线性稳压器和开关模式电源的基本概念

线性稳压器和开关模式电源的基本概念
线性稳压器和开关模式电源的基本概念

线性稳压器和开关模式电源的基本概念

本文阐述了线性稳压器和开关模式电源(SMPS)的基本概念。目的是针对那些对电源设计和选择可能不很熟悉的系统工程师。文章说明了线性稳压器和SMPS的基本工作原理,并讨论了每种解决方案的优势和劣势。以降压型转换器为例进一步解释了开关稳压器的设计考虑因素。

引言

如今电子系统中有越来越多的电源轨和电源解决方案设计,且负载范围从几mA(用于待机电源)到100A以上(用于ASIC电压调节器)。工程师必需选择针对目标应用的合适解决方案并满足规定的性能要求,例如:高效率、紧凑的印刷电路板(PCB)空间、准确的输出调节、快速瞬态响应、低解决方案成本等。对于系统设计师来说,电源管理设计正成为一项日益频繁和棘手的工作,而他们当中许多人可能并没有很强的电源技术背景。

电源转换器利用一个给定的输入电源来产生用于负载的输出电压和电流。其必需在稳态和瞬态情况下满足负载电压或电流调节要求。另外,它还必须在组件发生故障时对负载和系统提供保护。视具体应用的不同,设计师可以选择线性稳压器(LR)或开关模式电源(SMPS)解决方案。为了选择最合适的解决方案,设计师应熟知每种方法的优点、不足和设计关注点。

本文将着重讨论非隔离式电源应用,并针对其工作原理和设计的基本知识作相关介绍。

线性稳压器

线性稳压器的工作原理

我们从一个简单的例子开始。在嵌入式系统中,可从前端电源提供一个12V总线电压轨。在系统板上,需要一个3.3V电压为一个运算放大器(运放)供电。产生3.3V电压最简单的方法是使用一个从12V总线引出的电阻分压器,如图1所示。这种做法效果好吗?回答常常是“否”。在不同的工作条件下,运放的V

引脚电流可能会发生变化。

CC

电压将随负载而改变。此外,12V总线输入假如采用一个固定的电阻分压器,则IC V

CC

还有可能未得到良好的调节。在同一个系统中,也许有很多其他的负载共享12V电压轨。由于总线阻抗的原因,12V总线电压会随着总线负载情况的变化而改变。因此,电阻分压器不能为运放提供一个用于确保其正确操作的3.3V稳定电压。于是,需要一个专用的电压调节环路。如图2所示,反馈环路必需调整顶端电阻器R1的阻值以动态地调节上的3.3V。

V

CC

图1:电阻分压器采用12V总线输入产生3.3V

DC

图2:反馈环路调整串联电阻器R1的阻值以调节3.3V。

此类可变电阻器可利用一个线性稳压器来实现,如图3所示。线性稳压器使一个双极性或场效应功率晶体管(FET)在其线性模式中运作。这样,晶体管起的作用就是一个与输出负载相串联的可变电阻器。从概念上说,如需构建反馈环路,可由一个误差放大

器利用一个采样电阻器网络(R

A 和R

B

)来检测DC输出电压,然后将反馈电压V

FB

与一个基

准电压V

REF

进行比较。误差放大器输出电压通过一个电流放大器驱动串联功率晶体管的

基极。当输入V

BUS 电压下降或负载电流增大时,V

CC

输出电压下降。反馈电压V

FB

也将下降。

因此,反馈误差放大器和电流放大器产生更多的电流并输入晶体管Q1的基极。这将减

小电压降V

CE ,因而使V

CC

输出电压恢复,这样一来V

FB

=V

REF

。另一方面,如果V

CC

输出电压

上升,则负反馈电路采取相似的方式增加V

CE 以确保3.3V输出的准确调节。总之,V

O

任何变化都被线性稳压器晶体管的V

CE 电压所消减。所以,输出电压V

CC

始终恒定并处于

良好调节状态。

图3:线性稳压器可实现一个可变电阻器以调节输出电压。

为什么采用线性稳压器?

长期以来,线性稳压器一直得到业界的广泛采用。在开关模式电源于上世纪60年代后成为主流之前,线性稳压器曾经是电源行业的基础。即使在今天,线性稳压器仍然在众多的应用中广为使用。

除了简单易用之外,线性稳压器还拥有其他的性能优势。电源管理供应商开发了许

多集成型线性稳压器。典型的集成线性稳压器只需要V

IN 、V

OUT

、FB和任选的GND引脚。

图4示出了一款典型的3引脚线性稳压器LT1083,它是凌力尔特公司在20多年前开发的。该器件仅需一个输入电容器、输出电容器和两个反馈电阻器以设定输出电压。几乎所有的电气工程师都可以运用这些简单的线性稳压器来设计电源。

图4:集成型线性稳压器实例:只有3个引脚的7.5A线性稳压器。

一个缺点——线性稳压器会消耗大量的功率

采用线性稳压器的一个主要缺点是其运行于线性模式之串联晶体管Q1会有过大功率耗散。如前文所述,线性稳压器从概念上讲是一个可变电阻器。由于所有的负载电流

都必须经过串联电阻器,故其功率耗散为P

LOSS =(V

IN

–V

O

)?I

O

。在该场合中,线性稳压器的

效率可由下式快速估算:

于是在图1所示的例子中,当输入为12V且输出为3.3V时,线性稳压器的效率仅为27.5%。在此场合中,72.5%的输入功率完全浪费掉了,并在稳压器中产生了热量。这意味着晶体管必须具备在最坏情况下(最大V

IN

和满负载)处理其功率/热耗散的热能力。

因此,线性稳压器及其散热器的尺寸可能很大,特别是在V

O 远远低于V

IN

的时候。如图5

所示,线性稳压器的最大效率与V

O /V

IN

之比成比例。

图5:线性稳压器的最大效率与V

O /V

IN

之比的关系。

另一方面,线性稳压器可以在V

O 接近V

IN

的情况下具有非常高的效率,然而,线性

稳压器(LR)存在另一个局限性,即V

IN 和V

O

之间的最小电压差。LR中的晶体管必须在其

线性模式中运作。于是,其在双极型晶体管的集电极至发射极两端或FET的漏极至源极两端需要一个确定的最小电压降。当VO过于接近VIN时,LR也许不再能够调节输出电

压。那些能够在低裕量(V

IN –V

O

)条件下工作的线性稳压器被称为低压差稳压器(LDO)。

另外,还有一个明显之处就是线性稳压器或LDO只能提供降压DC/DC转换。在那些

要求V

O 电压高于V

IN

电压,或者需要从一个正V

IN

电压产生负V

O

电压的应用中,线性稳压

器显然是不起作用。

具均流功能的线性稳压器可提供大功率[8]

对于需要更大功率的应用,必须把稳压器单独地安装在一个散热器上以散逸热量。在全表面贴装型系统中,这并非可选方案,因此功率耗散的限制条件(比如1W)使输出电流受到限制。不幸的是,要想直接通过线性稳压器的并联来散播产生的热量并不容易。

用一个高精度电流源取代图3中所示的电压基准,将允许直接把线性稳压器并联起来以分散电流负载,从而在IC之间传播消散的热量。这使得可以在高输出电流的全表面贴装型应用中使用线性稳压器,在此类应用中,电路板上的任何单一点中只能耗散有限的热量。

