常用玻璃自炸裂原因

常用玻璃自炸裂原因
常用玻璃自炸裂原因

由于我国近年来大面积玻璃窗及各种玻璃幕墙日益增多,愈建愈高,各种玻璃在上墙后自裂(自爆)现象时有发生。我们经常接到此类咨询电话。高层幕墙的脚手架还在拆除中,玻璃就连续发生自爆(幕墙有个别向南的一面玻璃几乎全部自爆),给施工单位带来很大经济损失,并且更换困难。施工单位和玻璃制造厂家责任不易分清,现将几种玻璃自爆原因探讨如下,供大家参考。

一、玻璃幕墙的应用

玻璃幕墙作为建筑外墙的应用日益广泛,外墙必然受到风荷载(风压)和温度的影响,每个地区风力强度和频度,受热条件等因素都不一样,因此决定了对玻璃因地区、楼层高度的不同而选择不同规格、不同型号、不同颜色的玻璃。玻璃用于外墙的要求起码要考虑承受两种应力:一种是承受风荷载能力,一种是承受热应力能力。应对上述应力进行认真验算,选用适当的玻璃才能减少自爆。玻璃本体质量,对自爆也极为重要,如平板玻璃和浮法玻璃相比较,平板玻璃的厚薄均匀度、平整度,玻璃表面的质量均比浮法玻璃质量差。因此平板玻璃承受风荷载能力及热应力能力也弱。如对玻璃进行半钢化、钢化,其抗风压及热应力能力有较明显的提高。半钢化玻璃或钢化玻璃,其表面最终形成压应力,因此玻璃抗压强度比抗张强度高得多,所以能经受弯曲、冲击和温度变化。如引用风荷载因子对不同类型玻璃抗风荷载能力的修正,以6毫米单片浮法玻璃为1,则6毫米半钢化玻璃为2.0,钢化玻璃为4.0。镀膜玻璃是利用物理方法、化学方法在玻璃表面镀上一层或数层金属合金或化学膜,目前国内外生产不同工艺有:真空磁控溅射{TodayHot}法(又称真空溅射镀膜);在线喷涂法(在浮法玻璃生产过程中喷涂金属或其它化合物和玻璃融为一体,又称在线镀膜玻璃,可以热弯);真空蒸发、凝胶法(又称化学镀膜)。上述四种镀膜玻璃因工艺不同,镀膜玻璃的性能和品质也存在很大差异。前两种镀膜玻璃质量优于后两种玻璃,可用于隐框玻璃幕墙。

建筑上用阳光控制玻璃,又称为热反射镀膜玻璃(简称镀膜玻璃),主要特点是允许足够的太阳光射入室内,又能反映定量的太阳热能,能透过0.3~2.5微米的可见光,3~12微米远红外线被反射,维持室内凉爽,该玻璃的透光率为8~40%之间,可制成金、银、蓝、褐、绿等各种颜色。国内生产该种玻璃厂家甚多,由于不同做法,不同设备,及其它各种原因,质量差异很大。

国外生产的低辐射玻璃,它的特点是在不影响可见光的透光性的情况下,能透过80%太阳光辐射能,对室内有保温作用,同时这种玻璃可以挡大量紫外光,减少阳光中紫外线对室内家具的影响。现国内没有生产这种低辐射玻璃。

二、玻璃是脆性材料

玻璃的自爆现象受多方面影响。除玻璃本体质量外,玻璃的几何形状,如方形、矩形、三角形和圆形。玻璃安装状况如:四周紧固或松驰,玻璃底部是否安放支撑物,玻璃与四周铝合金框用什么硬度材质密封或用玻璃胶密封,以及后续工艺、受热状况等均对玻璃的自爆有密切影响。

玻璃热应力自爆,一般是来自玻璃本体部位不均匀所致。玻璃上墙后,在阳光直接照射下,玻璃吸收阳光的红外光和部分可见光,这些光在玻璃体内转化为热能,使玻璃本体温度升高并形成玻璃四周的热膨胀。如玻璃镶嵌在铝合金框内部,玻璃被镶部份不能受到暴露在框外暴露同样照射,因此导致暴露整体受热不均,内部热应力形成,玻璃中区的热膨胀对玻璃边缘产生张应力,此张应力大于玻璃的抗张强度,就会造成玻璃的破裂(自爆)。热应力破裂一般可从{HotTag}以下特点来辨别:

1、玻璃破裂边缘裂口整齐,裂口数量少,破裂线为曲折单线或复线。

2、玻璃破裂线与玻璃边缘一般成直角,否则可能是弯曲应力破裂,或者是玻璃边缘缺陷所致。

3、在玻璃中区的破裂线多为弧线形。

三、铝合金有框幕墙玻璃自爆的原因

1、玻璃本身质量不良是造成玻璃自爆原因之一,如玻璃平整度差,厚薄不均,玻璃内有气泡夹渣等。在受太阳照射下,热效应不均匀,导致自爆。

2、在采用人工裁切玻璃时,裁切的玻璃边缘一定要求平直光滑,不准许有崩边、牙边、崩角等缺陷。要保证玻璃周边没有伤残状态下使用,否则在玻璃边缘有缺陷处极易产生自爆点。

3、玻璃安装时为了减少哽对哽的接触,玻璃下端不能直接落在铝合金框上,否则玻璃受热膨胀极易自爆。应在玻璃下面有弹性的固定垫块,放置位置一般在玻璃边部1/4处,最少放两个垫块,垫块数量应以玻璃宽度而定。使玻璃下方与铝框为弹性接触,玻璃热胀冷缩时能自由伸缩,减少自爆。同时玻璃周边应当用弹性较好的材料密封。玻璃周边与铝框应留有4~7毫米左右缝隙,不直接接触,并周边间隙均匀。玻璃周边与铝框应用弹性好的玻璃密封胶密封,这比玻璃边缘内外两侧与铝框缝隙用硬胶条镶嵌为佳。现实中不少大面积玻璃因玻璃四周边缘用硬胶条镶嵌太紧,玻璃因热应力而自爆。

4、镶嵌玻璃的铝框,不能保证几何精度,铝框扭拧不平,弯曲变形,玻璃弯曲受力,极易造成热应力自爆。安装玻璃必须严格执行施工标准规范。

5、玻璃厚度的选择是非常重要的,不仅要考虑风荷载,也要考虑热应力。如玻璃面积大,厚度小,则该块玻璃抗弯曲、抗热应力均小,极易自爆。对玻璃幕墙玻璃厚度选择,一定要进行计算,低层、高层同一面积的玻璃受力就差别很大。尤其是镀膜玻璃的热膨胀系数远大于一般玻璃的热膨胀系数,热应力更为明显。有的厂家和设计者在玻璃计算时不考虑热应力而造成玻璃自爆。一般镀膜玻璃的厚度、长宽比和最大面积的关系,一些镀膜玻璃生产厂家,给一个关系比,这只作为参考。因玻璃的使用高低不同,地区不同,应有所调整,应以计算为准。

四、隐框幕墙玻璃的自爆

隐框玻璃幕墙是用结构胶把镀膜玻璃粘贴在单体铝合金框格上,再把粘好的一块块单体框格悬挂在铝合金幕墙的框架上。镀膜玻璃之间间隙用幕墙硅酮密封胶密封,形成一镜面状玻璃幕墙,镀膜玻璃的周边无铝框镶嵌,因此不存在镶嵌玻璃边内和边外温差的差异,也不会产生上述原因造成的温差热应力自爆的可能。但半隐框玻璃幕墙仍有一个对应边嵌在铝框内,仍应考虑嵌铝框内外玻璃的热应力,以防自爆。

隐框玻璃幕墙的自爆原因,有以下几个可能:

6、镀膜玻璃的边缘质量:镀膜玻璃边缘裁切质量是非常重要的,是影响玻璃破裂的重要因素。因为镀膜玻璃是脆性材料,玻璃的边缘允许张应力的大小与玻璃边缘缺陷极为密切,如前面谈到过的崩角,崩角和参差不齐牙边等,玻璃边缘缺隐会导致应力集中及严重降低允许张应力(可降十多倍)。在边缘缺陷点,玻璃正常的弯曲应力,热应力等均可造成玻璃的自爆破裂。大面积隐框幕墙的镀膜玻璃最好采用裁剪机来切割玻璃,若手工切割玻璃要严格检查玻璃切割边缘质量或打磨边缘。

