纳米羟基磷灰石

纳米羟基磷灰石
纳米羟基磷灰石

纳米材料学作业

2005202027 张峰

一.外文综述

1.纳米羟基磷灰石与胶原和聚乙烯醇的复合生物材料[1]

材料的制备

1.合成纳米羟基磷灰石

根据羟基磷灰石中Ca/P摩尔比nCa/Np=1.67,配制Ca(NO3)2·4H2O(80 ml, 0.1 M)溶液和Na3PO4 (48 ml, 0.1 M)溶液,室温下共滴定,不断搅拌混合液。用Na(OH)2调节PH,使PH保持在10。反应得到悬浊液用布氏漏斗过滤后,去离子水清洗,沉淀物80℃隔夜干燥。

2.合成纳米羟基磷灰石/PVA复合物

90℃下配制不同浓度的PVA/去离子水混合液,90℃保持30min。在搅拌的条件下加入1中制备的羟基磷灰石粉体,持续搅拌30min,制得的HAp/PVA凝胶体。用冷冻分相干燥法对该胶体脱水干燥(将胶体降温至-20℃后在升温至20℃,如此反复进行1~4个周期)。

3.合成羟基磷灰石/胶原复合物(HAp/Col)

先在室温下配制30ml、浓度为0.6 mg/ml胶原/水的混合液,持续搅拌2h。之后加入80 ml 0.1M 的Ca(NO3)2·4H2O溶液,再缓慢滴加Na3PO4 (48 ml, 0.1 M)溶液,用Na(OH)2调节PH至10,制得呈凝胶状的HAp/Col复合物。将该凝胶用布氏漏斗过滤,去离子水清洗,室温干燥。4.合成羟基磷灰石/胶原/PVA复合物(HAp/Col/PVA)

室温、搅拌的条件下配制15ml浓度为0.3mg/ml的一型胶原/水混合物,持续搅拌1h后把该混合液倒入等体积的PVA/水的混合液中。将得到的混合物室温搅拌30min,再加入40ml0.1M 的Ca(NO3)2(PH调为10),搅拌,70℃保持24h。之后加入24ml0.1M Na3PO4(PH调为10)。如此,在胶原/PVA上原位合成HAp。然后将反应混合物过滤、冲洗、干燥、检测。

结果与讨论

1.不论是单独合成还是在胶原或PVA或是胶原/PVA纤维上原位合成,所制得的羟基磷灰石都为纳米微粒,其宽为10~30nm,长为40~50nm。

2.羟基磷灰石通过氢键或[OH-]-Ca2+-[-OH]和PVA和胶原结合形成有机-无机杂化体,此外胶原上的羧基也是和羟基磷灰石上的钙离子结合的位点。由于氢键的形成,随着有机相的增加,在有机相原位合成的羟基磷灰石的粒径和结晶度减小。

3.在PVA有机相中引入羟基磷灰石无机相后,复合材料的线性粘弹性大大提高,经低温处理后塑性大幅度增加。

4.复合材料由于胶原的加入、并经脱水处理后强度得到提高,且形成孔径在50~500nm范围内的贯通孔多孔材料。

2.用多糖基羟基磷灰石制备可生物吸收的骨水泥[2]

材料的制备

1.合成纳米羟基磷灰石

用CaCl2和(NH4)2HPO4共沉淀法制备羟基磷灰石纳米晶体。将0.3M(NH4)2HPO4 水溶液缓慢逐滴滴加到0.5M的CaCl2水溶液中。搅拌速度调整为1000rpm,反应温度保持在60℃,用注射器滴加NH4OH的方法调节混合液的PH值,最小为10。反应所得沉淀在相同的搅拌速度下陈化24h,然后过滤,蒸馏水洗4~5次,微波照射15min。微波照射后将最终的沉淀物10,000rpm转速下离心分离10min,去离子水反复冲洗,之后60℃真空干燥。

2.制备复合骨水泥

将适量壳聚糖分散在含2%乙酸的蒸馏水中。37℃,1000rpm搅拌的条件下,将1中反应

所得最终沉淀分散在上面制得的5 wt%和10wt%的壳聚糖水溶液中,反应6h,之后微波照射5~10min,真空干燥。

结果与讨论

1.羟基磷灰石单相沉淀的羟基磷灰石颗粒粒径均匀、分散良好、没有团聚。羟基磷灰石/壳聚糖复合物中,羟基磷灰石颗粒熔合在壳聚糖基体上,显著团聚,从而有助于抑制复合体植入生物体后羟基磷灰石脱离基体扩散。

2.复合物FTIR图谱中出现完整的羟基磷灰石特征峰,且没有出现碳酸钙和氧化钙的吸收峰,说明复合物中的无机相为羟基磷灰石。壳聚糖所有官能团的特征峰也都出现,说明壳聚糖完整复合在复合物中,并没有出现杂相,另外壳聚糖部分乙酰化,生成甲壳素。

3.热差重分析表明复合物中壳聚糖的含量和反应时壳聚糖的添加量相同,表明壳聚糖很好的融合在复合物中。

4.体外小牛血清培养实验表明:羟基磷灰石/壳聚糖复合物比纯羟基磷灰石的降解速度快,培养液的PH值随着复合物中壳聚糖含量的增加而降低。37℃下,控制培养液PH为7.4,测量羟基磷灰石和羟基磷灰石/壳聚糖复合物的钙离子释放量表明:复合物的钙离子释放量多于纯羟基磷灰石,可能是由壳聚糖大分子刺激了钙离子从基体的释放,以及复合物中羟基磷灰石的结晶度降低导致的。

5.XRD分析表明:

1)羟基磷灰石沉淀呈弱结晶,特征峰出现一致的宽化,具有和天然骨中矿物质相似的特征。

2)当沉淀羟基磷灰石900℃高温烧结,自然冷却,所得羟基磷灰石衍射峰变得尖锐,结晶度提高,具有和化学计量羟基磷灰石相同的特性。同时衍射图谱中没有出现碳

酸钙和氧化钙的衍射峰,说明沉淀产物是单纯、均一的羟基磷灰石。

3)复合物具有和羟基磷灰石沉淀相似的衍射图谱,说明壳聚糖组分没有引起羟基磷灰石结构上的变化。然而结晶度和晶粒尺寸却出现轻微下降,且随着壳聚糖含量的增

加结晶度呈下降趋势。

6.由于复合物具有平滑的表面,所以植入生物体后不会对软组织造成伤害。

3.超声波沉淀法合成羟基磷灰石纳米颗粒[3]

材料的制备

按钙磷摩尔比Ca/P=1.67、Ca2+的浓度为0.02mol/L配制Ca(NO3)2和NH4H2PO4的均相水溶液,水浴加热,333~363K保温。同时把超声波发生片放入溶液中距瓶底10mm的位置,超声波发生器的输出功率设定为200W,反应1~4h。反应过程中用12wt.%的尿素调整溶液PH 在7.4附近。反应结束后,将沉淀分离、过滤,去离子水洗4次,产物353K真空干燥12h。

结果与讨论

1.XRD分析表明反应时间为3h,温度为363K的工艺可制得的单相羟基磷灰石,衍射峰出现宽化,(211)面显示出择优取向生长,表明羟基磷灰石是针状的纳米晶体。根据(211)面谢乐公式计算粒径为18nm。

2.TEM图像显示羟基磷灰石为针状和球状晶体,粒径为20nm。

3.反应机理:

1)在Ca(NO3)2和NH4H2PO4均相水溶液中加入尿素后,出现的反应如下:

2)在用超声波沉淀的过程中,CO2迅速逃逸,溶液PH随之增加,体系发生如下反应:

可见OH-的生成是关键一步,因此不断滴加尿素和调节PH在7.4附近对获得纳米羟基磷灰石是至关重要的。

4.生成羟基磷灰石的动力学分析表明:超声波条件下生成纳米羟基磷灰石的活化能是

59.9kJ/mol增加反应时间和升高反应温度可提高羟基磷灰石的产率。

4.纳米磷灰石晶体/聚酰胺复合骨组织工程支架材料的研究

材料的制备

1.制备纳米磷灰石晶体/聚酰胺复合粉末

聚酰胺一66(PA66),分子量为20000.将164克分析纯硝酸钙和98.4克磷酸钠加人到3000ml带有分水装置、搅拌装置和冷凝装置的三颈瓶内,然后加人1500mlDMAC(N,N—dimethyl acetamide)。温度逐步升至140℃,加入55克聚酰胺66,并在140℃保持4小时。直到聚酰胺66全部溶解,冷却至室温,将混合物在不断搅拌状态下缓慢地滴人装有去离子水的不锈钢锅中,加热,使混合物的温度逐步升至7O℃,保温2个小时,然后冷却至室温,陈化24小时。产物用去离子水洗涤3次,倒人烧杯中,使温度上升至95℃一100℃,保温3小时,进行水热处理。水热处理完成后冷却至室温,离心过滤,将得到的产物在80—100℃干燥24小时,磨细,过200目筛,得到复合材料粉末。

2.材料成型

多孔复合材料采用注塑发泡成形。

结果与讨论

1.IR分析表明:纳米羟基磷灰石的O-H与PA66的酰胺键形成了氢键, 且复合材料形成了新的界面结合,可能的键合方式为:

2.XRD分析表明:

1)纳米羟基磷灰石与PA66的主要衍射峰在复合材料中依然存在;与纯的HA相比,在复

合材料中的n-20HA的晶体结构没有什么变化;PA66的结晶度在复合材料中明显降低,结合IR 分析,可进一步证明PA66分子间的氢键有一定的破坏,可能是n—HA与PA66

的分子间相互作用在界面形成了新的化学键,从而影响了PA66分子间氢键结合。

2)纳米羟基磷灰石/PA66(b)和复合材料在800~C烧结2小时后的羟基磷灰石结晶度提

高。

3.TEM分析表明:

水热处理前,复合材料中纳米磷灰石的结晶程度低,晶体不十分明显,经过水热处

理后,复合材料中的纳米磷灰石结晶度增高,明显可见针状纳米磷灰石晶体在聚酰胺基质中。4.SEM分析表明:

多孔复合材料不仅有大孔,而且大孔壁含有丰富微孔,孔与孔之间是相互贯通的。材料的孔径在100pan至500tan之间,平均孔径为300pan左右。孔隙率分析结果为,多孔复合材料的孔隙率在55%~70%之间。

5.自组装法合成羟基磷灰石和胶原的纳米仿生骨材料[5]

材料的制备

实验所用材料为Ca(OH)2, H3PO4和胶原. Ca(OH)2由CaO水化而成,而CaO由CaCO3在

1050oC 高温下煅烧(去杂质(Mg))3 h而成。胶原用胃蛋白酶处理法(去处胶原表面的抗原体)从真皮中提取而得,反应温度设定在25, 30, 35 和 40 oC,PH设定在a 7 , 8 , 9. 2L 的99.6mM悬浊液和2L的59.7mMH3PO4溶液(添加5g胶原)分别置于右、左两个容器中。原料的填加量是在假设羟基磷灰石完全合成的情况下按照 HAp/Col(80/20)的比例计算的,反应前在中央容器中一升水,调整PH值和反应同步进行。水浴控温,PH值由pH自动调节装置控制,反应所得沉淀用凹孔筛捞出后用单轴冷压机200MPa冷压16h成型。

结果与讨论

1.TEM分析表明:HAP/COL纤维长20μm,电子衍射分析表明羟基磷灰石沿HAP/COL纤维长度上排列,c轴与纤维长度方向呈一定夹角。这种结合方式和有脊椎动物骨的特征相似。2.热重分析表明:随着PH降低,复合物中胶原的含量降低,PH=9时胶原的含量与水相同,达到理想反应状态。PH=9、温度为40℃反应条件下复合物中的水分最少。

3.对反应PH=9的样品的弯曲强度的测量表明: 复合物的抗弯强度随着反应温度的增加而增加,而复合物的自组装的程度也同温度正相关,所以材料的抗弯强度应和自组装的程度正相关,而自组装和羟基磷灰石表面的离子和胶原分子上的官能团的界面作用密切相关。根据FT-IP分析,作者提出羟基磷灰石和胶原的自组装机理:

Hap中的钙原子按结晶学分类可分为Ca(1)和Ca(2)两种原子,Ca(2)位于Hap 晶体的终端表面,其配位数为7,所以它们被牢牢地固定在晶体中,自组装过程中Ca(2)失去其两个与c轴垂直的配位原子,这就提供了胶原表面游离的羟基和Hap结合的位点,这时羟基基团仍可自由转动,但是当羟基基团和下一个Ca(2)结合时,羟基基团就不能自由转动,而是保持和胶原表面成平行状态,这是羟基即垂直于胶原表面又垂直于Hap的c 轴,这就造成Hap的c轴和Col长轴平行的结果。

反应示意图如下:

4.皮下植入实验表明HAp/COL复合材料具有优异的生物相容性和生物学综合性能。5.骨修复实验表明HAp/COL复合材料是一种理想的骨修复材料。复合材料对骨的修复过程如下:

1)复合材料被体液腐蚀后部分形成残骸

2)复合材料及其残骸被巨噬细胞吞噬分解

3)破骨细胞出现,通过与和吸收自身骨相似的过程对复合材料进行吸收

4)在复合材料周围出现成骨细胞,成骨细胞在破骨细胞对复合材料吸收后形成的空隙出

形成新的骨组织

外文文献:

[1] Nebahat Degirmenbasi. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl

alcohol). Colloids and Surfaces B: Biointerfaces 48 (2006) 42–49

[2] R.Murugan. Bioresorbable composite bone paste using polysaccharide based nano

hydroxyapatite. Biomaterials 25 (2004) 3829–3835

[3] Li-yun Cao. Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceramics

International 31 (2005) 1041–1044

[4] Wei Jie. Tissue engineering scaffold material of nano-apatite crystals and polyamide

composite. European Polymer Journal 40 (2004) 509–515

[5] Masanori Kikuchi a, Biomimetic synthesis of bone-like nanocomposites using the

self-organization mechanism of hydroxyapatite and collagen. Composites Science and

Technology 64 (2004) 819–825

[6] D. Bakos. Hydroxyapatite/collagen/hyaluronic acid composite. Biomaterials 20 (1999) 191-

195

[7] Sang-Hoon Rhee. Biomimetic congurational arrays of hydroxyapatite nanocrystals

on bio-organics. Biomaterials 22 (2001) 2843-2847

[8] N. Roveri. Biologically inspired growth of hydroxyapatite nanocrystals inside

self-assembled collagen fibers. Materials Science and Engineering C 23 (2003) 441–446 [9] Y. Zhai. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils.