LT3080是首款能够通过并联使用以提供较大电流的可调型线性稳压器。如图6所示,该器件具有一个连接至运算放大器同相输入端的高精度零温度系数(TC)10μA内部

电流源。利用单个外部电压设定电阻器R

SET ,可以在0V至(V

IN

–V

DROPOUT

)的范围内调节线性

稳压器的输出电压。

图6:利用单个电阻器完成设定的LDO LT3080具有一个高精度电流源基准。

如图7所示,通过并联LT3080以实现均流是十分容易的。只需把各个LT3080的SET 引脚连接在一起;两个稳压器就能共享同一个基准电压。由于运算放大器经过精确的修整,因此调节引脚与输出之间的失调电压小于2mV。在该场合中,仅需要10mΩ的镇流电阻(其可以是一个小的外部电阻器与PCB走线电阻之和)即可平衡负载电流并实现优于80%的均衡共享。需要更大的功率吗?即使并联5~10个器件也是合理的。

图7:通过两个LT3080线性稳压器的并联来提供更高的输出电流。

线性稳压器更为可取的的应用

在很多应用中,线性稳压器和LDO可提供优于开关电源的解决方案,包括:

1. 简单/低成本的解决方案。线性稳压器和LDO简单易用,特别适合于那些具有低输出电流、热应力不很关键的低功率应用。无需外部功率电感器。

2. 低噪声/低纹波应用。对于那些对噪声敏感的应用(例如:通信和无线电设备)而言,最大限度地抑制电源噪声是非常关键的。线性稳压器具有非常低的输出电压纹波(因为没有频繁接通和关断的组件),而且线性稳压器还可以拥有非常高的带宽。所以,几乎不存在EMI问题。有些特殊的LDO(比如:凌力尔特的LT1761 LDO系列)在输出端的噪。这么低的噪声水平SMPS几乎是不可能实现的。即使采用ESR非常声电压低至20μV

RMS

低的电容器,SMPS的输出纹波往往也将达到mV级。

3. 快速瞬态应用。线性稳压器反馈环路一般都是内置的,因此无需外部补偿。相比于SMPS,线性稳压器通常具有较宽的控制环路带宽和较快的瞬态响应。

4. 低压差应用。对于那些输出电压接近输入电压的应用来说,LDO可能比SMPS更有效。有非常低压差LDO(VLDO),例如:凌力尔特的LTC1844、LT3020和LTC3025,这些器件可提供20mV至90mV的压差电压和高达150mA的电流。最小输入电压可低至0.9V。由于LR中没有AC开关损耗,因此LR或LDO的轻负载效率与其满负载效率很相近。SMPS 常常因其AC开关损耗的缘故而具有较低的轻负载效率。在轻负载效率同样十分关键的电池供电型应用中,LDO可提供一种优于SMPS的解决方案。

总之,设计师之所以使用线性稳压器或LDO ,原因就在于其具有简单、低噪声、低成本、易于使用以及可提供快速瞬态响应等特性。如果V O 接近于V IN ,LDO 也许比SMPS

效率更高。

为什么使用开关模式电源?

一个脱口而出的回答是:效率高。在SMPS 中,晶体管运作于开关模式而不是线性模式。这意味着,当晶体管导通并传导电流时,其电源通路两端的电压降是最小的。当晶体管关断并隔离高电压时,其电源通路中几乎没有电流通过。所以半导体晶体管很像一个理想的开关。晶体管中的功率损失于是得到了最大限度的减少。高效率、低功率耗散和高功率密度(小尺寸)是设计师用SMPS 替代线性稳压器或LDO(特别是在大电流应用中)的主要原因。例如:现今的12V IN 、3.3V OUT 开关模式同步降压型电源通常能够实现>

90%的效率,而线性稳压器则不到27.5%。这意味着至少可以使功耗和尺寸减少8倍。

最普及的开关电源——降压型转换器

图8示出了最简单和最普及的开关稳压器——降压型DC/DC 转换器。其具有两种操作模式,取决于晶体管Q1是接通还是关断。为了简化讨论,假设所有的功率器件都是理想的。当开关(晶体管)Q1接通时,开关节点电压V SW =V IN ,而且电感器L 电流由(V IN –V O )充电。图8(a)示出了该电感器充电模式中的等效电路。当开关Q1关断时,电感器电流通过续流二极管D1,如图8(b)所示。开关节点电压V SW =0V ,电感器L 电流由V O 负载放

电。由于理想二极管不能在稳态中拥有DC 电压,因此平均输出电压V O 可由下式给出:

式中的T ON 为开关周期T S 之内的导通时间间隔。如果把T ON /T S 之比定义为占空比D ,

则输出电压V O 为:

当滤波电感器L 和输出电容器C O 的数值足够高时,输出电压V O 是一个仅具有mV 级

纹波的DC 电压。在这种场合中,对于一个12V 输入降压电源,从概念上讲27.5%的占空比可提供一个3.3V 的输出电压。

图8:降压型转换器操作模式和典型波形。

除了上面的取平均法之外,还有另一种推导占空比方程式的方法。理想电感器不能在稳态中拥有DC电压。因此它必须在一个开关周期之内保持电感器伏特-秒平衡。根据图8中的电感器电压波形,伏特-秒平衡要求:

因此,

(5)式与(3)式相同。可把相同的伏特-秒平衡方法用于其他的DC/DC拓扑,以推导

占空比与V

IN 和V

O

的关系方程式。

降压型转换器中的功率损耗

DC传导损耗

在采用理想组件(在导通状态中电压降为零,并具有零开关损耗)的情况下,理想降压转换器的效率可达100%。在现实中,功率耗散始终与每一种功率组件有关。在SMPS 中有两类损耗:DC传导损耗和AC开关损耗。

降压转换器的传导损耗主要源于晶体管Q1、二极管D1和电感器L在传导电流时其两端的电压降。为简化讨论,在下面的传导损耗计算中忽略电感器电流的AC纹波。倘

若将MOSFET用作功率晶体管,则MOSFET的传导损耗等于I

O 2?R

DS(ON)

?D,式中的R

DS(ON)

MOSFET Q1的导通电阻。二极管的传导功率损耗等于I

O ?V

D

?(1–D),式中的V

D

为二极管

D1的正向电压降。电感器的传导损耗为I

O 2?R

DCR

,式中的R

DCR

是电感器绕组的铜电阻。于

是,降压型转换器的传导损耗大约为:

例如:一个12V输入、3.3V/10A

MAX

输出降压电源可以使用下面的组件:

MOSFET R

DS(ON)=10mΩ,电感器R

DCR

=2mΩ,二极管正向电压V

D

=0.5V。因此,满负载时的传

导损耗为:

如果只考虑传导损耗,则转换器效率为:

上面的分析表明:续流二极管产生3.62W的功率损耗,远远高于MOSFET Q1和电感器L的传导损耗。如需进一步改善效率,可用一个MOSFET Q2来替代二极管D1,如图9所示。这种转换器被称为同步降压型转换器。Q2的栅极需要与Q1栅极互补的信号,也就是Q2只在Q1断开的时候导通。同步降压型转换器的传导损耗为:

如果还把一个10mΩ R

DS(ON)

MOSFET用于Q2,则同步降压型转换器的传导损耗和效率为:

上例表明:同步降压型转换器的效率高于传统的降压转换器,特别是对于那些占空比很小和二极管D1传导时间很长的低输出电压应用。

图9:同步降压型转换器及其晶体管栅极信号。

AC开关损耗

除了DC传导损耗之外,还存在其他由非理想功率组件引起并与AC/开关操作相关的功率损耗。

1. MOSFET开关损耗。实际的晶体管其接通和关断需要时间。所以,在接通和关断瞬变期间存在电压和电流重叠,这会产生AC开关损耗。图10示出了同步降压型转换器中的MOSFET Q1的典型开关波形。顶端FET Q1的寄生电容器C

GD

之充电和放电以及电荷

Q

GD

决定了大部分的Q1开关时间和相关损耗。在同步降压转换器中,底端FET Q2的开关损耗很小,这是因为Q2始终在其体二极管导电之后接通,而在其体二极管导电之前则被关断,同时体二极管两端的电压降很低。然而,Q2的体二极管反向恢复电荷也会增加顶端FET Q1的开关损耗,并产生开关电压振铃和EMI噪声。(12)式表明:控制FET Q1

的开关损耗与转换器的开关频率f

S 成比例。Q1的能量损耗E

ON

和E

OFF

之准确计算并不简

单,不过可以在MOSFET供应商的应用手册里找到。

图10:降压转换器中的顶端FET Q1的典型开关波形和损耗。

2. 电感器磁芯损耗P

SW_CORE

。实际的电感器也具有一个与开关频率成某种函数关系的AC损耗。电感器AC损耗主要源自磁芯损耗。在高频SMPS中,磁芯材料可能是铁粉或铁氧体。一般来说,铁粉芯的饱和过程比较舒缓,但具有高的磁芯损耗,而铁氧体材料的饱和过程虽然较为急剧,但磁芯损耗较少。铁氧体是陶瓷铁磁材料,其具有一种由氧化铁与氧化锰或氧化锌的混合物构成的晶体结构。磁芯损耗主要是由于磁滞损耗引起的。磁芯或电感器制造商通常都提供了磁芯损耗数据,以便电源设计师估算AC电感器损耗之用。

3. 其他的AC相关损耗。其他与AC相关的损耗包括栅极驱动器损耗P

SW_GATE

(其等于

V DRV ?Q

G

?f

S

)和死区时间(当顶端FET Q1和底端FET Q2均处于关断状态时)体二极管传导损

耗,其等于(ΔT

ON +Δ

TOFF

)?V

D(Q2)

?f

S

总之,与开关操作相关的损耗包括:

开关操作相关损耗的计算通常并不容易。开关操作相关损耗与开关频率f

S

成比例。

在12V

IN 、3.3V

O

/10A

MAX

同步降压型转换器中,当开关频率为200kHz至500kHz时,AC损

耗引起的效率损失大约为2%到5%。所以在满负载时的总效率约为93%,这远远好于LR 或LDO电源。发热量或尺寸可缩减将近10倍。

开关电源组件的设计考虑

开关频率优化

一般而言,较高的开关频率意味着较小尺寸的输出滤波器组件L和C

O

。因此,可以缩减电源的尺寸和成本。另外,较高的带宽还能改善负载瞬态响应。然而,较高的开关频率也意味着较高的AC相关功率损耗,这就需要采用较大的电路板空间或散热器来限制热应力。目前,对于≥10A的输出电流应用,大多数降压电源均工作于100kHz至

1MHz~2MHz的频率范围。对于<10A的负载电流,开关频率可高达几MHz。对于每款设计而言,其最佳频率都是谨慎权衡尺寸、成本、效率及其他性能参数之后得出的结果。

输出电感器的选择

在同步降压转换器中,电感器峰至峰纹波电流可采用下式计算:

对于一个给定的开关频率,低电感将产生大的纹波电流并导致大的输出纹波电压。大纹波电流还会增加MOSFET RMS电流和传导损耗。另一方面,高电感值意味着大的电感器尺寸,并有可能导致很高的电感器DCR和传导损耗。一般来说,当挑选电感器时,应选择10%~60%的峰至峰纹波电流与最大DC电流之比。电感器供应商通常规定了DCR、RMS(加热)电流和饱和电流额定值。应在供应商指定的最大额定值范围内设计电感器的最大DC电流和峰值电流,这一点是很重要。

功率MOSFET的选择

当选择用于降压转换器的MOSFET时,首先需确定其最大V

DS 额定值高于电源V

IN(MAX)

并具有足够的裕量。然而,不要选择额定电压过高的FET。例如:对于一个16V

IN(MAX)

电源,额定电压为25V或30V的FET就很适合。额定电压为60V的FET就过高了,因为FET的

导通电阻常常随额定电压的提高而增大。其次,FET的导通电阻R

DS(ON)和栅极电荷Q

G

(或

Q GD )是两个最关键的参数。通常需要在栅极电荷QG与导通电阻R

DS(ON)

之间进行权衡取舍。

一般而言,小硅芯片尺寸的FET具有低Q

G ,但导通电阻R

DS(ON)

很高;而采用大硅芯片的

FET则具有低R

DS(ON),但Q

G

很大。在降压转换器中,顶端MOSFET Q1兼具传导损耗和AC

开关损耗。Q1通常需要采用低Q

G

FET,特别是在具有低输出电压和小占空比的应用中。

低压侧的同步FET Q2具有小的AC损耗,因为它常常在其V

DS

电压接近于零时接通或关

断。在此场合中,对于同步FET Q2而言,低R

DS(ON)比Q

G

更重要。当单个FET不能处理总

功率时,可把多个MOSFET并联起来使用。

输入和输出电容器的选择

首先,应选择具有足够电压降额的电容器。

降压型转换器中的输入电容器具有脉冲开关电流和大的纹波。因此,应选择具有足够RMS纹波电流额定值的输入电容器以确保其寿命。在输入端上通常并联使用铝电解电容器和低ESR陶瓷电容器。

输出电容器不仅决定了输出电压纹波,而且也决定了负载瞬态性能。输出电压纹波可采用(15)式计算。就高性能应用而言,ESR和总电容对于最大限度地抑制输出纹波电

压和优化负载瞬态响应都是十分重要的。通常,低ESR钽电容器、低ESR聚合物电容器和多层陶瓷电容器(MLCC)是上佳的选择。

合上反馈调节环路

对于开关模式电源来说还有另一个重要的设计阶段,就是采用某种负反馈控制方案来完成调节环路。与采用LR或LDO时相比,这常常是一项更具挑战性的任务。其需要很好地了解环路的运行方式和补偿设计,以利用一个稳定的环路来优化动态性能。

降压型转换器的小信号模型

如上文所述,开关转换器的操作模式变化与接通或关断状态之间具有某种函数关系。它是一种分立和非线性系统。为采用线性控制的方法进行反馈环路的分析,需要线性小信号模型[1]。由于输出L-C滤波器的原因,占空比D至输出V

O

的线性小信号转移函数实际上是一个具有两个极点和一个零点的二阶系统,如(16)式所示。有两个位于输出电感器和电容器之谐振频率的极点。有一个由输出电容和电容器ESR决定的零点。