7、镀膜玻璃对太阳辐射能的吸收率热应力均远大于一般透明玻璃,因此对玻璃的原片质量要求甚严。如果玻璃原片的厚薄度、平整度较差,表面有疤痕亦形成内应力不均而自行破裂。镀膜玻璃的原片只能用浮法玻璃,不能用一般平板玻璃。优良的新鲜玻璃原片是保证镀膜玻璃质量的重要一环。镀膜玻璃在生产过程中,如设备不先进,镀膜工艺不严,在镀膜过程中易产生膜层厚度不均,退火不完全等缺陷,即便是微小的差别,均是玻璃上墙后自爆的起因。如退火过程中局部有温差,也会造成镀膜玻璃中间弧形破裂等。因此在购置镀膜玻璃时,不仅要看设备是否先进,也要看软件是否过硬,技术是否熟练,原片质量是否新鲜。

8、镀膜玻璃尺寸大小的影响:隐框玻璃幕墙为了美观大方,往往把单片玻璃设计面积很大,为了保证抗风压的需要,镀膜玻璃的厚度就必然增加,这就导致了玻璃本身对太阳辐射能的吸收量增大,造成玻璃张应力增加,容易形成热应力自爆。如果镀膜玻璃是明显的长条状,长短比愈大,愈容易形成弯曲应力,同时加大热力自爆的机率,所以镀膜玻璃的面积和长度比均不易过大,否则自爆率增加。

9、气候条件的影响:冬夏季节,清晨和傍晚的气温变化较大地区,要着重考虑镀膜玻璃的吸热情况。镀膜玻璃是太阳辐射热的高吸收体,在南方炎热地区,夏季高温季节,在太阳照射下,镀膜玻璃的表面温度在800C左右,有的更高。这样玻璃本体内热应力也极大。如因结构胶粘贴宽度厚度过大,影响镀膜玻璃自由伸缩,易使镀膜玻璃自爆。

10、幕墙方向性影响:幕墙玻璃的方向对自爆也有明显的影响。如幕墙玻璃面朝南和朝北或其它方向,所受热应力均有不同,幕墙玻璃朝南都向阳方向,中午日照直接照在幕墙玻璃上,太阳的辐射能很大,热应力也就很大。如天气突变或日落降温较快,则该玻璃以热应力破裂为主,设计者应以热应力破坏为主,抗风压强为辅。反之幕墙玻璃朝北,设计者应以考虑抗风压强为主,热应力破裂为辅。朝南方向的镀膜玻璃的太阳能吸收率大于75%,建议用钢化或半钢化玻璃。

11、集中在幕墙上方结构物遮阳的影响:在幕墙玻璃上方,由于室外装置或设计结构有遮太阳光部分,会在镀膜玻璃上留有阴影,暴露在阳光下和留有阴影的玻璃形成非常明显的温度差,极容易造成玻璃横向整齐的自爆。

12、室内遮阳部分的影响:室内深色窗帘或百叶窗对太阳辐射能的吸收也相当高,并且具备较高的再辐射率。幕墙玻璃不仅受室外太阳辐射能直接辐射,同时以往受到室内遮阳装置吸热后的再辐射也易造成热应力自爆。

13、其它的影响:经常看到在幕墙玻璃上安装,粘贴各种图案和文字广告,及玻璃表面粘贴或悬挂的装置图案或广告,可导致镀膜玻璃吸热量局部急剧增加,使整片玻璃产生温差,幕墙上的空调通风口也可以导致镀膜玻璃不同部位明显的温度,均加大热应力,给镀膜玻璃的自爆增加机率。为了防止玻璃的热应力自爆,可对镀膜玻璃采取强化处理,强化处理后,可使玻璃承受风压强度和热应力强度均有较大的提高,可以明显减少热应力自爆的机率。

五、中空玻璃的自爆

建筑物的室内外热交换,窗户和玻璃幕墙是主要热传导部分,所以冬天的取暖和夏日的空调需用量的大小,取决于窗户和玻璃幕墙的隔热性能好坏。中空玻璃有优良的绝热性能,在某些条件下,中空玻璃绝热性有时可能优于混凝土墙。中空玻璃也有较好的隔音性能,一般可使嗓音下降39~44分贝,可降低交通噪声30~40分贝。

中空玻璃是用两片或多片玻璃与周边用铝合金间隔分开一定距离,并用二次密封胶密封,使之形成两玻璃间有干燥气体空气的玻璃。中空玻璃间隔密封胶第一道胶为丁基胶,丁基胶密封性能很好,但强度很低,只起密封作用,不承受力;第二道密封胶一般为聚硫胶,聚硫胶强度高,在受力时能保持中间玻璃间隔不变,但该胶怕太阳紫外线照射。用于有框玻璃幕墙时,聚硫胶被铝合金型材槽镶嵌在内,太阳照射不到聚硫胶。但用于隐框玻璃幕墙,太阳就可能直接照射到聚硫胶,因此在隐框或半隐框玻璃幕墙中空玻璃的第二道密封胶必须用中空玻璃结构胶,不怕太阳紫外线照射。中空玻璃结构胶也不同于一般结构胶,其变位能力一般为5%左右,这样能保证中空玻璃的两片玻璃间距不变,而一般结构胶变位能力为土25~50%。

各种玻璃上墙后的自爆,因各种玻璃性能不同,地区不同,安装方法不同,自爆原因也很复杂。因此对不同地区玻璃的自爆,均要根据实际情况仔细分析,找出原因,才能避免大面积玻璃的自爆。我们认为单片镀膜玻璃上墙后的自爆,多要从安装上找原因。中空玻璃上墙后自爆要从制作中空玻璃和安装上双方面找原因。总起来讲:白色浮法透明玻璃的自爆率低于带色透明玻璃的自爆率,所有带色透明玻璃的自爆率低于镀膜玻璃的自爆率,隐框幕墙的镀膜玻璃的自爆率低于有框玻璃幕墙的自爆率,单片玻璃上墙后的自爆率低于中空玻璃上墙后的自爆率。

玻璃器材自校准规程

常用玻璃量器检定规程 1 范围 本规程适用于新制造和使用中的滴定管,分度吸量管,单标线吸量管,单标线容量瓶,量筒,量杯,比色管等常用玻璃量器的首次检定,后续检定和使用中的检验。 2 玻璃量器的分类,型式,准确度等级及标称容量 常用玻璃量器包括滴定管、分度吸量管、单标线吸量管、单标线容量瓶、量筒和量杯,比色管归属于量筒系列。玻璃量器按其型式分为量入式和量出式两种。玻璃量器按其准确度不同分为A级和B级,其中量筒和量杯不分级。 表1 玻璃量器的分类、型式、准确度等级及标称容量

编写:审核:批准:批准日期:年月日 3计量性能要求:容量允差 表2 滴定管计量要求一览表 表3 单标线吸量管计量要求一览表 表4 分度吸量管计量要求一览表 在标准温度20℃时,滴定管、分度吸量管的标称容量和零至任意分量,以 及任意两检定点之间的最大误差,均应符合表2和表4的规定。单标线吸量管和 量瓶的标称容量允差,应符合表3和表5的规定。量筒和量杯的标称容量和任意 分量的容量允差,应符合表6和表7的规定。 表5 单标线容量瓶计量要求一览表

表6 量筒计量要求一览表 表7 量杯计量要求一览表 4检定条件 4.1 环境条件 4.1.1室温(20±5)℃,且室温变化不得大于1℃/h。 4.1.2水温与室温之差不得大于2℃。 4.1.3检定介质为纯水(蒸馏水或去离子水),应符合GB6682-1992要求。 4.2 检定设备 表8 检定设备一览表 5检定方法:容量示值-衡量法 5.1玻璃量器的准备:容量检定前须对量器进行清洗,清洗的方法为:用重铬酸钾的饱和溶液和浓硫酸的混合液(调配比例为1:1)或20%发烟硫酸进行清洗。然后用水冲净,器壁上不应挂水等沾污现象,使液面与器壁接触形成正常弯月面。清洗干净的被检量器须在检定前4h放入实验室。 5.2 比对方法:滴定管,分度吸量管、A级单标线吸量管和A级容量瓶采用衡量法检定,也可采用容量比较法检定,但以衡量法为仲裁检定方法。各种玻璃量器