Current Applied Physics 5 (2005) 429–432

[10] Soichiro Itoh. Development of an artificial vertebral body using a novel biomaterial,

hydroxyapatite/collagen composite. Biomaterials 23 (2002) 3919–3926

作业题

1.纳米材料是指三维空间尺度至少有一维处于纳米量(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。(1nm=10-9m,约比化学键长大一个数量级)

广义的纳米材料泛指三维空间中至少有一维处于纳米量级的材料,例如,厚度为纳米量级的薄膜、多层膜;直径为纳米量级的线管。狭义的纳米材料主要是指三个维度均为纳米量级的微粒、微晶及其所组成的材料。

●纳米粒子:在纳米尺度上原子和分子的集合体,是既大于原子簇又小于通常微粉,一般

粒径在1~100 nm之间,只能用高倍电子显微镜进行观察的微粒。

●纳米固体:由纳米微粒压制烧结而组成的三维物体称为纳米固体.从结构上来说它是由

两种组元构成,即颗粒组元和界面组元.

●纳米复合材料:纳米复合材料大致包括三种类型:一种是0—0复合,即不同成分、不同

相或不同种类的纳米粒子复合而成的纳米固体;第二种是0—2复合,即把纳米粒子分散到二维的薄膜材料中,这种0—2复合材料又可分为均匀弥散和非均匀弥散两类.均匀弥散是指纳米粒子在薄膜中均匀分布,非均匀弥散是指纳米粒子随机地、混乱地分散在薄膜基体中;第三种是0—3复合,即把纳米粒子分散到常规的三维固体中。

2.纳米材料的纳米效应:

●小尺寸效应:当纳米粒子的尺寸与光波的波长、传导电子的德布罗意波长以及超导态的

相干长度或透射深度等物理尺寸相当或更小时,周期性的边界条件被破坏,声、光、电、磁、热力学特性等均会随着粒子尺寸的减小发生显著变化,这种因尺寸的减小而导致的变化称为小尺寸效应,也叫体积效应,它是其它效应的基础。

●表面效应:表面效应是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大

后所引起的性质上的变化.因表面原子处于“裸露”状态,周围缺少相邻的原子,有许多空悬键,易与其它原子结合而稳定,具有较高的化学活性。

●量子尺寸效应:量子尺寸效应是指纳米粒子尺寸下降到一定值时,费米能级附近的电子

能级由准连续变为分散能级的现象。

●宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应.近年来,人们发现一

些宏观量,例如,微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有贯穿宏观系统势垒而产生变化的隧道效应——宏观量子隧道效应。

3.纳米材料具有:

(1) 小尺寸效应:

当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等物性呈现新的小尺寸效应。

(2) 表面效应

纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小表面原子数迅速增加。

(3 )量子尺寸效应

当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能

级的现象以及纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的

分子轨道能级而使能隙变宽现象称为量子尺寸效应。

(4) 宏观量子隧道效应:

微观粒子具有贯穿势垒的能力称为隧道效应。而一些宏观量,如颗粒的磁化强度,量子相干器件中的磁通量具有隧道效应。

4.纳米材料测试方法有:

(1)尺度测量:测量包括,纳米粒子的粒径、形貌、分散状况以及物相和晶体结构的测量;纳米线、纳米管的直径、长度以及端面结构的测量和纳米薄膜厚度、纳米尺度的多层膜的单层厚度的测量等。

①电镜观察法:常用的有透射电镜和扫描电镜

②×射线衍射线宽法:X射线衍射线宽法是测定颗粒晶粒度的最好方法.

(2) 表面及微观结构分析: 纳米材料的宏观物理性质不仅与粒度有关,更主要的是受表面性质、形态和微观结构的影响。

①谱分析法: 紫外一可见光谱是纳米材料谱学分析的基本手段,分为吸收光谱、发

射光谱和荧光光谱。吸收光谱主要用于监测胶体纳米微粒形成过程;发射光谱主

要用于对纳米半导体发光性质的表征,荧光光谱则主要用来对纳米材料特别是纳

米发光材料的荧光性质进行表征。

②热分析法: 纳米材料的热分析主要是指差热分析(DTA)、示差扫描量热法(DSC)以

及热重分析(TG).

③扫描显微技术: 目前对纳米微观结构的分析表征手段主要有扫描探针显微技术,

它包括扫描隧道电子显微镜、原子力显微镜、近场光学显微镜等

(3) 化学成分及宏观性质分析: 分析化学成分常用仪器分析法,主要利用各种化学成分的特征谱线,如原子发射光谱AES、原子吸收光谱AAS等.

5.纳米材料的未来的应用前景领域有:

(1)新的纳米材料的集成检测和表征技术的开发。将会有新的表面、界面纳米结构的表征、测量与控制技术问世。

(2)纳米材料的发展将深入生物医学领域,对疾病的诊断和治疗产生深远的影响,特别是重大疾病的早期诊断和治疗,包括可植入性和弥补性生物兼容材料、诊

断器件、治疗学等,纳米材料将有更多的机会用于药物输运系统、诊断系统和

治疗系统。

(3)纳米能源材料的实际应用。纳米材料将成为化学和能源转化工艺方面具有高度选择性和有效性的催化剂。将在低成本固态太阳能电池用纳米材料与技术,高

性能可充电电池(含超级电容器)用纳米材料与技术和温差电池、燃料电池等所

用的纳米材料与技术研发方面取得实质性进展。

(4)纳米环境净化材料的广泛使用纳米光催化、净化材料,脱SOx、脱NOx用纳米复合材料和可再生环境净化用纳米吸附材料等的批量制备技术将获得突破对环境

保护极具经济价值。

(5)纳米特种功能材料的开发及实际应用。

(6)纳米结构材料的广泛应用。通过材料结构的纳米化和掺杂复合,使结构材料的各种性能得到大幅度提高,并逐步代替传统结构材料。纳米弥散强化、形变诱

导纳米化金属制品及技术,高弹性及高模量纳米复合材料,纳米强韧化陶瓷复

合材料和超塑性纳米陶瓷材料的制备与加工是今后若干年内的重点研发方向。

牡蛎壳纳米羟基磷灰石的制备与表征

?668?厦门大学学报(自然科学版) HA典型特征峰.PO。3一的£,。振动吸收峰的分化程度 高说明,制得HA结晶度较高,与XRD分析所得出的 结论一致.随着反应时间的延长,C032_的吸收峰逐渐 减弱,有的消失,而PO,3一的吸收峰逐渐变强变锐,说 明CO。2_逐渐被PO。3一置换.在图2b中可见CO。2一的 地消失丽U3及沏直至反应最后仍然保留部分,这即 是因为存在A型、B型两种取代嘲.在图2b中可见 C032一的p3分裂为2个吸收峰l420和1454cm~, 它区别于碳酸盐中的单峰,是CO。2一进入磷灰石结构 的重要标志【9].在人体骨磷灰石中也有CO。2一的存在, 人体中C032一含量为2.3%~8%(质量分数),具体含 量多少取决于个体的年龄,说明水热反应制备的牡蛎 壳HA与人骨组分非常相似. 400035003000250020001500100050p0 6{嘣1 图2牡蛎壳粉末及其水热反应后的FTIR图谱 a.牡蛎壳粉末;b.牡蛎壳粉末220℃.Ca/P摩尔比为 5;6条件下合成产物 Fig.2FTIRspectraofoystershellpowder(a)andsamples(b) 2.3HA的SEM及EDS分析 由牡蛎壳断面SEM图(图3a)可见,牡蛎壳为整齐排列的层状结构,每层之间存在大量孔隙,这种特殊结构使其具有硬度高、抗断裂能力强的特征.将其粉碎过筛后可见断裂的块状结构,内有大量孔隙,孔径约为2"-10pm(图3b).牡蛎壳粉末于140℃水热反应6h后基本保留牡蛎壳粉末的微结构,表面生成片状n.HA结晶体,尺寸约为100一-250nm(图3d).随着反应温度升高,片状n-HA晶体相互簇拥,聚集成花瓣状团簇(图3e).较高的反应温度为n.HA沉积物小颗粒提供了一个高活性的表面,小颗粒通过这种表面彼此相结合,从而聚集成花瓣状团簇.随着反应时间的延长或反应温度的升高,部分片状晶体逐渐变为短柱状或六方长柱状,可见在片状颗粒中间簇生出一些宽约50nm、长约150nm的六方柱体(图3f),在尺寸上与自然 图3牡蛎壳粉末,CaC03及不同条件下水热反应产物的SEM照片 a.牡蛎壳断面;b.牡蛎壳粉末;C.CaC03140℃6h, d.牡蛎壳粉末140℃6hfe.牡蛎壳粉末220℃6h; f.牡蛎壳粉末180℃24hc~f的Ca/P摩尔比均为 5:3 Fig.3SEMphotosofoystershellpowderanditssamplesunderdifferentconditionsandCaC03 入骨HA晶体接近.图3e样品的EDS元素分析结果显示,样品中钙磷元素的质量分数分别为38.14%和19.51%,样品ca/P摩尔比为i.5小于理论化学计量比1.67.在水热反应体系中,PO。3一浓度较大,Ca2+浓度相对较小,n-HA晶体在成核和晶体生长过程中出现钙缺位从而形成缺钙型n-HA,导致产物Ca/P摩尔比低,在组成上与人骨HA更相似【l叫. 2.4生物相容性检测 采用MTT检测评价水热转化(220℃,Ca/P摩尔比为5t6,6h)所制备的n—HA的细胞相容性及细胞在材料表面的存活和增殖情况.在活细胞线粒体中,MTT试剂被还原成蓝色的甲瓒,甲瓒生成量与活细胞数量成正比.用酶联免疫检测仪测定其吸光度(oD),从而得到细胞生长情况.小鼠原成骨细胞MC3T3一El与n-HA在体外培养细胞生长情况检测结果如图4所示,可见细胞数量随着时间的延长而增加,细胞相对生长率(RGR)计算公式为; RGR=(0DE/ODc)Xioo%. 其中0D。和ODc分别是实验组和阴性对照组吸光度平均值.同时根据中国国家标准GB/T16686-- 1997材料毒性评分标准列出细胞毒性分级(CTG)(表

纳米羟基磷灰石综述

纳米羟基磷灰石制备方法及应用 赖荣辉 西南民族大学化学与环境保护工程学院高分子化学与物理 摘要 羟基磷灰石(HA)具有良好的生物相容性和生物活性,被广泛的应用于骨修复和药物载体中。但是其本身容易团聚,而形成较大的晶体,使得其生物学性能下降。合成纳米级的羟基磷灰石,使得羟基磷灰石具有较大的比表面积,而具有较好的生物学性能。本文综述了近年来合成纳米羟基磷灰石的进展和几种主要的合成方法包括:水热法、超声法、溶胶-凝胶法、自燃烧法。并对纳米羟基磷灰石的一些改性方法做了简述。最后还对纳米羟基磷灰石的一些应用做了简述。 关键词:羟基磷灰石;制备方法;生物材料;纳米晶体 0 前言 羟基磷灰石,英文名Hydroxyapatite(HA),其化学式为Ca10(PO4)6(OH)2作为一种现代的纳米生物材料,是动物和人体骨骼和牙齿的主要无机成分,具有良好的生物相容性。故常用作骨修复材料和药物载体[1] 1 纳米羟基磷灰石的合成方法 一、自燃烧法 自燃烧法是一种利用硝酸盐与羧酸反应,在低温下实现原位氧化、自发燃烧、快速合成产物前驱体粉末的方法[2]。王欣宇等[3, 4]通过自燃烧法投制备纳米羟基磷灰石粉,他们结合络合物机理和氧化还原反应机理,以柠檬酸为络合剂并通过其具有还原性与硝酸盐混合均匀后进行充分络合,在加热条件下就会发生氧化还原反应,在较低的温度下就可以燃烧。其反应方程式如下:

C6H8O7 + Ca2+ = C6H6O7Ca + 2H+(l) 5C6H6O7Ca + l8NO3- + l8H+ = 30CO2 +9N2 + 24H2O + 5CaO (2)9Ca(NO3)2+ 5C6H8O7 = 30CO2 + 9N2 +20H2O + 9CaO (3)王欣宇等最后所得的自燃烧法制备纳米羟基磷灰石的最佳条件为n(H2O): n (Ca2+)= 30 ~ 35时,可使自燃烧反应进行,反应时间短。对于该反应体系pH的最佳范围为2 ~ 3。最佳的加热温度为80℃,自燃烧产物粉末煅烧的最佳温度为750℃。采用上述最佳工艺条件制备出的HAP 粉末,经超声分散,分散介质为水,然后用粒度分析仪测定粉末的二次平均粒径为494.6±l0.l nm。可见,虽然他们得到了纳米级的羟基磷灰石,但是其平均粒径对于现在的临床研究来说仍然太大了,并且在自燃烧法的反应过程复杂,过程的煅烧温度750℃过高,不利于控制。 二、水热法 水热法是在特定的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶,从而得到纳米结构的晶体。其优点是可以通过控制水热条件(温度、反应时间、前驱物形式等)面得到不同的粉体晶粒物相和形貌[5],徐光亮, 聂轶霞[5]等人利用CaCO3和CaHPO4·2H2O按一定的n(Ca)/n(P)混合在高温高压下合成纳米羟基磷灰石,并且通改变反应的条件:前驱物配比、水热反应温度、以用反应时间等来研究羟基磷灰石合成的最佳反应条件。对于水热法,仍存在一些缺点,因为水热反应耍要在一个高温高压的反应条件下进行,过程不易控制。并且,反应时间耍8h以上才能达到最佳反应,反应时间过长。 另,据报道,任强,罗宏杰等[6]人通过低温燃烧/水热法联合法制备了纳米羟基磷灰石。该方法充分发挥了低温燃烧法(LCS)和水热法的优势,具有制备温度低、反应速度快、制备效率高以及粉体的纯度高、粒度小(40 nm~80 nm)且均匀等优点。该次实验主要用Ca(NO)2,(NH4)2HPO4和柠檬酸(C6H8O7H2O),通过羟基磷灰石中的Ca:P=5:3,并根据燃烧化学基本理论来参加反应。该实验的主要环节是反应温度的确定和硝酸钙与磷酸氢二铵和柠檬酸的比例,其最佳比例为Ca(NO3)2·4H2O:(NH4)2HPO4:C6H8O7·H2O=5:3:2.2。实验的具体过程是:

纳米羟基磷灰石及其复合材料的研究进展_李志宏

医疗卫生装备?2007年第28卷第4期 ChineseMedicalEquipmentJournal?2007Vol.28No.4 纳米羟基磷灰石及其复合材料的研究进展 李志宏 武继民 李瑞欣 许媛媛 张西正 (军事医学科学院卫生装备研究所 天津市 300161) 摘要纳米羟基磷灰石具有良好的生物相容性和生物活性,是较好的生物材料,被广泛应用于骨组织的修复与替代技 术。但是,由于材料本身力学性能较差制约了羟基磷灰石的进一步应用,因此,提高及制备综合性能优越的纳米羟基磷灰石复合生物材料是当今研究的重心和热点。综述了纳米羟基磷灰石制备的主要方法及其复合生物材料的研究进展,并探讨了纳米羟基磷灰石骨修复材料的发展方向。关键词 纳米羟基磷灰石;复合材料;骨修复 Advancesinnano-hydroxyapatiteanditscomposite LIZhi-hong,WUJi-min,LIRui-xin,XUYuan-yuan,ZHANGXi-zheng (InstituteofMedicalEquipment,AcademyofMilitaryMedicalSciences,Tianjin300161,China) AbstractNano-hydroxyapatitehasbeenwidelyusedasreconstructiveandprostheticmaterialforosseoustissue,owingtoitsexcellentbiocompatibilityandtissuebioactivity.Butthepoormechanicalpropertyofhydroxyapatiterestrictsitsfurtherapplication.Inordertoenhancethecomprehensiveperformanceofthematerial,manyresearcheshavebeendedicatedtothesynthesizationofthecompositematerials.Thisarticlereviewsthemainpreparationmethodsofnano-hydroxyapatiteandtheadvancementinresearchofitscomposite.Thedirectionsinthisresearchareaaredescribedaswell.Keywordsnano-hydroxyapatite;compositematerial;bonerepair 作者简介:李志宏,硕士,主要从事高分子材料和生物材料方面的研究; 武继民,博士,硕士生导师,副研究员。 羟基磷灰石(hydroxyapatite,HA或HAP)是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长。其表面具有极性,与机体组织有较强的亲和力,与骨组织形成牢固的骨性结合,是公认性能良好的骨修复替代材料。本文综述了纳米羟基磷灰石复合生物材料的研究进展,并探讨了其可能的发展方向。 1纳米羟基磷灰石的合成 羟基磷灰石超微粉属无机材料,常用制备方法有水热法、 沉淀法、溶胶-凝胶法、微乳液法等。此外,还有等离子体喷涂法、干法、冲击波法等。 1.1水热法 水热法是指在密封压力容器中,以水溶液作反应介质,在 高温、高压下,使通常难溶或不溶的物质溶解且重结晶的一种制备材料的方法。它可以用来生长各种单晶,制备超细、无团聚或少团聚、结晶完好的陶瓷粉体和无机纤维或晶须增强材料。近年来,水热法制备羟基磷灰石也取得了很大的进展。 廖其龙等[1]经水热反应获得了晶粒完整、 粒度在100nm以下的柱状或针状HA晶体,结果表明:随Ca/P比的增加,进入磷灰石结构的CO32-的量增加,引起晶格畸变,晶粒尺寸降低。肖秀峰等[2]研究发现随水热温度的提高和时间的延长,晶体发育越完整,晶粒尺寸越大。郭广生等[3] 研究中发现水热温度和反应时间对HA微晶尺寸变化有较大的影响,高温有利于HA微晶在a轴方向的生长,而延长时间则有利于其在c轴方向的生长。刘晶冰等[4]在较低温度下合成了结晶度较高的棒状羟基磷灰石粉末,同时研究了pH值及温度对产物结构及形貌的 影响。 1.2沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合, 在混合溶液中加入适当的沉淀剂制备超微颗粒的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应的超微颗粒。此法制备纳米HA大多采用无机钙盐和磷酸盐反应得到。 任卫等[5]采用均相共沉淀法和爆发成核法制备出了可长期稳定的、尺度在60~70nm的HA溶胶和纳米粒子。 吕奎龙等[6] 经研究发现:加入形核剂、适当提高反应温度及搅拌速度有 利于制备纯净的羟基磷灰石。李玉峰[7]研究表明:控制反应温度、加料速率,使体系维持一定pH值范围,并适当引入超声波及其它强化条件,可以合成Ca/P比值较为理想、HA相较纯、晶粒度(272.2 ̄544.7)分布好的羟基磷灰石。郭大刚等[8]制得尺寸和形状更接近于人体骨磷灰石结构的HA颗粒,并具有较好的尺寸稳定性,600℃下仍能保持不团聚长大。 1.3溶胶-凝胶法(Sol-Gel) 溶胶凝胶法的基本原理是:将金属醇盐或无机盐水水解, 然后使溶质聚合胶化,再将凝胶干燥、焙烧,最后得到无机材料。其优点是:原料均匀混合;产品粒子化学均匀性好、纯度高、颗粒细;可容纳不溶性组分或不沉淀组分;烘干后凝胶颗粒烧结温度低。 黄志良等[9]用Sol-Gel法制备了不同钙磷摩尔比的HAP和不同CO32-含量的HAP,并系统研究此2类磷灰石的热稳定性。结果表明:Ca和HAP由于存在填隙缺陷结构,表现出较高的热稳定性;在150 ̄800℃范围内CHAP(含有CO32-的HAP)中的CO32-脱除是非平衡态的连续固溶体分解,同时其结晶度增加且晶粒重结晶长大。袁媛等[10]以四水硝酸钙和磷酸三甲酯为 中图分类号:TB383;TB33 文献标识码:A 文章编号:1003-8868(2007)04-0030-02 GENERALREVIEW 综述 30

生物医用纳米羟基磷灰石的性质及其制备_李颖华

中国组织工程研究与临床康复 第 12 卷 第 41 期 2008–10–07 出版
Journal of Clinical Rehabilitative Tissue Engineering Research October 7, 2008 Vol.12, No.41
综 述
生物医用纳米羟基磷灰石的性质及其制备*★
李颖华1,曹丽云1,黄剑锋1 2,曾燮榕2