式中的S

Z_ESR =2πf

Z_ESR

=1/ESR?C

O

电压模式控制与电流模式控制的比较

输出电压可以利用一个闭环系统进行调节,如图11所示。例如,当输出电压增加时,反馈电压VFB增加,而负反馈误差放大器的输出减小。于是占空比下降。因此,输

出电压被拉回来以使V

FB =V

REF

。误差运放的补偿网络可以是I类、II类或III类反馈放大

器网络[4]。只有一个用于调节输出的控制环路。这种方案被称为电压模式控制。凌力尔特的LTC3775和LTC3861是典型的电压模式降压控制器。

图11:电压模式控制型降压转换器的方框图。

图12示出了一款采用LTC3775电压模式降压控制器的5V至26V输入、1.2V/15A 输出同步降压型电源。由于LTC3775具有前沿PWM调制架构和非常低(30ns)的最小导通时间,因此对于将高电压汽车或工业电源降压转换到当今微处理器和可编程逻辑芯片所需之1.2V低电压的应用,该电源的运作良好。[9]大功率应用需要具均流功能的多相降压转换器。当采用电压模式控制时,需要一个额外的均流环路以在并联的降压通道之间平衡电流。用于电压模式控制的典型均流方法是“主-从”法。LTC3861就是这样的一款多相(PolyPhase)电压模式控制器。其非常低的±1.25mV电流检测失调可使并联相位之

间的均流非常准确,以平衡热应力。[10]

图12:LTC3775电压模式同步降压电源可提供一个高降压比。

电流模式控制采用两个反馈环路:一个与电压模式控制转换器之控制环路相似的外部电压环路,和一个负责把电流信号反馈至控制环路之中的内部电流环路。图13示出了峰值电流模式控制降压型转换器(其直接检测输出电感器电流)的概念方框图。当采用电流模式控制时,电感器电流由误差运放输出电压决定。电感器变成了一个电流源。于

是,从运放输出V

C 至电源输出电压V

O

的转移函数变成了一个单极点系统。这大大简化了

环路补偿。控制环路补偿与输出电容器ESR零点的相关性较低,因而可以使用全陶瓷输出电容器。

电流模式控制还有许多其他好处。如图13所示,由于峰值电感器电流以一种逐周期的方式受限于运放V

C

,因此电流模式控制型系统在过载条件下提供了一种准确度更高和速度更快的电流限制。浪涌电感器电流在启动期间也处于良好受控的状态。另外,当输入电压变化时电感器电流并不会快速改变,所以电源拥有上佳的电压瞬态性能。当多个转换器并联时,运用电流模式控制还可以非常容易地在电源之间分享电流,这一点对于采用多相降压型转换器来实现可靠的大电流应用而言是很重要的。一般说来,电流模式控制型转换器的可靠性要高于电压模式控制型转换器。

图13:电流模式控制型降压转换器的方框图。

电流模式控制电路解决方案必需精确地检测电流。电流检测信号通常是一个具有几十mV电平的小信号,其对开关噪声很敏感。因此,需要实施正确和谨慎的PCB布局。可通过检测流过一个检测电阻器的电感器电流、电感器DCR压降或MOSFET导电压降来完成电流环路。典型的电流模式控制器包括凌力尔特的LTC3851A和LTC3855。

恒定频率与恒定导通时间控制的比较

“电压模式控制与电流模式控制的比较”部分中的典型电压模式和电流模式方案具有由控制器内部时钟生成的恒定开关频率。这些恒定开关频率控制器可以容易地实现同步,对于大电流的多相降压控制器来说这是一项重要的特性。然而,如果负载升压瞬变刚好在控制FET Q1关断之后发生,则转换器必须等待整个Q1关断时间直到下一个周期开始以响应瞬变。在具有小占空比的应用中,最坏情况延迟接近一个开关周期。

在此类低占空比应用中,恒定导通时间谷值电流模式控制具有较短的延迟以响应负载升压瞬变。在稳态操作中,恒定导通时间降压转换器的开关频率几乎是固定的。假如遭遇瞬变,则开关频率能够快速改变以加快瞬态响应。因此,电源拥有了改善的瞬态性能,而且可以减小输出电容并降低其相关成本。

然而,在采用恒定导通时间控制时,开关频率有可能随电压或负载而改变。LTC3833是一款具有更精细的受控导通时间架构的谷值电流模式降压型控制器,该架构是恒定导通时间控制架构的一个变种,其不同之处是可通过控制导通时间而使开关频率在稳定阶段以及整个电压和负载情况下保持恒定。利用这种架构,LTC3833控制器可具有20ns

的最小导通时间,并实现从高达38V

IN 至0.6V

O

的降压应用。该控制器可同步至一个频率

范围为200kHz至2MHz的外部时钟。图14示出了一个具有4.5V至14V输入和1.5V/20A 输出的典型LTC3833电源。[11]如图15所示,该电源能够对突发的高摆率负载瞬变做出快速响应。在负载升压瞬变期间,开关频率增加以提供更快的瞬态响应。而在负载降

压瞬变过程中,占空比下降至零。所以,仅输出电感器限制电流摆率。除了LTC3833之外,LTC3838和LTC3839控制器也为多输出或多相应用提供了具快速瞬态响应的多相解决方案。

图14:采用LTC3833的快速、受控导通时间电流模式电源。

图15:LTC3833电源可在快速负载阶跃瞬变期间提供快速响应。

环路带宽和稳定性

不管是从电气角度还是从声学角度来看,设计精良的SMPS都是安静的。对于一个欠补偿的系统(其往往不稳定)而言,情况就不是这样了。欠补偿电源的典型症状包括:来自磁性组件或陶瓷电容器的可听噪声、开关波形中的抖动、输出电压的振荡等等。过度补偿的系统可以非常稳定和安静,但代价是瞬态响应速度缓慢。此类系统具有一个非常低的环路穿越频率,通常低于10kHz。瞬态响应缓慢的设计需要过大的输出电容以满

足瞬态调节要求,因而增加了总体电源成本和尺寸。最优的环路补偿设计是稳定和安静的,但不是过度补偿的,因此它也具有快速响应以尽量减小输出电容。有很多文章都讨论了怎样为电压模式控制和电流模式控制型SMPS优化环路补偿网络的问题[2-4]。对于欠缺经验的电源设计师来说,小信号建模和环路补偿设计会很困难。凌力尔特的LTpowerCAD设计工具可处理精细复杂的方程式并大大简化环路补偿[6]。LTspice仿真工具整合了所有的凌力尔特器件模型,并提供了额外的时域仿真以优化设计。不过,在原型设计阶段,环路稳定性和瞬态性能的测试/验证常常是必要的。

一般而言,闭合电压调节环路的性能是利用两个重要的数值来评估的:环路带宽和环路稳定性裕度。环路带宽由穿越频率f

C

进行量化,在该频率上环路增益T(s)等于

1(0dB)。环路稳定性裕度通常采用相位裕度或增益裕度来量化。环路相位裕度Φ

m

被定义为穿越频率上总T(s)相位延迟与–180°之间的差异。增益裕度则被定义为在总T(s)相位=–180°之频率上T(s)增益与0dB之间的差异。对于降压型转换器,通常认为45°

的相位裕度和10dB的增益裕度是足够的。图16示出了一款LTC3829 12V

IN 至1V

O

/60A三

相降压转换器的典型环路增益博德图。在该例中,穿越频率为45kHz,相位裕度为64°。增益裕度接近20dB。

图16:LTpowerCAD设计工具提供了一种优化环路补偿和负载瞬态响应的简易方法(三相、单输出LTC3829降压型转换器实例)。

针对大电流应用的多相降压型转换器

由于数据处理系统速度越来越快、规模越来越大,其处理器和存储器单元需要在不断降低的电压下获得更大的电流。在这些大电流条件下,对电源的需求成倍地提高。近年来,多相同步降压型转换器由于其高效率和均匀的热分布而被广泛地应用于大电流、低电压电源解决方案。此外,利用多个交错式的降压转换器相位还可以显着地降低输入和输出侧上的纹波电流,从而减小输入和输出电容器并压缩相关的电路板空间和成本。