钢化玻璃爆裂司法鉴定案例

钢化玻璃爆裂司法鉴定案例 钢化玻璃频频自爆,问题到底出在哪里是厂家的生产质量有问题,还是外力撞击引起事发之后,承建商矢口否认质量问题,拒绝赔偿!看华碧司法鉴定如何通过现场调查和实验室检测还原事实真相! 江苏某市的黄女士于2013年10月份对新房装修,家中的玻璃移窗、封闭阳台、封闭阳光房等有关铝合金和钢化玻璃的安装工程都交由李姓承建商承接,所有装修工程于2014年1月施工完毕,为保证工程质量,黄女士与李姓承建商签订了质量承诺保证书,保证所有承接工程保修2年。 时间到了2014年8月份,安装在南、北阳光房的钢化玻璃开始陆续破裂,其中南阳光房使用钢化玻璃42块,先后破裂8块,北阳光房使用12块,先后破裂4块。而钢化玻璃破裂后的碎片,还导致了屋内地板等物件损坏。 黄女士赶紧找到李姓承建商,但李姓承建商却坚称钢化玻璃没有质量问题,拒绝维修。期间,黄女士通过当地工商所进行调解,但李姓承建商仍旧置之不理。无奈之下,黄女士将李姓承建商告上了法庭。当地人民法院在审理此案过程中委托华碧司法鉴定所对对涉案钢化玻璃破裂原因进 行物证鉴定。 华碧司法鉴定人接到法院委托后,第一时间赶趁至黄女士家中进行现场调查,并从南阳光房取涉案破裂的钢化玻璃1块,从北阳光房取涉案破

裂的钢化玻璃1块,带回华碧司法鉴定所进行检测分析。 在现场调查和实验室检测过程中,未发现涉案玻璃安装存在异常;未发现爆裂玻璃的开裂源处存在异物撞击痕迹;发现钢化玻璃开裂处存在明显“蝴蝶斑”开裂纹路,且在开裂源核心处发现硫化镍(NiS)“结石”。 钢化玻璃自爆往往是由于生产钢化玻璃的原片内部存在一些微小的结石、杂质导致的。在钢化玻璃自爆起始点处,会聚集含硫化镍的结石、杂质,这些硫化镍结石在钢化玻璃生产过程中会把高温晶态(α-NiS,六方晶系)“冻结”并保留到常温下。钢化玻璃中这种高温晶态在常温下并不稳定,会随着时间推移逐步向常温晶态(β-NiS,三方晶系)转变,在转变的同时会伴随着明显的体积膨胀(膨胀2~4%)。钢化玻璃中的硫化镍结石(NiS)在外界环境温度变化过程中,由于热胀冷缩后造成结石附近区域应力集中,当应力达到一定程度时,会导致玻璃突然破碎,这就是我们通常所说的钢化玻璃自爆现象。 根据行业经验,普通钢化玻璃的自爆率在~%左右。涉案现场南、北阳光房的钢化玻璃的自爆率分别达%、%,涉案玻璃自爆问题远超过%的行业水平。 综上所述,涉案钢化玻璃的破裂与其内部存在硫化镍(NiS)结石存在因果关系。 涉案钢化玻璃的破裂与其内部存在硫化镍(NiS)结石存在因果关系。

常用玻璃量器检定规程10347教学提纲

常用玻璃量器检定规 程10347

常用玻璃量器检定规程 JJG196—2006 目录 1范围 (3) 2引用文献 (3) 3术语和计量单位 (4) 4概述 (5) 4 .1玻璃量器的分类、型式、准确度等级及标称容量 (5) 4.2 玻璃量器的结构 (5) 5通用技术要求 (7) 5.1材质 (7) 5 .2 外观 (7) 5.3 结构 (8) 5.4 密合性 (9) 6 计量性能要求 (9) 6.1 流出时间和等待时间 (9) 6.2 容量允差 (10)

7计量器具控制 (12) 7.1检定条件 (12) 7.2 检定项目 (12) 7.3 检定方法 (12) 7.4检定结果的处理 (16) 7.5检定周 (16) 附录A (16) 附录B (20) 附录C (21) 附录D (22) 附录E (23) 常用玻璃量器检定规程 1范围 本规程适用于新制造和使用中的滴定管、分度吸虽量管、单标线吸量管、单标线容量瓶、量筒、量杯等常用玻璃量器(以下统称玻璃量器)的首次检定、后续检定和使用中的检验。 2引用文献 JJG 20—2001标准玻璃量器 GB/T 15726-1995玻璃仪器内应力检验方法 GB 6682—I992分析实验室用水规格和试验方法 使用本规程时应注意使用上述引用文献的现行有效版本。

3术语和计量单位 3.1流出式分度吸量管outflow graduated pipette 对于分度吸量管,当液体自然流至流液口端不流时,口端应保留残留液。 3.2吹出式分度吸量管blowing graduated pipette 对于分度吸量管,当液体自然流至流液口端不流时,即将流液口残留液排出。 3.3具塞滴定管burette with stopcock 用直通活塞连接量管和流液口的滴定管。 3.4无塞滴定管burette without stopcock 用内孔带有玻璃小球的胶管连接量管和流液口的滴定管。 3.5三通活塞自动定零位滴定管automatic burette with three-way stopcocks 用三通活塞连接量管和流液口、带有自动定位装置的滴定管。 3.6侧边活塞自动定零位滴定管automatic burette with side stopcock 直通活塞在侧边,带有自动定零位装置的滴定管。 3.7侧边三通活塞自动定零位滴定管automatic burette wit h side three-way stopcock 三通活塞在侧边,带有自动定零位装置的滴定管。 3.8座式滴定管burette with seat 带有辅助注液管,并有底座支撑的滴定管。 3.9夹式滴定管burette with holder 带有辅助注液管,安装在支架上的滴定管。 3.10残留液remaining liquid 对于吸量管,当液体自然流至流液口端不流时,流液口内残流的液体。3.11容量单位capacity unit 玻璃量器的容量单位为立方厘米(cm3)或毫升(mL),毫升(mL)为立方厘米(cm3)的专用名称。

常用玻璃仪器校验规程

1、目的 规定常用玻璃仪器的校准程序。 2、适用范围 适用于新购入和使用中的滴定管、分度吸管、单标线吸管和单标线容量瓶等实验室常用玻璃量器的校准。 3、职责 3.1操作人员负责校准常用玻璃量器,填写常用玻璃量器校准原始记录。 3.2质量监督员负责监督操作是否符合规程。 4、校准条件 4.1校准时工作室温度不宜超过20±5℃;室内温度变化不能大于1℃/h;水温与室温之差不应超过2℃。 4.2衡量法用介质——纯水(蒸馏水或去离子水)。 4.3校验设备: 4.3.1相应称量范围的天平,其称量误差应小于被校量器允差的1/10。 4.3.2温度范围0~50℃的温度计。 4.3.3有盖称量杯或具塞锥形瓶。 4.4.4校验用的架和夹。 5、校准步骤及方法 编制:审核:批准: 日期:日期:日期:

5.1外观检查 5.1.1量器不允许有影响计量读数及使用强度等缺陷,分度线与量的数值应清晰、完整、耐久;分度线应平直、分格均匀。量器的口应与量器纵轴相垂直,口边要平整光滑,不得不偿失有粗糙处及未经溶光缺口。滴定管和吸管的流液嘴,应是逐渐地向管口缩小,流液口必须磨平倒角或熔光,口部不应突然缩小,内孔不应偏斜。量瓶放置在平台上,不应摇动。 5.1.2滴定管及具塞量瓶应具有良好的密合性。 5.2容量校准 采用衡量法进行容量校准。按如下步骤操作: 5.2.1清洗被校量器:量器可用重铬酸钾的饱和溶液和等量的浓硫酸混合剂或清洁剂进行清洗。然后用水冲净,器壁上不应有挂水等沾污现象。使液面下降或上升时与器壁接触处形成正常弯液面。 5.2.2洗净的量器(先进行干燥处理)应提前放入工作室,使其与室温尽可能接近。 5.2.3取一只容量大于被校量器的洁净有盖称量杯(如果校验量瓶则取一只洁净干燥的待校量瓶),进行空测量平衡。 5.2.4将被校量器内的纯水放入称量杯中(量瓶应注纯水至标线),称得纯水的质量值m。 5.2.5在调整被检量器弯液面的同时,应观察测量用水的水温。