Characteristics and preparation of nanometer hydroxyapatite in medical science
Li Ying-hua1, Cao Li-yun1, Huang Jian-feng1, 2, Zeng Xie-rong2 Abstract: Hydroxyapatite is the main inorganic mineral component in animals and human bone, and nanometer hydroxyapatite may
show a series of specific characteristics. Nanometer hydroxyapatite with the characteristics of nanometer materials and good biocompatibility has a wide application in biomedical field. The development process, crystal structure and processing methods of nanometer hydroxyapatite are reviewed. Also the development direction of nanometer hydroxyapatite is prospected. It is pointed out that the main problem in producing nanometer hydroxyapatite in a large scale with low-cost in industrial preparation is difficult to solve. The exploitation of industrial equipments for the preparation of nanometer hydroxyapatite will be the next research focus. In addition, the brittleness problem of nanometer hydroxyapatite in biomedical applications can be solved through composite technologies and coating techniques. Li YH, Cao LY, Huang JF, Zeng XR.Characteristics and preparation of nanometer hydroxyapatite in medical science.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu 2008;12(41):8143-8146 [https://www.360docs.net/doc/503363704.html, https://www.360docs.net/doc/503363704.html,]
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi Province, 2 China; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, Guangdong Province, China Li Ying-hua★, Studying for master’s degree, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi Province, China liyinghua840306@ https://www.360docs.net/doc/503363704.html, Correspondence to: Huang Jian-feng, Doctor, Professor, Doctoral supervisor, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi Province, China; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, Guangdong Province, China huangjf@https://www.360docs.net/doc/503363704.html, Supported by: Special Natural Science Foundation of Shaanxi Provincial Education Bureau, No.08JK220* Received: 2008-08-30 Accepted: 2008-09-20
1
摘要:羟基磷灰石是动物和人体骨骼的主要无机矿物成分,当羟基磷灰石的尺寸达到纳米级时将表现出一系列的独特性能。
纳米羟基磷灰石既有纳米材料的特性,又有良好的生物相容性,在生物医学领域具有非常广阔的应用前景。文章介绍了纳 米羟基磷灰石的历史发展、结构特性及制备方法。对纳米羟基磷灰石的发展前景进行了展望。指出:纳米羟基磷灰石的大 批量工业化低成本制备尚存在一定困难,工业化设备的研发将是下一步研究的重点。此外,通过复合技术和涂层技术有望 解决医用纳米羟基磷灰石材料的脆性问题。 关键词:纳米;羟基磷灰石;生物医学材料 李颖华,曹丽云,黄剑锋,曾燮榕 . 生物医用纳米羟基磷灰石的性质及其制备 [J]. 中国组织工程研究与临床康复, 2008 , 12(41):8143-8146 [https://www.360docs.net/doc/503363704.html, https://www.360docs.net/doc/503363704.html,]
钙化的关系。 1972年,日本学者成功合成羟基 0 引言 羟基磷灰石(Hydroxyapatite,HA)是动 物和人体骨骼的主要无机矿物成分,具有良好 的生物活性和生物相容性。当羟基磷灰石的尺 寸达到纳米级时将表现出一系列的独特性能, 如具有较高的降解和可吸收性。研究表明:超 细羟基磷灰石颗粒对多种癌细胞的生长具有 抑制作用,而对正常细胞无影响。因此纳米羟 基磷灰石的制备方法及应用研究已成为生物 医学领域中一个非常重要的课题,引起国内外 学者的广泛关注。 2 1 学术背景 综述生物医用纳米羟基磷灰石的研究进展 羟基磷灰石的研究历史很长。早在 1790 年,就有学者用希腊文字将这种材料命名为磷 灰石。1926年,有人用X射线衍射方法对人骨 和牙齿的矿物成分进行分析,认为其无机矿物 很像磷灰石。从1937年开始,国外发表了大量 有关磷灰石复合物晶体化学方面的文章。19世 纪60年代,国外学者大量报道了羟基磷灰石与 3.1
文献检索 检索人相关内容:第1作者。 检索文献时限:1996/2008。
磷灰石并烧结成陶瓷。1974/1975,日本学者发 现烧成的羟基磷灰石陶瓷具有很好的生物相容 性[1-3]。自此以后,世界各国都对羟基磷灰石材 料进行广泛的基础研究和临床应用研究。 由于纳米粒子具有表面效应、 小尺寸效应及 量子效应等独特的特性, 医学界也相继开始了对 纳米羟基磷灰石的研究, 并已发现纳米羟基磷灰 石具有更强的生物活性[4]。自1990年以后,对纳 米羟基磷灰石制备方法及其在医学领域的研究 有了突飞猛进的发展, 而且有关的文献报道还在 逐年增多。 目的
及其在临床的应用。 3 资料和方法
ISSN 1673-8225 CN 21-1539/R
CODEN: ZLKHAH
8143

纳米羟基磷灰石_HAP_的制备方法及应用 (1)

!""#年第$期(第$$期)佛山陶 瓷!!!!!!! %&&前言 ’()由于其成份与生物机体骨骼的无机成份相近,因而引起了人们的广泛的关注。上世纪#"年代,就有人合成了’()。随着科学技术的进步和人们认识的不断提高,许多研究结果表明,’()是一种无毒、无致癌、无副作用和具有良好生物相容性的生物活性材料;人们还发现’()具有固体碱性能*%+和较强的离子交换能力,因此在催化载体、离子交换领域得到了广泛的应用;同时还能吸附有毒的离子*!+和具有温敏、湿敏效应*#+,因此还是绿色环保材料和智能材料。此外,武汉理工大学生物中心研究发现纳米’()能抑制癌细胞的生长,而对正常的细胞没有副作用,为制备新一代抗癌药物提供了新的途径。 ’()具有许多优良的特性,除与本身特性有关外,还与其制备方法和制备工艺有密切的关系。 !&&’()的晶体结构 羟基磷灰石英文名称’,-./0,12134356分子式为71%" 8)9:;<=9’;!&>简写为’(或’()?>钙磷比71@)AB@#!%C<$(当71@)小于%C<$称为钙亏’()>当71@)大于%C<$称为钙盈’()>当71@)为%C<$称为正常’())>属磷酸钙=D7);陶瓷中的一种生物活性材料。从分子式可以看出,71!E位置=(位;易被%、!、#价和FGG#E等离子替换;*)9:+#H 位置=I位;易被*(J9:+#H、*K9:+#H、*L49:+!H、*L9:+!H、*79#+!H等基团替换;*9’+H位置=M位>通道离子;易被卤素元素替代,并且置换速度非常快;它还可以与含羧基=799’;的氨基酸、蛋白质、有机酸等反应。(、I、M还能相互耦合替代*:+。 D.N5O1P*B+等研究发现’()与氟磷灰石具有同样结构属于六方晶系,空间群为)<#@O。其结构为六角柱体,与Q 轴垂直的面是一个六边形,1、R轴的夹角为%!"",晶胞常数1ARASC:#!!,QA

纳米羟基磷灰石的制备及其在医学领域的应用

纳米羟基磷灰石的制备及其在医学领域的应用 漳州师范学院 化学与环境科学系 08科学教育

摘要: 生物陶瓷纳米羟基磷灰石在自然界中以自然骨、牙中的无机矿物成分为主要形式。人工合成的纳米羟基磷灰石材料具有与自然矿物相似的结构、形态、成分,表现出良好的生物相容性和生物活性,广泛应用于医学领域。本文综合论述了纳米羟基磷灰石在物理化学方面的应用并对其在医学领域的应用进行了详细的论述和展望。 关键词:纳米羟基磷灰石、医学领域、合成方法及应用 Abstract: Biological nanometer hydroxyapatite ceramics in nature to natural bone and tooth the inorganic mineral composition as the main form. Synthetic nano hydroxyapatite orbital implant material has and natural mineral similar structure、shape、composition、show good biocompatibility and biological activity,widely used in medical field. The paper discusses the nano hydroxyapatite in physical chemistry and its application in medical field of applied discussed in detail and prospected. Keywords: nano hydroxyapatite,medical field,synthesis method and application

