把交流电转换成直流电, 但是整流出来的电压还不是平稳的直流电电压, 所以在整流电路的后边还要有滤波电路, 来改善整流输出电压的平滑程度, 这个工作由电容器来完成。 电路的核心是集成稳压电路LM317, 它有三个端点, 一个输入端, 一个输出端, 还有一个调节端。调节端接地在实际的焊接过程中,我们采用芯片7805代替了芯片LM317,由7805的OUT端输出直流的稳定的电压。三端稳

红外光谱实验报告

红外光谱实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在 2.5~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤 1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄

片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 表一聚乙烯的红外光谱 谱带位置/cm-1吸收基团的振动形式 2915.118 (—C—(CH )n—C— n≥4) 2 2849.065 (—C—(CH )n—C— n≤3) 2 1472.730 δC-H(面内) 730.320 δC-H(面外) 719.560 δC-H(面外)

光谱定性分析物理实验报告

竭诚为您提供优质文档/双击可除光谱定性分析物理实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振 动的形式。因此,特征吸收谱带的数目、位置、形状及强度

红外吸收光谱实验报告材料

实验三、红外吸收光谱实验报告 姓名:张瑞芳 班级:化院413班 培养单位:上海高等研究院 学号:2013E8003561147 指导教师:李向军 实验日期:2103年12月18日第2组

一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr 压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr 压片制样技术在红外光谱测定中的应用。 5、 通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、实验原理 红外光谱法又称“红外分光光度分析法”。简称“IR ”,是分子吸收光谱的一种。它利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。 (1)红外光谱产生条件 1)辐射应具有能满足物质产生振动跃迁所需的能量:即)λhc/(λ) νh(νΔE ΔE ΔE 转动振动转动振动转动 振动分子+=+=+= 2)辐射与物之间有相互耦合作用,产生偶极矩的变化。(没有偶极矩变化的振动跃迁,无红外活性,没有偶极矩变化、但是有极化度变化的振动跃迁,有拉曼活性。) (2)应用范围 红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能用该方法进行分析,无机、有机、高分子化合物也都可检测。 1)红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。

相关文档
最新文档