钢化玻璃基本知识

钢化玻璃基本知识 钢化玻璃(Tempered glass/Reinforced glass)属于安全玻璃。钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。 一、生产钢化玻璃工艺有两种:一种是将普通平板玻璃或浮法玻璃在特定工艺条件下,经淬火法或风冷淬火法加工处理而成。另一种是将普通平板玻璃或浮法玻璃通过离子交换方法,将玻璃表面成分改变,使玻璃表面形成一层压应力层加工处理而成。钢化玻璃具有抗冲击强度高(比普通平板玻璃高4~5倍)、抗弯强度大(比普通平板玻璃高5倍)、热稳定性好以及光洁、透明、等特点。在遇超强冲击破坏时,碎片呈分散细小颗粒状,无尖锐棱角,故属于安全玻璃。其实钢化玻璃还存在一个缺陷,那就是光学畸变,因为玻璃在钢化的过程要经过720度左右,急冷的风压3.2毫米是12800帕,4毫米急冷风压是7000-8000帕,玻璃已经处于软化的时候,在短短的3秒钟突然承受这样的风压,玻璃的表面会存在风斑,同时玻璃的表面会存在凹凸不平现象,严重的程度要根据设备的好坏来决定,所以钢化后的玻璃不能做镜面的原因。 二、钢化玻璃按形状分为平面钢化玻璃和曲面钢化玻璃。平面钢化玻璃厚度有3.4、5、6、8、 10、12、15、19mm八种;曲面钢化玻璃厚度也有3.4、5、6、8、10、12、15、19mm八种。但曲面(即弯钢化)钢化玻璃对每种厚度都有个最大的弧度限制。即平常所说的R R为半径. 2 钢化玻璃按其外观分为:平钢化,弯钢化。 三、钢化玻璃与普通玻璃的区别 由于钢化玻璃破碎后,碎片会破成均匀的小颗粒并且没有普遍玻璃刀状的尖角,从而被称为安全玻璃而广泛用于汽车、室内装饰之中,以及高楼层对外开窗户上。一般普通玻璃破碎后锋利的刀状尖角很容易割伤小孩或者撞击者,造成对人身的伤害。玻璃破碎后是变成小颗粒还是刀状这是钢化玻璃与普通玻璃最主要区别方式。但在工程检验中,动不动采用这种破坏性的检验无疑是不现实的。那么怎么能知道自己买的究竟是不是钢化玻璃呢?这还得从钢化玻璃制造原理来分析,钢化玻璃是将普通退火玻璃先切割成要求尺寸,然后加热到接近的软化点,再进行快速均匀的冷却而得到。钢化处理后玻璃表面形成均匀压应力,而内部则形成张应力,使玻璃的性能得以大幅度提高,抗拉度是后者的3倍以上,抗冲击力是后者的5倍以上。也正是这个特点,应力特征成为鉴别真假钢化玻璃的重要标志,那就是钢化玻璃可以透过偏振光片在玻璃的边部看到彩色条纹,而在玻璃的面层观察,可以看到黑白相间的斑点。偏振光片可以在照相机镜头或者眼镜中找到,观察时注意光源的调整,这样更容易观察。每块钢化玻璃上都有一个3c质量安全认证标志.. 四、钢化玻璃的自爆 钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆。自爆是钢化玻璃固有的特性之一。产生自爆的原因很多,简单地归纳以下几种: 1、玻璃质量缺陷的影响A.玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。特别是结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数。玻璃钢化后结石周围裂纹区域的应力集中成倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态。伴随结石而存在的裂纹扩展极易发生。B.玻璃中含有硫化镍结晶物硫化镍夹杂物一般以结晶的小球体存在,直径在0.1—2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI—XS,其中X=0—0.07。只有NI1—XS相是造成钢化玻璃自发炸碎的主要原因。已知理论上的NIS在379。C时有一相变过程,从高温状态的a—NIS六方晶系转变为低温状态B—NI三方晶系过程中,伴随出

常用玻璃量器的自校准方法

深圳市龙岗区环境监测站 作业指导书 标题:常用玻璃量器的自校准方法

文件编号:LGHJ/ZY-ZB-09(第A版,第0次修订)第1页共4页 1、目的 对常用玻璃量器进行自校准,使其适合准确度要求较高的分析工作。 2、范围 适用于本站实验室在下列情况中使用的滴定管、吸管、量瓶等玻璃量器的自校准:2.1为满足实验分析中需要准确定量的玻璃量器进行自校准。 2.2在实验过程中,对玻璃量器的标称值有怀疑时要对所用玻璃量器进行自校准。 3、职责 3.1质保人员对分析中准确定量的玻璃量器进行自校准,并对校准结果进行判定、 编写自校准报告。 3.2科室主任负责审核和签发自校报告。 4、技术要求与检定条件:见《常用玻璃量器检定规程》JJG196-1990。 5、校准程序 5.1玻璃量器的校准采用衡量法。 5.2清洗被检量器:量器用重铬酸钾洗液和等量的浓硫酸混合剂或清洁剂进行清洗,然后用水冲净,器壁上不应有挂水等沾污现象。液面下降或上升时与器壁接触处形成正常弯液面。 5.3洗净的量器应提前放入工作室,使其与室温尽可能接近。 5.4取一只容量大于被检量器的洁净有盖称量杯(如果检定量瓶则取一只洁净干燥 的待检量瓶),进行空称量平衡。 5.5滴定管的校准 5.5.1活塞密合性检查 在活塞不涂凡士林的清洁滴定管中加蒸馏水至零标线处,放置20分钟后,漏水量应不超过1小格。 5.5.2校准操作:滴定管的活塞两端涂好凡士林(以能达到润滑的目的为准,万勿沾污塞孔!),加蒸馏水到零标线处,记录水温。以滴定的速度放出0~10毫升水(相差不要超过±0.1毫升)于已称量的称量杯中,再准确称量至0.001克。两次称量之差即为放出水的质量。同法,依次称出0~20、0~30…毫升等分度线间水的质量,按实

