初三二次函数经典压轴题

初三二次函数经典压轴题
初三二次函数经典压轴题

一、解答题(共12小题)

1、(2011?遵义)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;

(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;

(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

2、(2011?漳州)如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.

(1)填空:OB=_________,OC=_________;

(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;

(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

3、(2011?珠海)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=AB=1,BC=2.将点A折叠到CD边上,记折叠后A点对应的点为P(P与D点不重合),折痕EF只与边AD、BC相交,交点分别为E、F.过P作PN∥BC交AB 于N、交EF于M,连接PA、PE、AM,EF与PA相交于O.

(1)指出四边形PEAM的形状(不需证明);

(2)记∠EPM=a,△AOM、△AMN的面积分别为S1、S2.

①求证:;

②设AN=x,y=,试求出以x为自变量的函数y的解析式,并确定y的取值范围.

4、(2011?宜昌)如图,D是△ABC的边BC的中点,过AD延长线上的点E作AD的垂线EF,E为垂足,EF与AB的延长线相交于点F,点O在AD上,AO=CO,BC∥EF.

(1)证明:AB=AC;

(2)证明:点O是△ABC的外接圆的圆心;

(3)当AB=5,BC=6时,连接BE,若∠ABE=90°,求AE的长.

5、(2011?扬州)在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ丄MP.设运动时间为t秒(t>0).

(1)△PBM与△QNM相似吗?以图1为例说明理由:

(2)若∠ABC=60°,AB=4厘米.

①求动点Q的运动速度;

②设△APQ的面积为S(平方厘米),求S与t的函数关系式.

6、(2011?襄阳)如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.

(1)求证:∠ADP=∠EPB;

(2)求∠CBE的度数;

(3)当的值等于多少时,△PFD∽△BFP?并说明理由.

7、(2011?江汉区)如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;

(2)若AD=1,DE=3,求BD的长.

8、(2011?济宁)如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.

(1)设点P的纵坐标为p,写出p随变化的函数关系式.

(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;

(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由.

9、(2011?济南)如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD 交CE于点N,AE与BD交于点P,连接PC.

(1)求证:△ACE≌△DCB;

(2)请你判断△AMC与△DMP的形状有何关系并说明理由;

(3)求证:∠APC=∠BPC.

10、(2011?大连)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点

F.

(1)当AB=AC时,(如图1),

①∠EBF=_________°;

②探究线段BE与FD的数量关系,并加以证明;

(2)当AB=kAC时(如图2),求的值(用含k的式子表示).

11、(2011?大连)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.

(1)求该抛物线的解析式;

(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.

12、(2011?淄博)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;

(2)当直线DF与⊙O相切时,求⊙O的半径.

答案与评分标准

一、解答题(共12小题)

1、(2011?遵义)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;

(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;

(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

考点:二次函数综合题。

分析:(1)根据A(3,0),B(4,1)两点利用待定系数法求二次函数解析式;

(2)从当△PAB是以AB为直角边的直角三角形,且∠PAB=90°与当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,分别求出符合要求的答案;

(3)根据当OE∥AB时,△FEO面积最小,得出OM=ME,求出即可.

解答:解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,

∴,

解得:,

∴y=x2﹣x+3;

∴点C的坐标为:(0,3);

(2)当△PAB是以AB为直角边的直角三角形,且∠PAB=90°,

∵A(3,0),B(4,1),

∴AM=BM=1,

∴∠BAM=45°,

∴∠DAO=45°,

∴AO=DO,

∵A点坐标为(3,0),

∴D点的坐标为:(0,3),

∴直线AD解析式为:y=kx+b,将A,D分别代入得:

∴0=3k+b,b=3,

∴k=﹣1,

∴y=﹣x+3,

∴y=x2﹣x+3=﹣x+3,

∴x2﹣3x=0,

解得:x=0或3,

∴y=3或0(不合题意舍去),

∴P点坐标为(0,3),

当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,

由(1)得,FB=4,∠FBA=45°,∴∠DBF=45°,∴DF=4,

∴D点坐标为:(0,5),B点坐标为:(4,1),

∴直线AD解析式为:y=kx+b,将B,D分别代入得:

∴1=4k+b,b=5,

∴k=﹣1,

∴y=﹣x+5,

∴y=x2﹣x+3=﹣x+5,

∴x2﹣3x﹣4=0,

解得:x1=﹣1,x2=4,

∴y1=6,y2=1,

∴P点坐标为(﹣1,6),(4,1),

∴点P的坐标为:(﹣1,6),(0,3);

(3)如图(2):作EM⊥AO与M,

∵当OE∥AB时,△FEO面积最小,

∴∠EOM=45°,

∴MO=EM,

∵E在直线CA上,

∴E点坐标为(x,﹣x+3),

∴x=﹣x+3,

解得:x=,

∴E点坐标为(,).