在多相降压型转换器中,精准的电流检测和均流变得极其重要。优良的均流可确保均匀的热分布和高的系统可靠性。由于其在稳态及瞬变期间的固有均流能力,电流模式控制型降压转换器通常是首选。凌力尔特的LTC3856和LTC3829是具有精准电流检测和均流功能的典型多相降压控制器。对于2、3、4、6和12相系统,可采取菊链的方式将多个控制器连接起来以提供20A至200A以上的输出电流。

高性能控制器的其他要求

高性能的降压型控制器需要具备许多其他的重要特性。软起动功能常常是控制启动期间的浪涌电流所必需的。过流限制和短路锁断能够在输出过载或短路时保护电源。过压保护功能可为系统中的昂贵负载装置提供安全防护。为了尽量抑制系统EMI噪声,有时必须使控制器同步至一个外部时钟信号。对于低电压、大电流应用,远端差分电压采样可补偿PCB电阻压降并准确地调节远端负载上的输出电压。在具有多个输出电压轨的精细复杂系统之中,不同电压轨之间的排序和跟踪也是必不可少的。

PCB布局

组件选择和原理图设计仅仅是电源设计过程的一半。开关电源设计的正确PCB布局始终是至关紧要。事实上,这说法并没有夸大。上佳的布局设计可优化电源效率、减轻热应力,而且最重要的是能够尽量地抑制走线和组件之间的噪声和相互影响。为此,设计师应了解开关电源中的电流传导路径和信号流,这一点很重要。获得必要的经验常常需要付出大量的努力。详细的讨论请见凌力尔特的《应用指南136》(Application Note 136)。[7]

图17:一款采用LTC3829的三相、单通道VO大电流降压型转换器。

各种不同解决方案的选择——分立型、单片式和集成型电源

在集成度方面,系统设计师可以决定选择分立型、单片式或全集成型电源模块解决方案。图18示出了面向典型负载点电源应用的分立型和电源模块解决方案实例。分立型解决方案采用一个控制器IC、外部MOSFET和无源组件,以在系统板上构建电源。选择分立型解决方案的一个主要原因是组件物料清单(BOM)成本低。然而,这需要良好的电源设计技能和相对较长的开发时间。单片式解决方案采用一个具集成型功率MOSFET 的IC,以进一步缩减解决方案尺寸和组件数目。此类解决方案也需要相似的设计技能和开发时间。全集成型电源模块解决方案可显着减少设计工作量、开发时间、解决方案尺寸和设计风险,但通常具有较高的组件BOM成本。

LDO线性稳压器

线性稳压器(LDO) 一、应用场景 图1所示电路是一种最常见的AC/DC电源,交流电源电压经变压器后,变换成所需要的电压,该电压经整流后变为直流电压。在该电路中,低压差线性稳压器的作用是:在交流电源电压或负载变化时稳定输出电压,抑制纹波电压,消除电源产生的交流噪声。 图 1 LDO在AC-DC电路中的应用 各种蓄电池的工作电压都在一定范围内变化。为了保证蓄电池组输出恒定电压,通常都应当在电池组输出端接入低压差线性稳压器,如图 2所示。低压差线性稳压器的功率较低,因此可以延长蓄电池的使用寿命。同时,由于低压差线性稳压器的输出电压与输入电压接近,因此在蓄电池接近放电完毕时,仍可保证输出电压稳定。 图 2 LDO在电池供电电路中的应用 众所周知,开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。在开关性稳压器输出端接入低压差线性稳压器,如图 3所示,就可以实现有源滤波,而且也可大大提高输出电压的稳压精度,同时电源系统的效率也不会明显降低。 图 3 DC-DC电路中LDO的应用

在某些应用中,比如无线电通信设备通常只有一足电池供电,但各部分电路常常采用互相隔离的不同电压,因此必须由多只稳压器供电。为了节省共电池的电量,通常设备不工作时,都希望低压差线性稳压器工作于睡眠状态。为此,要求线性稳压器具有使能控制端。有单组蓄电池供电的多路输出且具有通断控制功能的供电系统如图 4所示。 图 4 多路LDO供电中的应用 二、原理 1)定义 LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输 出电压,即输出电压是输入电压与晶体管或FET产生的管压降的差值。 图 5 基本原理框图 所谓压降电压,是指稳压器将输出电压维持在其额定值上下100mV 之内所需的输入电压与输出电压差额的最小值。 2)工作原理

开关电源和线性电源的优点和缺点对比(特制材料)

开关电源和线性电源的优点和缺点对比 开关电源是相对线性电源而言的,线性电源是利用功率半导体器件的线性工作区,通过调节线性阻抗来达到调节输出的目的;而开关电源是利用功率半导体器件的饱和区通过调整他的开通时间或频率来达到调节输出的目的。 其优点是: 1、效率较高,体积小。由于开关电源的电压控制是利用功率半导体器件的饱和区通过调整他的开通时间或频率达到的,所以就不存在铁损和铜损,元器件的损耗可以忽略不计,比较变压器而言效率较高;由于它只有元器件和电路板,因而体积就会很小,重量也较轻。 2、电压输入范围宽。一般可达到160V-270之间。 但它的缺点更是它致命的: 1、开关电源看着小巧,功率和磁心变压器以及控制方式有关,电磁干扰大,纹波系数大。尤其有音频、视频的范畴内,对电磁干扰非常敏感,在音频表现为音色不纯厚,可能会有丝丝声;在视频表现为,图像可能会有细小的纹波,不细腻。 2、设计复杂,维护维修不方便。往往越是复杂的设备出现的问题的可能性就越大,而且开关电源一旦出现问题,一般非专业人士是维修不了的,找别人维修,费用又太高,还不如废弃掉。 3、体积小是开关电源的优点,但设计不好就成为它的缺点了。为了追求更小,一大把元器件挤在一个小壳子里,散热不好,我们以前用的当中也出现过外壳变形的现象。 4、开关电源的元器件在选择上也不是很规范,这是国产开关电源的通病。国家有关质检部门检验市场上的开关电源发现,有过半数的不合格,这其中还包括进口开关电源。

5、最大的一点就是抗雷击能力非常低。在监控系统中,遭遇雷击的可能也非常大,主要表现为从电源串入,直接雷击的可能性非常小。一旦220V的电压突然变高,开关电源在瞬间就被烧毁。前段时间的一个监控系统中,在一个雷过后,监控总闸跳了,再合上闸后,大部分摄像机还正常工作,一部分监视器显示无视频信号。经检查发现,无视频信号的全部都是开关电源(施工时有的地方安装不方便,就用了开关电源),最后又在摄像机杆上安装上了电源箱,换上了变压器电源。 变压器电源(也就是线性电源)也有以下几个优缺点: 其缺点是: 1、效率低。由于变压器是一个“电——磁——电”的转换过程,避免不了存在铁损和铜损,效率低。 2、输入范围窄。一般只有200V—240V之间吧,小于这个范围,输出电压不够,大于这个范围,变压器可能就会烧毁。这个电压范围绝大多数的场合是够用的,不必去过多的考虑。再者变压器体积较开关电源大,笨重。 优点: 1、线性的看着笨重,功率完全取决于变压器和调整管,效率虽低但是不会引入额外的干扰,也就是说电磁干扰小,纹波系数很低,可忽略不计。对于监控来说,没有比这个优点还要好的了,图像质量的好坏与电源的关系非常大。尤其对于小幅值的模拟信号(音频源和视频源等)对电源的要求非常高,所以一些发烧音响中的电源都采用变压器而不用开关电源。 2、稳压率高、设计简单,维修维护非常方便,出现故障,稍懂电子的技术人员就能维修,维修成本比开关电源少得多。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