分析钢化玻璃产生自爆的原因及降低钢化玻璃自爆的方法

钢化玻璃与平板玻璃相比有许多优点,如钢化玻璃的强度高,韧性好,抗热冲击性能优越,因此被广泛地应用于玻璃幕墙和门窗工程实践中。但是钢化玻璃也有缺点,如自爆。钢化玻璃在无荷载作用下发生的自发性炸裂称为钢化玻璃的自爆。自爆是钢化玻璃固有的特性之一,产生自爆的原因很多,简单地归纳为以下几种: 1.玻璃中有结石、气泡和杂质:玻璃是典型的脆性材料,其力学行为服从断裂力学。玻璃中的结石、气泡和杂质在玻璃中将会形成裂纹,是钢化玻璃的薄弱点,特别是裂纹尖端是应力集中处。如果结石、气泡或杂质处在钢化玻璃的张应力区,或在荷载作用下使其处于张应力,都可能导致钢化玻璃炸裂。 2.玻璃中含有硫化镍结晶物:硫化镍夹杂物一般以结晶体存在,室温下存在着相向相转变的倾向,并伴有一定量的体积膨胀。如果这些杂物在钢化玻璃受张应力的部位,或在荷载作用下使其处于张应力区,则体积膨胀会引起自发炸裂。由硫化镍粒子造成的钢化玻璃自爆其爆裂点裂纹形状往往与蝴蝶相似,被称为蝴蝶形裂纹,有些在爆裂点中部有一个有色颗粒,被认为是硫化镍粒子,这两个特性往往被用来作为钢化玻璃是否是自爆的判据。硫化镍粒子在钢化玻璃自爆前后的体积是不同的,爆裂前体积小,不易被看见;自爆后其体积增大,地点确定,很容易被看见,这也是钢化玻璃自爆不易预见的原因之一。 3.玻璃表面和边部在加工、运输、贮存和施工过程,可能造成有划痕、炸口和爆边等缺陷,易造成应力集中而导致钢化玻璃自爆。玻璃表面本来就存在大量的微裂纹,这也是玻璃力学行为服从断裂力学的根本原因。这些微裂纹在一定的条件下会扩展,如水蒸气的作用、荷载的作用等,都可能加速微裂纹的扩展。通常情况下微裂纹的扩展速度是极其缓慢的,表现为玻璃的强度是一恒定值。但是玻璃表面的微裂纹有一临界值,当微裂纹尺寸接近或达到临界值时,裂纹快速扩张,导致玻璃破裂。如果玻璃表面存在接近临界尺寸的微裂纹,如玻璃表面和边部在加工、运输、贮存和施工过程造成的划痕、炸口、爆边等缺陷尺寸就较大,玻璃可能在极小的荷载作用下就导致玻璃表面微裂纹快速扩张,最终导致玻璃破裂。 4.钢化玻璃在生产过程中需要对玻璃进行加热和冷却,玻璃在加热或冷却时沿玻璃板面方向不均匀和沿厚度方向的不对称,将导致钢化玻璃沿板面方向应力不均匀和沿厚度方向应力分布不对称,这些都有可能造成钢化玻璃自爆。钢化玻璃沿板面方向应力不均匀,可以造成玻璃局部处于张应力,如果这种张应力过大,超过玻璃的断裂强度,玻璃就会爆裂。玻璃板沿厚度方向应力分布应当是对称的,即上下两表面处于压应力,中间处于张应力,上下表面的压应力大小、应力层厚度和变化完全是对称的,玻璃板承受正负风压的能力是相同的。如果玻璃板沿厚度方向应力分布不对称,玻璃板承受正负风压的能力就不相同,一侧承受荷载的能力较强,另一侧较小,即玻璃可能在较小荷载作用下破损,严重时,玻璃板在无荷载作用下产生变形,造成幕墙玻璃影像畸变。 5.理论分析和工程实践证明,预应力越大,钢化程度越高,自爆量也越大。普通平板玻璃和半钢化玻璃几乎没有自爆现象,是因为钢化玻璃沿玻璃板厚度方向上下两表面处于压应力,中间层处于张应力。表面压应力越高,一般情况下钢化玻璃的强度也越高,但是中间层的张应力也越高,过大的张应力将会增加钢化玻璃的自爆。 6.我国钢化玻璃标准中对钢化玻璃的弓形弯曲度的要求过低,只有弓形弯曲度的相对值要求,没有绝对值要求,对于尺寸小的钢化玻璃可满足要求,而对于尺寸较大的钢化玻璃,尽管其弓形弯曲度的相对值满足要求,但其绝对值过大,致使钢化玻璃的装配应力较大,经一段时间使用后发生钢化玻璃自爆,这也是一些工程钢化玻璃在使用几年后发生自爆的原因。 针对以上钢化玻璃自爆的原因,提出以下几点降低钢化玻璃自爆的方法:

玻璃器皿洗涤规程

SOP 玻璃器皿的洗涤操作规程 1 目的 为了规范实验室的玻璃器皿洗涤程序,特制定此规程。 2 适用范围 本规程适用于本所(中心)样品预处理、样品检测用玻璃器具、盛放容器的清洁。 3 清洗方法 清洁的玻璃器皿是实验得到正确结果的先决条件,因此,玻璃器皿的清洗是实验前的一项重要准备工作。清洗方法根据实验目的、器皿种类、所盛放样品(物品)、洗涤剂类别和沾污程度等不同而有所区别,将本所(中心)主要玻璃器皿分为以下5种: 3.1常用玻璃器皿 实验室中常用的烧杯、锥形瓶、量筒、试剂瓶等玻璃器皿,一般先由实验人员倒掉里面的内容物(如有机溶剂倒入废液缸),再放到洗涤专用水槽内或指定位置。洗涤人员可用毛刷蘸些洗衣粉液刷洗,或浸泡在肥皂水中进行刷洗,待洗尽内外壁杂质后,用自来水冲掉洗涤剂至无泡沫为止,最后用纯化水冲洗2~3次。 洗干净的玻璃器皿倒置时,玻璃器皿中存留的水可以完全流尽而内壁不留水珠和油花,如果出现水珠或油花的器皿应重新洗涤。洗涤干净的器皿不能用纸或抹布擦干,以免将脏物或纤维留在器壁上而污染器皿。仪器倒置时应放在干净的仪器架上(不能倒置于实验台上)。锥形瓶、容量瓶等仪器可倒挂在沥干架或铁架台上,小口颈的试管等可倒插在干净的支架上。 新的玻璃器皿含游离碱较多,应在2%的盐酸溶液内先浸泡数小时。浸泡后

用自来水冲洗干净,然后用纯化水洗2~3次。 3.2 精确刻度的玻璃器皿 滴定管、移液管等涉及溯源信息,需进行计量检定的玻璃器皿,使用铬酸洗液洗涤前,凡能用毛刷洗刷的仪器必须先用自来水和毛刷洗刷,倾尽水,以免洗液被稀释后降低洗涤效果。再用铬酸洗液浸泡10min左右,再用自来水冲净残留在器皿上的洗液,然后用纯化水润洗2~3次。 容量瓶等大体积精确刻度的玻璃器皿,可采用3.1的方法进行洗涤,如无法彻底洗净,须按本方法规定重新进行洗涤。 3.3 顶空瓶 顶空瓶清洗步骤 1、 在通风橱内将铝盖撬开,瓶内能倒出的物质倒入废液瓶,然后 让瓶子在通风橱让溶剂挥发一段时间;2、 将瓶子放入盆中,加入洗洁精和自来水,浸泡,不宜过长时间, 瓶内残留物质能清洗下来即可;3、用试管刷将瓶子刷干净,自来水冲干净; 4、 尽量将瓶内水分沥干,用分析纯甲醇浸泡0.5-1h(浸泡过的甲 醇可以重复利用,如果甲醇过脏应该换新的)5、 将浸泡过的甲醇倒回原玻璃瓶中,下次继续使用。浸泡过的瓶 子用自来水冲干净,然后用超纯水冲洗2-3遍,冲干净后烘干即可。。 3.4 比色皿 比色皿是由光学玻璃制成的,不能用毛刷刷洗。通常视沾污的情况,选用铬酸洗液、HCl-乙醇等浸泡后,用自来水冲洗净,再用纯化水润洗2~3次。 3.5培养皿

钢化玻璃自爆原因及解决办法

钢化玻璃自爆原因以及解决方法 1、自爆的定义及其分类: 钢化玻璃自爆可以定义为:钢化玻璃在无外部作用力直接作用与玻璃的情况下而玻璃本身自动发生裂纹、破碎的的自然现象。表现为玻璃在钢化加工、贮存、运输、搬运、安装、使用等过程中均可发生钢化玻璃自爆。 自爆按起因不同主要可分为两种: 一是:由玻璃中产生可见缺陷所引起的自爆现象,例如砂粒、结石、气泡、渗杂物、爆边、缺口、裂纹纹理、划伤等各种原因; 二是:由玻璃中内部硫化镍(NiS)杂质相变体积膨胀引起的自爆。 玻璃的这是两种不同类型的自爆现象,人们应明确分类,区别对待,采用相对应的方法来应对和处理,减少玻璃引自爆而产生的损失。 前者一般可见现象,在检测检验时注意观察即可相对容易发现,因此在生产的过程之中可以控制好玻璃的质量;后者主要表现由玻璃中存在着很多微小的硫化镍颗粒体积发生膨胀而引发的自爆现象,与前者不同,其是在检验检测时无法目测到,所以该现象无法控制。在实际运作和处理上,前者一般可以在安装前剔除,后者因无法检验而继续存在,成为使用中的钢化玻璃自爆的主要因素。由于硫化镍类引起的自爆后更换难度大,处理费用高,同时会伴随较大的质量投诉及经济损失等问题,造成业主的不满意甚至出现危机生命财产等更为严重的其他后果,所以硫化镍引发的自爆是我们讨论的重点。 二、钢化玻璃发生自爆现象机理 钢化玻璃内部的硫化镍膨胀是造成钢化玻璃自爆的主要原因。由于玻璃经过钢化处理后,玻璃表面层会形成压应力。内部板芯层则形成张应力,同时压应力和张应力共同构成一个平衡体。但是玻璃这种材料脆性很高,耐压型很强,但受拉性却很弱,因此玻璃破碎大多数是张应力的变化而引发的。 当钢化玻璃中硫化镍晶体(处在玻璃板芯张应力层)在发生相变时,其体积发生膨胀使钢化玻璃内部产生更大的张应力,张应力就会大于压应力,当张应力超过玻璃自身所能承受的极限时,压应力和张应力这对平衡体就会发生破坏,就会导致钢化玻璃自爆。 多年来国内外研究证明:制造玻璃主要原料石英砂或者砂岩带入镍,在生产