点评:此题主要考查了二次函数的综合应用以及待定系数法求函数解析式,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.

2、(2011?漳州)如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.

(1)填空:OB=3,OC=8;

(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;

(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

考点:二次函数综合题。

分析:(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;

(2)利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;(3)首先求出过C、D两点的坐标的直线CD的解析式,进而利用S四边形AMCN=S△AMN+S△CMN求出即可.

解答:解:(1)∵抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),

∴抛物线与x轴的交点坐标为:0=mx2﹣11mx+24m,

解得:x1=3,x2=8,

∴OB=3,OC=8 (4分);

(2)连接AD,交OC于点E,

∵四边形OACD是菱形,

∴AD⊥OC,OE=EC=×8=4,

∴BE=4﹣3=1,

又∵∠BAC=90°,

∴△ACE∽△BAE,

∴=,

∴AE2=BE?CE=1×4,

∴AE=2,…(6分)

∴点A的坐标为(4,2)…(7分)

把点A的坐标(4,2)代入抛物线y=mx2﹣11mx+24m,得m=﹣,

∴抛物线的解析式为y=﹣x2+x﹣12;…(9分)

(3)∵直线x=n与抛物线交于点M,

∴点M的坐标为(n,﹣n2+n﹣12),

由(2)知,点D的坐标为(4,﹣2),

则C、D两点的坐标求直线CD的解析式为y=x﹣4,

∴点N的坐标为(n,n﹣4),

∴MN=(﹣n2+n﹣12)﹣(n﹣4)=﹣n2+5n﹣8,…(11分)

∴S四边形AMCN=S△AMN+S△CMN=MN?CE=(﹣n2+5n﹣8)×4

=﹣(n﹣5)2+9 (13分)

∴当n=5时,S四边形AMCN=9.(14分)

点评:此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出△ACE∽△BAE是解决问题的关键.

3、(2011?珠海)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=AB=1,BC=2.将点A折叠到CD边上,记折叠后A点对应的点为P(P与D点不重合),折痕EF只与边AD、BC相交,交点分别为E、F.过P作PN∥BC交AB 于N、交EF于M,连接PA、PE、AM,EF与PA相交于O.

(1)指出四边形PEAM的形状(不需证明);

(2)记∠EPM=a,△AOM、△AMN的面积分别为S1、S2.

①求证:;

②设AN=x,y=,试求出以x为自变量的函数y的解析式,并确定y的取值范围.

考点:相似三角形的判定与性质;勾股定理;菱形的判定与性质;直角梯形;解直角三角形。

分析:(1)根据题意,结合菱形的判定定理即可推出四边形AMPE为菱形,

(2)①四边形AMPE为菱形,即可得:∠MAP=α,S1=OA?OM,OA=PA,又由在Rt△AOM中,tan=,求

得OM=OA?tan;则可得;

②首先过点D作DH⊥BC于H,则DK⊥PN,BH=AB=AD=DH=1,DK=AN=x,求得PN=1+x,在Rt△ANP中,由AP2=AN2+PN2,可求得AP2的值,然后过E作PM⊥EG于G,令△EGM的面积为S,由△EGM∽△AOM,即可得S=S1,则问题

得解.

解答:解:(1)答案为:菱形;

(2)①证明:

∵四边形AMPE为菱形,

∴∠MAP=α,S1=OA?OM,OA=PA,

∵在Rt△AOM中,tan=,

∴OM=OA?tan;

∴S1=OA?OM=×PA×PA?tan=PA2?tan

∴;

②过点D作DH⊥BC于H,

则:DK⊥PN,BH=AB=AD=DH=1,DK=AN=x,

∵CH=BC﹣BH=2﹣1,

∴CH=DH,

∴PK=DK=x,

∴PN=1+x,

在Rt△ANP中,

AP2=AN2+PN2=x2+(1+x)2=2x2+2x+1.