纳米羟基磷灰石

纳米材料学作业 2005202027 张峰 一.外文综述 1.纳米羟基磷灰石与胶原和聚乙烯醇的复合生物材料[1] 材料的制备 1.合成纳米羟基磷灰石 根据羟基磷灰石中Ca/P摩尔比nCa/Np=1.67,配制Ca(NO3)2·4H2O(80 ml, 0.1 M)溶液和Na3PO4 (48 ml, 0.1 M)溶液,室温下共滴定,不断搅拌混合液。用Na(OH)2调节PH,使PH保持在10。反应得到悬浊液用布氏漏斗过滤后,去离子水清洗,沉淀物80℃隔夜干燥。 2.合成纳米羟基磷灰石/PVA复合物 90℃下配制不同浓度的PVA/去离子水混合液,90℃保持30min。在搅拌的条件下加入1中制备的羟基磷灰石粉体,持续搅拌30min,制得的HAp/PVA凝胶体。用冷冻分相干燥法对该胶体脱水干燥(将胶体降温至-20℃后在升温至20℃,如此反复进行1~4个周期)。 3.合成羟基磷灰石/胶原复合物(HAp/Col) 先在室温下配制30ml、浓度为0.6 mg/ml胶原/水的混合液,持续搅拌2h。之后加入80 ml 0.1M 的Ca(NO3)2·4H2O溶液,再缓慢滴加Na3PO4 (48 ml, 0.1 M)溶液,用Na(OH)2调节PH至10,制得呈凝胶状的HAp/Col复合物。将该凝胶用布氏漏斗过滤,去离子水清洗,室温干燥。4.合成羟基磷灰石/胶原/PVA复合物(HAp/Col/PVA) 室温、搅拌的条件下配制15ml浓度为0.3mg/ml的一型胶原/水混合物,持续搅拌1h后把该混合液倒入等体积的PVA/水的混合液中。将得到的混合物室温搅拌30min,再加入40ml0.1M 的Ca(NO3)2(PH调为10),搅拌,70℃保持24h。之后加入24ml0.1M Na3PO4(PH调为10)。如此,在胶原/PVA上原位合成HAp。然后将反应混合物过滤、冲洗、干燥、检测。 结果与讨论 1.不论是单独合成还是在胶原或PVA或是胶原/PVA纤维上原位合成,所制得的羟基磷灰石都为纳米微粒,其宽为10~30nm,长为40~50nm。 2.羟基磷灰石通过氢键或[OH-]-Ca2+-[-OH]和PVA和胶原结合形成有机-无机杂化体,此外胶原上的羧基也是和羟基磷灰石上的钙离子结合的位点。由于氢键的形成,随着有机相的增加,在有机相原位合成的羟基磷灰石的粒径和结晶度减小。 3.在PVA有机相中引入羟基磷灰石无机相后,复合材料的线性粘弹性大大提高,经低温处理后塑性大幅度增加。 4.复合材料由于胶原的加入、并经脱水处理后强度得到提高,且形成孔径在50~500nm范围内的贯通孔多孔材料。 2.用多糖基羟基磷灰石制备可生物吸收的骨水泥[2] 材料的制备 1.合成纳米羟基磷灰石 用CaCl2和(NH4)2HPO4共沉淀法制备羟基磷灰石纳米晶体。将0.3M(NH4)2HPO4 水溶液缓慢逐滴滴加到0.5M的CaCl2水溶液中。搅拌速度调整为1000rpm,反应温度保持在60℃,用注射器滴加NH4OH的方法调节混合液的PH值,最小为10。反应所得沉淀在相同的搅拌速度下陈化24h,然后过滤,蒸馏水洗4~5次,微波照射15min。微波照射后将最终的沉淀物10,000rpm转速下离心分离10min,去离子水反复冲洗,之后60℃真空干燥。 2.制备复合骨水泥 将适量壳聚糖分散在含2%乙酸的蒸馏水中。37℃,1000rpm搅拌的条件下,将1中反应

纳米羟基磷灰石及其复合生物材料的特征及应用_李瑞琦

中国组织工程研究与临床康复 第 12 卷 第 19 期 2008–05–06 出版
Journal of Clinical Rehabilitative Tissue Engineering Research May 6, 2008 Vol.12, No.19
学术探讨
纳米羟基磷灰石及其复合生物材料的特征及应用★
李瑞琦,张国平,任立中, 沙子义,高宏阳,董 威, 赵 峰,王 伟
Characteristics and application of nano-hydroxyapatite and its composite biomaterials
Li Rui-qi, Zhang Guo-ping, Ren Li-zhong, Sha Zi-yi, Gao Hong-yang, Dong Wei, Zhao Feng, Wang Wei Abstract: Pubmed database and China Journal Full-text Database were both retrieved to screen out the articles, which
summarize and review the advanced progress of nano-hydroxyapatite (nHA) and its composite biomaterials. The nHA biomaterials are compounded with secondary phase or multiphase materials, contributing towards favourable histological reaction, together with satisfactory intensity and rigidity. Furthermore, the biomaterials may produce the scaffold of tissue regeneration. The nHA composite biomaterials are divided into nHA/natural polymer composites and nHA/artificial polymer composites. The former consists of nHA compounded with collagen, bone morphogenetic protein and polysaccharide materials, while the latter comprises the composites of nHA/polyamide, polyester or polyvinyl alcohol. Although the biocompatibility and bioactivity of nHA composites have been ensured, it is still a problem of tissue engineering materials that how to match the degradation velocity of composite biomaterials with bone growth speed. Li RQ, Zhang GP, Ren LZ, Sha ZY, Gao HY, Dong W, Zhao F, Wang W.Characteristics and application of nano-hydroxyapatite and its composite biomaterials.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu 2008;12(19):3747-3750 [https://www.360docs.net/doc/503363704.html,/zglckf/ejournal/upfiles/08-19/19k-3747(ps).pdf]
Department of Orthopaedics, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China Li Rui-qi ★ , Studying for master's degree, Associate chief physician, Department of Orthopaedics, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China li_ruiqi2008@126. com Received:2008-04-24 Accepted:2008-05-04
摘要:检索 Pubmed 数据库和中国期刊全文数据库文献,对应用较为广泛的纳米羟基磷灰石及其复合生物材料研究进展
加以总结。纳米羟基磷灰石复合生物材料是在纳米羟基磷灰石中加入第二相或多相材料,以获得有利的组织学反应、满 意的强度和刚性,并为组织再生合成支架材料。纳米羟基磷灰石复合生物材料大致分为纳米羟基磷灰石 /天然高分子复合 材料和纳米羟基磷灰石 /人工高分子复合材料 2 类。前者包括纳米羟基磷灰石与胶原、骨形态发生蛋白、多糖类材料复合 而成的生物材料,并各具特点。后者是由纳米羟基磷灰石与聚酰胺、聚酯、聚乙烯醇等多种人工高分子生物材料复合而 成。在保证复合材料良好生物相容性和活性的前提下,如何使复合生物材料的降解速率与骨生长速度相匹配是组织工程 材料研究中有待解决的一个主要问题。 关键词:生物材料;羟基磷灰石类;纳米技术;复合体;综述文献 李瑞琦,张国平,任立中 , 沙子义,高宏阳,董威 , 赵峰,王伟.纳米羟基磷灰石及其复合生物材料的特征及应用[J].中国组 织工程研究与临床康复,2008,12(19):3747-3750 [https://www.360docs.net/doc/503363704.html,/zglckf/ejournal/upfiles/08-19/19k-3747(ps).pdf]
加,提高了粒子的活性,从而有利于组织的结 0 引言 羟基磷灰石因其化学成分和晶体结构与 人体骨骼组织的主要无机矿物成分基本相同, 引入人体后不会产生排异反应,故其作为骨修 复替代材料在国内外的临床应用历史已有几 十年。并已被动物实验及临床研究证实具有无 毒、无刺激性、良好的生物活性、良好的生物 相容性和骨传导性、较高的机械强度及化学性 质稳定等特点,是较好的生物材料[1]。但因羟 基磷灰石的颗粒和脆性较大、缺乏可塑性、体 内降解缓慢、生物力学强度和抗疲劳破坏强度 较低,难于被机体完全替代、利用,使其临床 应用受到限制。近年来,随着纳米知识与技术 的不断发展,人们发现人体骨骼中的羟基磷灰 石主要是纳米级针状单晶体结构 。纳米级的 羟基磷灰石与人体内组织成分更为相似,具有 更好的生物学性能。根据“纳米效应”理论, 单位质量的纳米粒子表面积明显大于微米级 粒子,使得处于粒子表面的原子数目明显增
ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH
[2]
合[3]。基于此,纳米羟基磷灰石及其复合生物材 料成为当今研究的重心和热点。 1 问题的提出:
问题1:什么是纳米羟基磷灰石复合生物材料? 问题2:纳米羟基磷灰石复合生物材料的分类? 问题3:纳米羟基磷灰石选择天然高分子材料进行复 合的原因,复合生物材料的特点及用途如何? 问题4:纳米羟基磷灰石选择人工高分子材料进行复 合的原因,复合生物材料的特点及用途如何?
河 北医 科大学 第 一医院骨科 河 北省石家庄市 050031 李 瑞琦 ★,男 , 1966 年生,山西 省岚县人,汉族, 1990 年山西医科 大学毕业, 在读硕 士,副主任医师, 主 要从 事骨与 软 骨 缺损 的修复 研 究。 li_ruiqi2008@ https://www.360docs.net/doc/503363704.html,
中图分类号:R318 文献标识码:A 文章编号:1673-8225 (2008)19-03747-04 收稿日期:2008-04-24 修回日期:2008-05-04 (54200804240026/J·Y)
2
问题的解决
问题1:纳米羟基磷灰石复合生物材料的定义
纳米羟基磷灰石复合生物材料主要是指在 纳米羟基磷灰石中加入第二相或多相材料, 从而 获得有利的组织学反应、满意的强度和刚性,并 为组织再生合成支架材料[4]。羟基磷灰石以纳米 级纤维填充于有机基质, 有机基质为骨修复材料
3747