线性集成稳压器及应用

线性集成稳压器 3.4.1 三端固定集成稳压器 1.三端固定集成稳压器的特点 三端固定集成稳压器包含7800和7900两大系列,7800系列是三端固定正输出稳压器,7900系列是三端固定负输出稳压器。它们的最大特点是稳压性能良好,外围元件简单,安装调试方便,价格低廉,现已成为集成稳压器的主流产品。7800系列按输出电压分有5V、6V、9V、12V、15V、18V、24V等品种;按输出电流大小分有0.1A、0.5A、1.5A、3A、5A、10A等产品;具体型号及电流大小见表3-6。例如型号为7805的三端集成稳压器,表示输出电压为5V,输出电流可达1.5A。注意所标注的输出电流是要求稳压器在加入足够大的散热器条件下得到的。同理7900系列的三端稳压器也有-5V~-24V七种输出电压,输出电流有0.1A、0.5A、1.5A三种规格,具体型号见表3-7。 表3-6 CW7800系列稳压器规格 型号输出电流(A) 输出电压(V) 78L00 0.1 5、6、9、12、15、18、24 78M00 0.5 5、6、9、12、15、18、24 7800 1.5 5、6、9、12、15、18、24 78T00 3 5、12、18、24 78H00 5 5、12 78P00 10 5 表3-7 CW7900系列稳压器规格 型号输出电流(A) 输出电压(V) 79L00 0.1 -5、-6、-9、-12、-15、-18、-24 79M00 0.5 -5、-6、-9、-12、-15、-18、-24 7900 1.5 -5、-6、-9、-12、-15、-18、-24 7800系列属于正压输出,即输出端对公共端的电压为正。根据集成稳压器本身功耗的大小,其封装形式分为TO-220塑料封装和TO-3金属壳封装,二者的最大功耗分别为10W 和20W(加散热器)。管脚排列如图3.4.1(a)所示。U I为输入端,U O为输出端,GND是公共端(地)。三者的电位分布如下:U I>U O>U GND(0V)。最小输入—输出电压差为2V,为可靠起见,一般应选4~6V。最高输入电压为35V。 7900系列属于负电压输出,输出端对公共端呈负电压。7900与7800的外形相同,但管脚排列顺序不同,如图3.4.1(b)所示。7900的电位分布为:U GND(0V)>-U O>-U I。另外在使用7800与7900时要注意,采用TO-3封装的7800系列集成电路,其金属外壳为地端;而同样封装的7900系列的稳压器,金属外壳是负电压输入端。因此,在由二者构成多路稳压电源时若将7800的外壳接印刷电路板的公共地,7900的外壳及散热器就必须与印刷电路板

线性电源设计基础知识

Literature Number:ZHCA563

作为电源行业的技术编辑,每天编写及整理出一篇篇技术文章便是我们工作的乐趣与重心,这是一个不停地思考、不停地接触新知识、不停地读书、不停地将灵感转化为现实的工作;同时,把自己编辑过程中的点滴努力都体现在文章中,留下一个个实实在在的印记。而今天我们有幸将所了解的知识变成一本电子书,这一份强烈的欣喜感油然而生。 熟悉电源网的网友都知道,一直以来,TI在技术培训上面投入了很大的精力,而作为行业门户网站的我们也不停的在思考,以何种方式给网友提供更好的培训课程。一直以来,我们联合TI进行在线课程的培训讲解,为的就是能够让大家不受地域、时间限制了解知识。 《线性稳压器基础知识》是电源网的第三本电子书,后期还会继续推出更多更好的培训及相应电子书。在此,也请广大读者以及工程师批评指正,形成更好的电子书分享给大家。在这里也对部分已经观看过培训视频、并给出很多积极反馈的工程师朋友们表示感谢。希望更多工程师朋友加入到与我们互动的行列中,分享你们的学习经验。 电源网 2013年7月

线性稳压器的工作原理是采用一个压控电流源以强制在稳压器输出端上产生一个固定电压,控制电路连续监视(检测)输出电压,并调节电流源(根据负载的需求)以把输出电压保持在期望的数值。 电流源的设计极限限定了稳压器在仍然保持电压调节作用的情况下所能供应的最大负载电流。输出电压采用一个反馈环路进行控制,其需要某种类型的补偿以确保环路稳定性。大多数线性稳压器都具有内置补偿功能电路,无需外部组件就能保持完全稳定。 《线性稳压器基础知识》电子书共分为二章,第一章线性稳压器基础知识,讲述了最基础的线性稳压器知识理论,第二章线性稳压器的分类,讲述了NPN型的LDO、PNP型的LDO、NMOS型的LDO、PMOS 型的LDO这四种不同线性稳压器的特性、架构图、功率损失的简单模型、传输元件,以及驱动电流与低/高负载电流的关系。

线性电源、相控电源和开关电源对比

电源技术 课程中期作业 姓名: 班级: 学号: 邮箱:@https://www.360docs.net/doc/5112965086.html, 2014.11

线性电源、相控电源与开关电源对比 一、三种电源原理简述 线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电路进行稳压。如图1所示,线性电源的工作机理是误差放大器抓取反馈信号来控制MOSFET(或者三极管) Q1的门极信号来管控Q1的阻抗,通过Q1与R1,R2的分压来实现需要的V out。Q1此时工作在线性状态,可以看成一个可调电阻,所以这种电源叫线性电源。 图1 线性电源工作原理图 相控电源(Phase controlled power supply)是指采用晶闸管作为整流器件的电源系统,其原理是交流输入电压经工频变压器降压,然后采用晶闸管进行整流。并通过移相控制以保持输出电压的稳定。 开关电源(Switching power supply)是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。简单地说,开关电源的工作原理是交流电源输入经整流滤波成直流,再通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上,开关变压器次级感应出高频电压,经整流滤波供给负载,最后输出部分通过一定的电路反馈给控制电路,控制PWM占空比稳定输出。如图2所示,开关电源的工作机理是误差放大器抓取反馈信号来控制MOSFET(或者三极管)Q1的门极信号来管控Q1的开关,通过Q1的开关以及Lo,Co的储能一起事先设定的V o。Q1此时工作在开关状态,可以看成一个开关,所以这种电源叫开关电源。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

简明集成稳压器应用手册

简明集成稳压器应用手册 集成稳压器的分类: 1.根据电路稳压稳压原理进行分类: ●串联调整式:串联调整式稳压器的调整元件串联在不稳定的输入电压端与稳定的输出电压端之间,通过等效电阻的变化来保持输出电压的不变。半导体集成稳压器大多属于串联调整式稳压器。 ●并联调整式:并联调整式稳压器的调整元件与负载并联,通过并联元件等效电阻的变化来保持输出电压不变。串联、并联调整式稳压器统称为线性集成稳压器。 ●开关调整式:开关调整式稳压器的调整元件工作在开关状态,一般串接在输入端与输出端之间,并通过改变自身的开启和关闭时间来保持输出电压的不变。 2.根据稳压器的外形结构进行分类: ●多端式:稳压器的外引出线数目超过三个的。 ●三端式: 3.根据输出电压能否调整进行分类: ●固定输出电压式:该类稳压器输出电压由制造厂商预先调整好(其输出电压数值往往为常用的标准值),使用时输出电压不能调节。●可调输出电压式:该类稳压器的输出电压可通过少数外接元件在较大范围内调整。根据使用要求调节外接元件值,便可获得所需的输出电压。