常用玻璃量器校验标准操作程序

质 量 标 准 操 作 程 序 1.目的:对常用玻璃量器进行自校准,使其适合准确度要求较高的分析工作。 2.范围:适用于实验室在下列情况中使用的滴定管、吸管、量瓶等玻璃量器的自校: 2.1为满足实验分析中需要准确定量的玻璃量器进行自校准。 2.2在实验过程中,对玻璃量器的标称值有怀疑时要对所用玻璃量器进行自校准。 3. 参考及相关文件:参考标准 JJG196-2006常用玻璃量器检定规程 4.责任:QC 化验员对分析中准确定量的玻璃量器进行自校准,并对校准结果进行判定、 编写自校准报告。 5.校准程序: 5.1 检定条件 5.1环境要求 室温(20±5)℃,温度波动应≤1℃/h ;水温与室温之差应≤2℃。5.2校准所需设备 校准介质为纯水(蒸馏水或去离子水),应符合GB6682 规定的要求。 5.2 仪器与用具 *天平、砝码、温度计、秒表等都应是经过检定或校准合格的。

5.3校准内容 5.3.1校准项目本规程对外观、结构、密和性、流出时间和容量示值的校准予以规定和说明。 5.3.2被检量器的清洗量器用重铬酸钾饱和溶液和浓硫酸的混合液(1∶1)进行清洗,然后用水冲净,器壁上不应有挂水等沾污现象。液面与器壁接触处形成正常弯液面。洗净的量器应提前4小时放入工作室,使其与室温尽可能接近。 5.3.3取一只容量大于被检量器的洁净有盖称量杯(如果检定量瓶则取一只洁净干燥的待检量瓶),进行空称量平衡。 5.4 滴定管的校准(衡量法) 5.4.1活塞密合性检查玻璃活塞:当水注至最高标线时,活塞在关闭情况下停留20min 后,渗漏量应不大于最小分度值。塑料活塞:当水注至最高标线时,活塞在关闭情况下停留50min后,渗漏量应不大于最小分度值。 5.4.2校准操作: 5.4.2.1将清洗干净的被检滴定管垂直稳定的安装到检定架上,充水至最高标线以上约5mm处。 5.4.2.2缓慢地将液面调整到零位,同时排出流液口中的空气,移去流液口中的最后一滴水珠。 5.4.2.3取一只容量大于被检滴定管容量的带盖称量杯,称得空杯质量。 5.4.2.4完全开启活塞,使水充分地从流液口流出。 5.4.2.5当液面降至被检分度线以上约5mm时,等待30s,然后10s内将液面调至被检分度线上,随即用称量杯,移去流液口的最后一滴水珠。 5.4.2.6将被检滴定管内的纯水放入称量杯后,称得纯水质量。 5.4.2.7在调整被检滴定管液面的同时,应观察测温筒内的水温,读数应准确到0.1℃。 5.4.2.8表1为水在10-40℃间的r值,按下述公式计算被检滴定管在标准浓度20℃时的实际容量。 5.4.2.9对滴定管除计算各检定点容量误差外,还应计算任意两检定点之间的最大误差。 5.4.2.10容量比较法参照《常用玻璃量器》(JJG196-2006)进行。

常用玻璃器皿检定规程

常用玻璃器皿检定规程 1 引用标准 1.1 本标准等同采用JJG 196-90《常用玻璃器皿检定规程》。 1.2 本标准适用于新制造和使用中的滴定管、分度吸管、单标线吸管、单标线容量瓶、量筒、量杯等实验室常用玻璃量器(以下简称量器)的检定。 2 概述 量器的分类、用法、准确度等级、标称容量以及结构参见表1和图1~图10。 表1 注:(1)分度吸管又称分度吸量管;单标线吸管又称单标线吸量管;单标线容量瓶简称量瓶。 (2)表中未列的特种量器和标称总容量可根据使用要求,相应比照本规程的要求,并必须

得到当地计量部门的批准和检定。 3 技术要求 3.1 材质与理化性能 3.1.1 制造量器的玻璃应清澈、透明;耐水等级应小于三级。 3.1.2 滴定管、分度吸管和量筒允许有蓝线、乳白衬背的双色玻璃管制成。 3.1.3 量器必须经过良好的退火处理,其内应力不得超过表2的规定。 表2 3.2 外观 3.2.1 量器不允许有影响计量读数及使用强度等缺陷,包括密集的气线(气泡)、破气线(气泡)、擦伤、铁屑和明显的直梭线等(具体要求按国家现行标准) 3.2.2 分度线与量的数值 3.2.2.1 分度线和量的数值应清晰、完整、耐久。 3.2.2.2 分度线应平直、分各均匀,必须与器轴相垂直;相邻两分度线的中心距离应大于1mm。 3.2.2.3 分度线的宽度和分度值见表3表8。 表3 滴定管

表4 单标线吸管 表5 分度吸管

表6 单标线容量瓶 表7 量筒 表8 量杯 3.2.2.4 分度线的长度

1)短线为圆周长的10%~20%; 2)中线不短于短线的1.5倍; 3)长线不短于短线的2倍。 3.2.2.5 单标线量器必须刻(或印)围线;印线允许有不超过圆周长10%的间隙。 3.2.2.6 分度吸管的管尖缩小部分和量筒、量杯自底部起至总容量的1/10处可不刻(或印)分度线。 3.2.2.7 分度线的断口 1)分度线的断口最大为1mm,但不允许影响读数。 2)滴定管和分度吸管在同一条线上只允许1处断口,在分度表上不得多于总线条的2%;10ml以下的分度吸管,其分度表上的断口最多只允许2处。 3.2.2.8 量的数值应刻(或印)在主分度线的右上方(当分度表面对观察者时)。其排列顺序为: 1)滴定管零位在最上方,量的数值是自上而下递增。 2)分度吸管零位在上的,量的数值自上而下递增。零位在下面的,量的数值自下而上递增。 3)量筒、量杯为自下而上递增。即总容量的数字刻(或印)在最高标线的右上方。 3.2.3 量器应具有下列标记(见图11) 3.2.3.1 厂名或商标; 3.2.3.2 标准温度(20℃); 3.2.3.3 用法标记:量入式用“In”,量出式用“Ex”,吹出式用“吹”或“Blow out”; 3.2.3.4 等待时间:+××s; 3.2.3.5 标称总容量与单位:××ml; 3.2.3.6 准确度等级:A或B。凡无等级的量器,如量筒与量杯其等级一项可省略; 3.2.3.7 用硼硅玻璃制成的200ml以上(包括200ml)的量瓶,应标“Bsi”字样; 3.2.3.8 非标准的口与塞,活塞芯和外套,必须有相同的配合号码。无塞滴定管的流液口与管下部也应标有同号。 3.3 结构 3.3.1 量器的口应与量器纵轴相垂直,口边要平整光滑,不得有粗糙处及未经熔光的缺口。 3.3.2 滴定管和吸管的流液嘴,应是逐渐地向管口缩小,流液口必须磨平倒角或熔光,口部不应