化学沉淀法制备纳米羟基磷灰石粉体

化学沉淀法制备纳米羟基磷灰石粉体 1、实验目的: 熟练使用化学沉淀法制备纳米粉体; 2、实验原理 化学沉淀法为制备纳米粉体的常用方法,本实验以Ca(NO3)2、(NH4)2HPO4和NH3·H2O 为原料,制备纳米羟基磷灰石粉体,基本原理如下: (NH4)2HPO4+NH3·H2O (NH4)3PO4+ H2O 3(NH4)3PO4+ NH3·H2O (NH4)10(PO4)3·OH 2(NH4)10(PO4)3·OH+10Ca(NO3)2Ca10(PO4)6(OH)2+20NH4NO3 3、试剂和仪器 Ca(NO3)2·4H2O,分析纯;(NH4)2HPO4,分析纯;氨水,分析纯;无水乙醇,分析纯;蒸馏水,实验室自制。 电动搅拌器;三口瓶;烧杯,分液漏斗,量筒,玻璃棒,天平,抽滤装置等。 4、实验过程 (1)安装实验装置。将三口烧瓶,铁架台,水浴锅,冷凝管,搅拌器等安装成需要的装置形式; (2)配料。按n(Ca)/n(P)=1.67的配比分别称取相应量的Ca(NO3)2·4H2O和(NH4)2HPO4,放入500ml烧杯中,迅速加入250ml蒸馏水,用玻璃棒进行搅拌直至溶解完毕; (3)加料、反应。将硝酸钙溶液加入三口烧瓶中,开动搅拌器进行搅拌,加入一定量氨水,调节pH>12,将(NH4)2HPO4溶液加入250ml分液漏斗中,慢慢滴入三口瓶中,控制时间为1小时,整个过程保持搅拌并在室温下进行; (4)升温反应。(NH4)2HPO4溶液滴加完毕后,使水浴升温至90℃,并保温反应3小时,整个过程保持搅拌; (5)降温冷却。保温3小时完成后,使其降温冷却至室温; (6)抽滤、洗涤。将所得反应物用抽滤装置进行抽滤、洗涤,过程中用蒸馏水不断冲洗,直至溶液p H≈7; (7)干燥。将所得粉体放入真空干燥箱中进行干燥,于80℃保温4小时,120℃保温4小时; (8)研磨、过筛。将干燥后的粉体研磨后过200目筛; (9)煅烧。将过筛后的粉体于800℃保温30分钟进行煅烧处理,得纳米羟基磷灰石粉体。 本实验具体要求: (1)配制 3.0mol/lCa(NO3)2·4H2O溶液250ml,按n(Ca)/n(P)=5:3配置相应浓度的(NH4)2HPO4溶液250ml,要计算出Ca(NO3)2·4H2O和(NH4)2HPO4的具体称量重量; (2)氨水按120ml加入。

纳米羟基磷灰石的结构设计

纳米羟基磷灰石的结构设计 摘要 羟基磷灰石与人体硬组织的化学成分和晶体结构极为相似,具有独特的生物活性和生物相容性,是目前生物材料研究的热点。当尺寸在1~100nm时,羟基磷灰石(HAP)纳米粒子有独特的生物学特性。此外羟基磷灰石粉体在吸附、催化、荧光、半导体、抗癌等领域也有广泛应用。 关键词:纳米材料羟基磷灰石结构设计抗癌 NANO HYDROXY APATITE STRUCTURE DESIGN ABSTRACT Hydroxyapatite is the main inorganic components of bone tissues,has good biocompatibility and biological activity,which is the research hotspot of biologicalmaterials.HAP particles have unique biological properties when their size maintained in nano scale.In addition,HAP also has wide application in adsorption,catalysis,fluorescence,semiconductor,cancer areas. KEYWORDS:nanometer materials hydroxyapatite physical design anticancer

1.1 纳米羟基磷灰石的特点 nHA是一种粒径较一般细胞粒径小,粒径为1~100 nm的超微粒子。当物质小到纳米级后,会具有表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等特点。这些特性导致其特有的热、磁、光敏感特性和表面稳定性,容易通过外场(电、磁、光)实现对其性能的控制,有利于实现靶向输送、控制释放、保护和稳定被输送物质。同时还具有不易被机体网状内皮细胞清除、有效避免脾滤过效应、通过增加渗透和滞留效应增强靶组织累积等优势。 人体骨中无机结构的基本单元式针状和柱状的磷灰石晶体,呈高度有序的排列,其结晶学C轴平行于胶原纤维方向定向生长,这种结构是一种理想的等强度优化结构,具有优良的生物力学性能。人工合成的羟基磷灰石是一种优良的硬组织替代材料,具有良好的生物亲和性,生物相容性,生物活性和骨传导作用。依据“纳米效应”理论,纳米级的羟基磷灰石其粒子活性更高,更有利于骨组织的整合,骨传导性能,溶解性能和力学性能提高。 1.2 纳米磷灰石的基本特性 1.2.1 HAP粒子的晶体结构 羟基磷灰石的理论组成为Ca10(P04)6(OH)2,为六方晶系,属于L6PC对称型和P63/m空间群,其结构为六角柱体,晶胞参数为a0=b0=0.943~0.938nm,C0=0.688~0.686nm,z=2, α=β=900,γ=1200。晶胞含有l0个Ca2+、6个PO43-,和2个OH-,结构中Ca2+离子分别位于配位数为9的Ca(Ⅰ)位置和配位数为7的Ca(Ⅱ)位置,结构比较复杂,其在(0001)面上的投影如图1.1。

相关文档
最新文档