集成稳压器主要电参数 1.质量参数: ●电压调整率Sv:表征稳压器稳压性能优劣的主要指标,又称为稳 压系数或稳定度。它表征当输入电压Vi变化时稳压器输出电压V o 稳定的程度。通常以单位输出电压下的输入和输出电压相对变化的百分比表示[△Vi/(△Vo*Vo)×100%],也有以输出电压和输入电压相对变化的百分比表示的[△Vi/△Vo×100%](当稳压器的负载不变时),此外,也有以输出电压变化的绝对值表示的[△Vo]. ●电流变化率Si:是反映稳压器负载能力的一项主要指标,又称为电 流稳定系数,它表征当输入电压不变时,稳压器对由于负载电流(输出电流)的变化而引起的输出电压波动的抑制能力。在规定的负载电流变化值条件下,通常以单位输出电压下的输出电压变化率的百分比来表示稳压器的电流调整率[△V o/Vo×100%],或者以输出电压变化的绝对值表示|△Vo|,(在规定的负载电流变化范围内)。 ●纹波抑制比S R:反映了稳压器对输入端引入的市电纹波电压的抑 制能力。当稳压器的输入和输出条件保持不变时,稳压器的纹波抑制比常以纹波电压峰-峰值与输出纹波电压峰值之比来表示,一般用分贝表示,也有用百分数表示的。 ●输出电压温度系数ST:又称为输出电压温度变化率。它是指当输入 电压和输出电流(负载电流)保持不变时,稳压器输出电压随温度的变化而变化的大小。通常以由单位温度变化所引起的输出电

开关电源与线性电源的区别

开关电源和线性电源的区别 线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦。 开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50Hz变为高频那开关电源就没有意义!!开关变压器也不神秘.就是一个普通的变压器!这就是开关电源。 开关电源,是通过电子技术实现的,主要环节:整流成直流电——逆变成所需电压的交流电(主要来调整电压)——再经过整流成直流电压输出。 开关电源的结构中由于中间没有变压器和散热片,因而体积非常小。同时,开关电源内部都是电子元件,效率高、发热小。虽然,具有电磁干扰等缺点,但现在的屏蔽技术已经非常到位。 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必 一定有。 简单地说,开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的 干扰;在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;开关变

线性稳压器和开关模式电源的基本概念

线性稳压器和开关模式电源的基本概念 关键字:线性稳压器开关模式电源SMPS 摘要 本文阐述了线性稳压器和开关模式电源(SMPS)的基本概念。目的是针对那些对电源设计和选择可能不很熟悉的系统工程师。文章说明了线性稳压器和SMPS的基本工作原理,并讨论了每种解决方案的优势和劣势。以降压型转换器为例进一步解释了开关稳压器的设计考虑因素。 引言 如今的设计要求在电子系统中有越来越多的电源轨和电源解决方案,且负载范围从几mA(用于待机电源)到100A以上(用于ASIC电压调节器)。重要的是必需选择针对目标应用的合适解决方案并满足规定的性能要求,例如:高效率、紧凑的印刷电路板(PCB)空间、准确的输出调节、快速瞬态响应、低解决方案成本等。对于系统设计师来说,电源管理设计正成为一项日益频繁和棘手的工作,而他们当中许多人可能并没有很强的电源技术背景。 电源转换器利用一个给定的输入电源来产生用于负载的输出电压和电流。其必需在稳态和瞬态情况下满足负载电压或电流调节要求。另外,它还必须在组件发生故障时对负载和系统提供保护。视具体应用的不同,设计师可以选择线性稳压器(LR)或开关模式电源(SMPS)解决方案。为了选择最合适的解决方案,设计师应熟知每种方法的优点、不足和设计关注点,这是十分重要。 本文将着重讨论非隔离式电源应用,并针对其工作原理和设计的基本知识作相关介绍。 线性稳压器 线性稳压器的工作原理 我们从一个简单的例子开始。在嵌入式系统中,可从前端电源提供一个12V总线电压轨。在系统板上,需要一个3.3V电压为一个运算放大器(运放)供电。产生3.3V电压最简单的方法是使用一个从12V总线引出的电阻分压器,如图1所示。这种做法效果好吗?回答常常是―否‖。在不同的工作条件下,运放的V CC引脚电流可能会发生变化。假如采用一个固定的电阻分压器,则IC V CC电压将随负载而改变。此外,12V总线输入还有可能未得到良好的调节。在同一个系统中,也许有很多其他的负载共享12V电压轨。由于总线阻抗的原因,12V总线电压会随着总线负载情况的变化而改变。因此,电阻分压器不能为运放提供一个用于确保其正确操作的3.3V稳定电压。于是,需要一个专用的电压调节环路。如图2所示,反馈环路必需调整顶端电阻器R1的阻值以动态地调节V CC上的3.3V。

(完整版)开关电源与线性电源区别

是直流电按要求不同使用不同,线性电源最好他输出的是线性直流电,可以用在要求高的场合,开关电源次之,他是由很高的开关速度的变压器和开关管,特点是重量小,容量大,输出质量高,相控电原用在要求不高,电流特大的场合 线性电源,开关电源区别 线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。 开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。 对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是开关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦 开关电源和线性电源在内部结构上是完全不一样的,开关电源顾名思义有开关动作,它利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,一般在90%以上,缺点是文波和开关噪声较大,适用于对文波和噪声要求不高的场合;而线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,文波噪声小,最大的缺点是效率低。它们各有有缺点在应用上互补共存! 一、线性电源的原理: 线性电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等。线性电源是先将交流电经过变压器变压,再经过整流电路整流滤波得到未稳定的直流电压,要达到高精度的直流电压,必须经过电压反馈调整输出电压,这种电源技术很成熟,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音。但是它的缺点是需要庞大而笨重的变压器,所需的滤波电容的体积和

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

线性稳压器的基础

线性稳压器又称为三引脚稳压器或降压器等,由于电路简单而容易使用,是许多设计者以前早就耳熟能详的电源。过去由分立器件所构成,IC化普及后变得既简便又小型,被使用在各种不同电源的应用中。近年电子设备要求必须具有高效率,需要大输出功率的设备逐渐以开关电源为主流,不过简单又省空间且低噪声的线性稳压器则是哪里都用得到的电源。 本项从线性稳压器的工作原理开始,说明其主要规格与热计算。 线性稳压器基本上由输入、输出、GND引脚所构成,可变输出则在此增加反馈输出电压的反馈(feed back)引脚(参考图1)。 线性稳压器内部电路概述如图2所示。基本上由误差放大器(误差检测用运算放大器)、基准电压源、输出晶体管所构成。输出晶体管虽用Pch MOSFET,但也可使用Nch的MOSFET、双极的PNP、NPN晶体管。 图2:内部电路概述 工作是完全模拟,是使用了运算放大器基本控制电路之一,即反馈(feed back)环路。输入或负载变动后,即使输出电压开始变动,误差放大器也会连续比较来自稳压器输出电压的反馈电压和基准电压,调整功率晶体管使差分为零,将VO维持恒定。这是反馈环路控制稳定化(调节)。具体上如前所述,误差放大器非反转引脚的电压由于经常与VREF相同,故流向R2的电流将会恒定。流向R1和R2的电流通过REF÷R2可以求得,故Vo将为此电流×(R1+R2)。这就是欧姆定律,公式如下: 关键要点: ?使用误差放大器的反馈环路控制让线性稳压器的输出稳定。 线性稳压器的电路构成虽然基本上为图5的反馈环路电路,不过压差电压会因输出晶体管种类而异。