钢化玻璃自爆原因分析

1.钢化玻璃自爆问题一直困挠着广大玻璃钢化厂及玻璃用户。自爆可发生在工厂库房中及出厂后若干年之内。不时见到有关玻璃台板、淋浴房、工矿灯具玻璃、烤炉门玻璃、玻璃幕墙等钢化玻璃制品自爆的报道。如再不解决自爆问题,不但影响钢化玻璃的推广,甚至可能使钢化玻璃产品失去公众的信任。前几年风行一时的用钢化玻璃制成的煤气灶台面,就是由于频繁的自爆报道而全军覆没,整个行业几乎全面退出市场。 澳大利亚研究人员对8幢建筑幕墙进行了长达12年的跟踪研究.在共计17760块钢化玻璃,共发生306例自爆,自爆率为1.72%。 广义自爆一般定义为钢化玻璃在无直接外力作用下发生自动炸裂的现象。 实际上,钢化加工过程中的自动爆裂与贮存、运输、使用过程中的自爆是二个完全不同的概念,二者不可混淆。前者一般由玻璃中的砂粒、气泡等夹杂物及人为造成的缺口、刮伤、爆边等工艺缺陷引起的。后者则主要由玻璃中硫化镍(nis)相变引起的体积膨胀所导致[2]。只有后者才会引起严重的质量问题及社会关注,所以一般提到的自爆均指后一种情况。 目前还不能确切地知道玻璃中是如何混入镍的,最大可能的来源是设备上使用的各种含镍合金部件及窑炉上使用的各种耐热合金。对于烧油的熔窑,曾报道在小炉中发现富镍的凝结物。硫毫无疑问来源于配合料中及燃料中的含硫成份。当温度超过1000oc时,硫化镍以液滴形式存在于熔融玻璃中,这些小液滴的固化温度为797oc。1克硫化镍就能生成约1000个直径为0.15mm的小结石。 2.自爆机理及影响因素 2.1 硫化镍(nis) nis是一种晶体,存在二种晶相: 高温相α-nis和低温相β-nis,相变温度为379 oc . 玻璃在钢化炉内加热时,因加热温度远高于相变温度,nis全部转变为α相。然而在随后的淬冷过程中,α-nis 来不及转变为β-nis,从而被冻结在钢化玻璃中。在室温环境下,α-nis是不稳定的,有逐渐转变为β-nis的趋势。这种转变伴随着约2--4%的体积膨胀,使玻璃承受巨大的相变张应力,从而导

检验中常用玻璃器皿及仪器的使用规范.

检验中常用玻璃器皿及仪器的使用 1、常用玻璃器皿的使用 ⑴容量瓶 容量瓶是细颈梨形平底玻璃瓶,由无色或棕色玻璃制成。带有磨口玻璃塞,颈上有一刻度线。容量瓶均为量入式,颈上应标有“In” 字样。准确度级别分为A级和B级,国家规定的容量允差见下表: 常用容量瓶的容量允差 标称容量 / mL 10 25 50 100 200 250 500 1000 2000 容量允差/ mL A ± 0.02 ± 0.03 ± 0.05 ± 0.10 ± 0.15 ± 0.15 ± 0.25 ± 0.40 ± 0.60 B ± 0.04 ± 0.05 ± 0.20 ± 0.20 ± 0.30 ± 0.30 ± 0.50 ± 0.80 ± 1.20 容量瓶的容量定义为:在20℃时,充满至刻度线所容纳水的体 积,以毫升计。通常采用下述方法规定弯月面:调节液面使刻度线的上边缘与弯月面的最低点水平相切,视线应在同一水平面。 容量瓶的主要用途是配制准确浓度的溶液或定量地稀释溶液。它常和移液管配合使用,可把配成溶液的某种物质分成若干等份。 使用容量瓶时应注意以下几点: ①检查瓶口是否漏水:加水至刻度线,盖上瓶塞,颠倒10次(每次颠倒过程中要停留在倒臵状态10秒)以后不应有水渗出(可用滤纸片检查);将瓶塞旋转180°再检查一次。合格后用皮筋或塑料绳将瓶塞和瓶颈上端拴在一起,以防摔碎或与其他瓶塞混淆。 ②用铬酸洗液清洗内壁,然后用自来水和纯水洗净。 ③用固体物质配制溶液时,应先在烧杯中将固体物质完全溶解,

然后再转移至容量瓶中;转移时要使溶液沿搅拌棒流入瓶中,烧杯中的溶液倒尽后,烧杯不要离开搅拌棒,而应在烧杯扶正的同时使杯嘴沿搅拌棒上提1~2cm,随后使烧杯离开搅拌棒,这样可避免杯嘴与搅拌棒之间的溶液流到烧杯的外面。再用少量水(或其他溶剂)刷洗烧杯3~4次,每次用洗瓶或滴管冲洗杯壁和搅拌棒,按同样的方法移入瓶中。当溶液达到2/3容量时,应将容量瓶沿水平方向轻轻摆动几周以使溶液初步混匀。加水至距离刻度线约1cm处,等待1~2min,用滴管从距刻度线以上1cm以内的一点沿颈壁缓缓加水至弯液面最低点与刻度线上边缘水平相切,随机盖紧瓶塞,左手捏住瓶颈上端,食指压住瓶塞,右手三指托住瓶底,将容量瓶颠倒15次以上,每次颠倒时都应使瓶内气泡升到顶部,倒臵时应水平摇动几周,如此重复操作,可使瓶内溶液充分混匀。右手托瓶时,应尽量减小与瓶身的接触面积,以避免体温对溶液的影响。100mL以下的容量瓶,可不用右手托底,只用一只手抓住瓶颈及瓶塞进行颠倒和摇动即可。 ④对容量瓶材料有腐蚀作用的溶液,尤其是碱性溶液,不能在容量瓶中长久贮存,配好后应转移到其他干燥容器中密闭存放。 ⑵比重计 比重计由玻璃外壳制成,头部呈球形或圆锥形,里面灌有铅珠、水银或其他重金属;中部是胖肚空腔;尾部又称“计杆”,呈细长形,里面附有刻度标记。比重计刻度的刻制是利用各种不同相对密度的液体,制成不同刻度的比重计,是根据阿基米德原理刻制的。 比重计常用的种类有普通比重计、波美比重计、糖度比重计和酒

玻璃仪器自校规程

玻璃仪器自校规程 1 目的 通过对常用玻璃器具(吸管、容量瓶等)的自校,使所使用的玻璃量具和玻璃容器具有较高的准确性,确保检验工作的正确。 2 适用范围 适用于本试验室使用的玻璃量具和玻璃容器自校。 3 职责 3.1 操作人员应按照本自校规程,按期对玻璃量具和玻璃容器进行校准,并做好校准记录,出具校准报告。 3.2 复核人员负责复核校准结果。 3.3试验室负责人负责签发校准报告。 4 操作程序 4.1 外观要求 4.1.1 玻璃量器不允许有影响计量读数及使用强度的缺陷,包括密集的线(气泡)、破气线(气泡)、擦伤、铁屑和明显的直梭线等; 4.1.2分度线与量的数值应清晰、完整、耐久。分度线应平直,分格均匀,必须与器轴相垂直,相邻两分度线的中心距离应大于1mm。分度线的宽度和分度值见表1表6判断。分度线的长度,短线为圆周长的10—20%;中线不短于短线的1.5倍;长线不短于短线的2倍。 4.1.3 单标线量器必须刻(或印)围线;印线允许有不超过圆周长10%的间隙。

4.1.4 分度吸管尖缩小部分和量筒,量杯白底部起至容量的1/10处可不刻(或印)分度线。分度线的断口最大为1mm,但不允许影响读数。10mL以下的分度吸管,其分度表上的断口最多允许2处。量的数值应刻(或印)在主分度线的右上方(当分度表对观察者时)。 4.1.5 滴定管和分度线管在同一条线上只允许1处断口,在分度表上不得多于总线条的2%。 4.1.6 当分度表面对观察者时其排列次序为: a. 滴定管零位在最上方量的数值是自上而下递增; b. 分度吸管应零位在上,量的数值自上而下递增; c. 量筒、量杯为自下而上递增。即总容量的数字刻(或印)在最高标线的右上方。 4.2 量器应具有下列标记;厂名或商标;标准温度(20);用法标记量入式用“IA”,量出式用“EX”,吹出式用“吹”或“BLOW OUT”;等待时间:+xxs;标称总容量与单位:xxmL;准确度等级:A或B。凡无等级的量器,如量杯其等级一项可省略;用硼硅玻璃制成的20mL以上(包括)的量瓶;应标“Bsi”字样;非标准的口与宽,活塞芯和外套,必须有相同的配合号码。无塞滴定管的流液口与管下部也应标有同号。 4.3 结构要求