标准型和LDO型有极大不同,而LDO型中更可分为3种。使用双极NPN晶体管的LDO虽然品种不太多,但可以处理大电流。甚至可达10A之高,但压差电压则为1V~2V以下,在LDO 中为高压类。双极PNP晶体管的LDO目前是双极系LDO主流。起初很难克服启动时的浪涌电流或电流容量问题,不过已逐渐改善。输出晶体管使用MOSFET的产品可支持更低输出电压、以支持电池驱动应用产品的低功耗需求。 图5:基本电路和输出晶体管 图6:输出晶体管和压差电压 关键要点: ?压差电压视因使用的输出段(控制)晶体管种类而异,故根据使用条件分开使用。 系列稳压器、三引脚稳压器、降压器、LDO。这些想必有听过的名称全都是指线性稳压器。除了这些名称,根据其功能或方式可以分成几类。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

集成稳压器的稳压电源电路设计

绪论 电源技术是一门实践性很强的技术,服务于各行各业之中。当今电源技术融合了电器、电子、系统集成、控制理论、材料等诸多科学领域。随着计算机和通信技术发展而带来现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求! 电源可分为交流电源和直流电源。前者在此不做介绍。而直流电源又可分为两类:一类是能直接提供给直流电流或电压的,如电池、太阳能电池、硅光电池等。另一类就是将交流电变换成所需的稳定的直流电流或电压的。这就是我们本次实习所需要的设计。当今的大多数电子设备中,几乎都必须用到直流稳压电源来使其正常工作。而最常用的就是能将交流电网电压转换为稳定直流电压的直流电源,可见集成直流稳压电源在电子设备中起到的重要作用。集成稳压器在近十多年发展很快,目前国内外已发展到几百个品种。按电路的工作方式分,有线性集成稳压器和开关式集成稳压器。按电路的结构形式分,有单片式集成稳压器和组合式集成稳压器。按管脚的连接方式分,有三端式集成稳压器和多端式集成稳压器。按制造工艺分,有半导体集成稳压器、薄膜混合集成稳压器和厚膜混合集成稳压器。 集成稳压器的稳压电源电路一般由四部分组成,他们分别是电源变压器、整流电路、滤波电路、稳压电路。

总体设计 一、设计目的 认识要求 1)认识变压器、二极管、电阻、电容等基本元件; 2)理解桥式整流,滤波,稳压的作用; 3)明确桥式稳压电源的设计方法,能根据稳压电源的输出要求,选择适当的电源变压器,二极管。 功能要求 1)设计:集成稳压器的稳压电源电路 2)功能:能将输入的交流电压运用本身稳压功能输出+5V直流电压 二、性能指标 1、使用集成稳压器的直流稳压电源电路指标要求: (1)输入电压为:220V,频率50Hz (2)输出电压为:+5V (3)稳压部分:采用三端集成稳压器 (4)电路采用全波桥式整流滤波电路 (5)负载:一个1K电阻。

开关电源与线性电源的优缺点和区别

开关电源与线性电源的优缺点和区别 电源是电路设计中的重要部分,电源的稳定性在很大程度上决定了电路的稳定性。线性电源和开关电源是比较常见的两种电源,在原理上有很大的不同,原理上的不同决定了两者应用上的不同。 一、开关电源与线性电源原理上的区别 线性电源的基本原理是市电经过一个工频变压器降压成低压交流电之后,通过整流和滤波形成直流电,最后通过稳压电路输出稳定的低压直流电。电路中调整元件工作在线性状态。 线性电源原理图 开关电源的基本原理是输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。在电感(高频变压器)的帮助下,输出稳定的低压直流电。 开关电源原理图 二、开关电源与线性电源的优缺点

1.开关电源的优缺点 主要优点:体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。 主要缺点:由于逆变电路中会产生高频电压,对周围设备有一定的干扰。需要良好的屏蔽及接地。交流电经过整流,可以得到直流电。但是,由于交流电压及负载电流的变化,整流后得到的直流电压通常会造成20%到40%的电压变化。为了得到稳定的直流电压,必须采用稳压电路来实现稳压。 2.线性电源的优缺点 优点:线性电源的优点是结构相对简单、输出纹波小、高频干扰小。结构简单给我们带来的最大好处是维修方便,维修一台线性电源的难度往往远远低于开关电源,线性电源的维修成功率也大大高于开关电源。纹波是叠加在直流稳定量上的交流分量。输出纹波越小也就是说输出直流电纯净度越高,这也正是直流电源品质的重要标志。过高纹波的直流电将影响收发信机的正常工作。目前高档线性电源纹波可以达到0.5mV的水平,一般产品可以做到5mV水平。线性电源没有工作在高频状态下的器件所以如果输入滤波做得好的话几乎没有高频干扰/高频噪声。 缺点:需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,而且电压反馈电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率

集成稳压器

实验三直流稳压电源 ─集成稳压器 一、实验目的 1、研究集成稳压器的特点和性能指标的测试方法。 2、了解集成稳压器扩展性能的方法。 二、实验原理 电子设备一般都需要直流电源供电。这些直流电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。 图3-1 直流稳压电源框图 随着半导体工艺的发展,稳压电路也制成了集成器件。由于集成稳压器具有体积小,外接线路简单、使用方便、工作可靠和通用性等优点,因此在各种电子设备中应用十分普遍,基本上取代了由分立元件构成的稳压电路。集成稳压器的种类很多,应根据设备对直流电源的要求来进行选择。对于大多数电子仪器、设备和电子电路来说,通常是选用串联线性集成稳压器。而在这种类型的器件中,又以三端式稳压器应用最为广泛。 W7800、W7900系列三端式集成稳压器的输出电压是固定的,在使用中不能进行调整。W7800系列三端式稳压器输出正极性电压,一般有5V、6V、9V、12V、15V、18V 、24V 七个档次,输出电流最大可达1.5A(加散热片)。同类型78M系列稳压器的输出电流为0.5A,78L系列稳压器的输出电流为0.1A。若要求负极性输出电压,则可选用W7900 系列稳压器。图3-2 为 W7800系列的外形和接线图。 它有三个引出端

输入端(不稳定电压输入端)标以“1” 输出端(稳定电压输出端)标以“3” 公共端标以“2” 除固定输出三端稳压器外,尚有可调式三端稳压器,后者可通过外接元件对输出电压进行调整,以适应不同的需要。 本实验所用集成稳压器为三端固定正稳压器W7812,它的主要参数有:输出直 流电压 U 0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R =0.15Ω,输入电压U I 的范围15~17V 。因为一般U I 要比 U 大3~5V ,才能保 证集成稳压器工作在线性区。 图3-2 W7800系列外形及接线图 图3-3 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。其中整流部分采用了由四个二极管组成的桥式整流器成品(又称桥堆),型号为2W06(或KBP306),内部接线和外部管脚引线如图 3-4所示。 滤波电容C 1、C 2 一般选取几百~几千微法。当稳压器距离整流滤波电路比较远时, 在输入端必须接入电容器C 3 (数值为0.33μF ),以抵消线路的电感效应,防止产 生自激振荡。输出端电容C 4 (0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。 图3-3 由W7812构成的串联型稳压电源

相关文档
最新文档