钢化玻璃自爆解释

钢化玻璃自爆解释标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

关于“北京金融街F10金殿大厦工程”钢化玻璃自爆的说明 接到“北京金融街F10金殿大厦工程”钢化玻璃自爆的反映,我司非常重视,立即检查了当时的生产记录,并未发现异常。对于因钢化玻璃自爆给贵公司带来的诸多不便和损失,我司深表遗憾。 关于钢化玻璃自爆,国家行业标准《玻璃幕墙工程技术规范》——JGJ102-96中有比较明确的说明(见附件)。关于玻璃自爆、损坏率,规范中提供的参考值为1~3%,行业规范同时还提到,安装施工单位应备有替换的玻璃,以便玻璃出现自爆损坏时予以更换。根据我司的统计数据,以及国际惯例。钢化玻璃的自暴一般为3~5%,经均质(热浸)处理后,自爆一般为1~3%。要完全避免自爆时不可能的。 钢化玻璃自爆时不可避免的,所以其在安装使用时产生的问题应是用户在产品选型过程中就考虑到的,绝非生产厂家的责任。 行业内的自爆补片原则为3%以内收费补片,3%以外免费补片,我司一直遵循着这一原则。该工程投诉的钢化玻璃自爆,到目前为止总共自爆了,而贵公司订单下了,自爆率为%,所以自爆率在3%内,我司本不应该负责补片,但本着与客户长期友好合作的关系,我司就如下的玻璃可以提供免费补片,补片玻璃的规格为6mmST150+12A+6mm 白玻双钢化总面积为平方米数量为15片;6mm钢化ST150+9A+6mm白钢/6mm白钢总面积为平方米数量为1片。运输费用另外计收。 现对钢化玻璃自爆原因做如下分析: 一、钢化玻璃自爆现象 玻璃经加热并急速冷却后即形成钢化玻璃,钢化玻璃表面呈现向内的压应力,其内部呈现向外的张应力,通俗的说:其外表面就象往内收紧的弹簧,中间层则象往外膨胀的弹簧。钢化玻璃就是由压应力和张应力构成的力学平衡体。一旦因某种原因导致平衡破坏,使内部的张应力大于表面的压应力时,钢化玻璃就会解体——即发生“自爆”。 自爆会在钢化玻璃加工、搬运、包装、保存以及用户使用的任何过程中发生,而且无法预知。 二、导致钢化玻璃自爆的原因 导致钢化玻璃自爆的原因是多方面的,主要归结为以下两大类: 1、施工安装的原因(两片爆点在玻璃与驳接件连接处的自爆玻璃应该属于这一原 因):安装时支撑玻璃的垫块上不允许由任何坚硬物,即使是一颗小沙粒都会造成钢化玻璃在安装时或以后某一时间爆裂;搬运、安装不当造成玻璃边部爆边或蹦口,会使应力在该处集中而导致钢化玻璃在安装时或以后某一时间“自爆”; 此外,安装不当造成的扭曲会使玻璃受力不均,从而导致钢化玻璃在安装时或以后某一时间“自爆”。 2、玻璃本身的原因:在制造玻璃的过程中形成了杂志硫化镍,玻璃钢化后,硫化镍 晶体大都以α型晶体(体立方结构)存在于玻璃中,随着时间的推移,硫化镍α型晶体会转变成β型(面立方结构),转变过程中硫化镍晶体体积会发生膨胀,这种膨胀对普通玻璃无任何影响,但它足以破坏钢化玻璃内部的应力平衡,导致钢化玻璃自爆,一般来说在玻璃安装完成以后一年到两年左右的时间里发生的几率相对较大,以后随着时间的推移,自爆 发生的几率逐渐减小。 根据浮法玻璃国家标准《GB11614》,浮法玻璃原片允许有长度在以下的缺陷(如气泡、夹杂物等)。而目前世界上最先进的缺陷检测仪也只能可靠的检测出长度大于气泡的小缺陷。无论国内、外标准中规定的杂物指标,都远不能避免钢化玻璃自爆,因此

玻璃仪器自校规程讲解

目录 1.温湿度计自校规程 (2) 2.温度计自校规程 (3) 3.容量瓶自校规程 (4) 4.滴定管自校规程 (5) 5.吸量管自校规程 (6) 6.仪器清洗 (8) 温湿度计自校规程

1.目的 确保公司使用的温湿度计的误差在规定范围内,保证测量的准确性。 2.范围 适用于本公司所有温湿度计的校准。 3.校准用基准设备 标准数显温湿度表 4.环境条件 4.1温度要求:20±5℃ 4.2湿度要求:不超过80%RH 4.3恒温时间:1小时 5.校准步骤 5.1外观:目测外观是否破损,功能件是否齐全、有效。 5.2将恒温恒湿设备按操作规程正常开机。 5.3将恒温恒湿设备的温度分别设定成10℃、20℃、30℃、40℃四个点,湿度分别设定为50%RH、60%RH、70%RH三个点,各定温1小时。 5.4用被校准的温湿度计与恒温恒湿设备,标准数显温度计上显示的温度进行比较。 6.判定依据 用被校准的温湿度计与标准件相对比,温度示差在±5℃,湿度示差在8%RH内可判定为合格。 7.校准周期 一年校准一次 8.相关记录

设备自校记录表 温度计自校规程 1.目的 对温度计进行内部校准,确保其准确度和适用性保持完好。 2.范围 适用于测量溶液温度所使用的水银温度计。 3.校准用基准设备 3.1外校合格的数显温度表(精度0.1℃) 3.2 透明容器盛 3.3 冰、水 4.环境条件 室温 5.校准步骤 5.1检查玻璃体是否破裂及刻度是否清晰,否则更换。 5.2用一透明容器盛装适量自然溶解的冰水混合物。 5.3把温度计有水银液体的一端放进冰水混合物中,然后观察水银柱的变化情况。 5.4待水银柱变化稳定,再对照温度计刻度是否在0℃的位置,记录读数。 5.5第一次测量完成后,取出温度计,待水银柱回到自然的位置后,重新第二次测量,这样连续测量三次,得出结果再取平均值,记录在《设备自校记录表》内,允许误差

玻璃工程质量通病与预防

XX(2009.09) 通病现象: 钢化玻璃栏板安装不久发生 自爆现象。 原因分析: 1、钢化玻璃制作厂家的选择不符 合要求; 2、钢化玻璃板在安装时不规,受 力点不均匀; 3、玻璃弧度与石材或钢架弧度不 吻合; 正确图片:(需补充图片) 4、玻璃与基层材料之间没有留一 定的热涨缝隙 解决办法(预防措施): 1、在选择钢化玻璃制作厂家时要 考察该厂的设备能否满足制 作钢化玻璃的要求; 2、玻璃卡槽清理干净; 3、钢化玻璃栏板安装基层要平 整,受力点应该安置在玻璃板 受力边距两端1/4处,玻璃板 和基层之间要放置软垫。 4、建议玻璃预埋槽采用成品U型 钢板制作,高度不小于120MM, 尽量不用罗丝对夹来固定,上 口不要用水泥砂浆灌缝。直接 用石膏灌实即可。

XX(2009.12) 通病现象: 淋浴房止水带安装玻璃未 开槽,只在顶面石膏板开槽。 原因分析: 1、玻璃安装用玻璃胶固定(玻璃 胶只是收口,遮丑之用), 2、特别是固定门夹的玻璃,淋浴 房门使用频率较高,使用中晃 动,存在较大安全隐患。 解决办法(预防措施): 1、淋浴房止水带必须开槽,安放 玻璃(玻璃下方左右各用一块 正确图片:橡胶垫做软连接),再打玻璃 胶收口。 2、玻璃上口可用U形成品铝型材 收口。 3、靠淋浴房侧的石材槛倒2-3mm 斜坡,散水效果较好。

ZT-玻璃工程-03 XX(2008.09) 通病现象: 金属锁施工不规:玻璃无框 门地面金属锁孔装饰件出现歪 斜、松动、脱落或安装后高于地 坪,造成门锁后晃动或难以锁牢 等现象。 产生原因: 1、在石或地砖地坪上,安装不规, 锁孔装饰盖高于地坪,有些甚 至采用云石胶水固定。 2、人员走动频繁,造成松动、脱 落。 解决办法(预防措施): 1、安装锁孔装饰盖时,须用石开 孔器先开孔,再用6mm冲击钻 头打孔,深度为2.0至3.0公 分。置6mm塑料膨胀管,并用 自攻螺丝固定牢。确保平整。 2、可考虑定做锁仓,加大锁仓, 正确图片:(需补充图片) 然后以螺丝固定来取代现在 的胶水固定 问题图片: ZT-玻璃工程-04

相关文档
最新文档