过E作PM⊥EG于G,令△EGM的面积为S,

∵△EGM∽△AOM,

∴==,

则S=S1,

∵四边形ANGE的面积等于菱形AMPE的面积,

∴2S1=S2+S,

∴S1﹣S2=S﹣S1=S1﹣S1=(﹣1)S1,

∴y==(﹣1)×=(﹣1)×AP2=(4x2﹣AP2),

∴y=x2﹣x﹣(﹣≤y≤0).

点评:此题考查了相似三角形的判定与性质,菱形的性质,三角函数的性质以及二次函数的知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.

4、(2011?宜昌)如图,D是△ABC的边BC的中点,过AD延长线上的点E作AD的垂线EF,E为垂足,EF与AB的延长线相交于点F,点O在AD上,AO=CO,BC∥EF.

(1)证明:AB=AC;

(2)证明:点O是△ABC的外接圆的圆心;

(3)当AB=5,BC=6时,连接BE,若∠ABE=90°,求AE的长.

考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;三角形的外接圆与外心。

分析:(1)由BC∥EF,AD⊥EF,可证得AD⊥BC,又由D是△ABC的边BC的中点,即可得AD是线段BC的垂直平分线,则可证得AB=AC;

(2)由AD是线段BC的垂直平分线,可证得OB=OC,又由AO=CO,则可得AO=BO=CO,则问题得证;

(3)首先求得AD的长,又由△ABE∽△ADB,根据相似三角形的对应边成比例,即可求得AE的长.

解答:证明:(1)∵D是△ABC的边BC的中点,

∴BD=CD,

∵BC∥EF,AD⊥EF,

∴AD⊥BC,

∴AB=AC;

(2)∵BD=CD,AD⊥BC,

∴BO=CO,

∵AO=CO,

∴AO=BO=CO,

∴点O是△ABC的外接圆的圆心;

(3)连接BE,

∵AB=5,BC=6,AD⊥BC,BD=CD,

∴BD=BC=3,

∴在Rt△ABD中,AD=4,

∵∠ABE=∠ADB=90°,∠BAE=∠DAB,

∴△ABE∽△ADB,

∴,

即,

∴AE=.

点评:此题考查了线段垂直平分线的性质,三角形内接圆的性质以及相似三角形的判定与性质等知识.此题综合较强,但难度不大,解题的关键是数形结合思想的应用.

5、(2011?扬州)在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ丄MP.设运动时间为t秒(t>0).

(1)△PBM与△QNM相似吗?以图1为例说明理由:

(2)若∠ABC=60°,AB=4厘米.

①求动点Q的运动速度;

②设△APQ的面积为S(平方厘米),求S与t的函数关系式.

考点:相似三角形的判定与性质;勾股定理。

分析:(1)可以证明两个三角形中的两个角对应相等,则两个三角形一定相似;

(2)①若BP=,根据△PBM∽△QNM,求得NQ的长,即Q一分钟移动的距离,即Q的速度;

②分别用时间t表示出AP,AQ的长,根据直角三角形的面积即可求得函数解析式.

解答:解:(1)相似.

证明:∵∠BMN=∠PMQ,

即∠BMP+∠PMN=∠PMN+∠NMQ,

∴∠PMB=∠NMQ,

∵△ABC与△MNC中,∠C=∠C,∠A=∠NMC=90°,

∴∠B=∠MNC,

∴△PBM∽△QNM;

(2)①在直角△ABC中,∠ABC=60°,AB=4厘米,

则BC=8cm,AC=12cm.

由M为BC中点,得BM=CM=4,

若BP=cm.

∵在Rt△CMN中∠CMN=90°∠MCN=30°

∴NC=2MN=2×4=8cm

∵△PBM∽△QNM,

∴=,

即NQ=1,

则求动点Q的运动速度是每秒钟1cm.

②AP=AB﹣BP=4﹣t,

AQ=AN+NQ=AC﹣NC+NQ=12﹣8+t=4+t,

则当0≤t<4时,△APQ的面积为:S=AP?AQ=(4﹣t)(4+t)=,

当t>4时S=AP?AQ=(t﹣4)(4+t)=.

点评:本题考查了相似三角形的判定与性质,以及相似三角形与函数的总和应用,利用时间t正确表示出题目中线段的长度是解题的关键.

6、(2011?襄阳)如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.

(1)求证:∠ADP=∠EPB;

(2)求∠CBE的度数;

(3)当的值等于多少时,△PFD∽△BFP?并说明理由.

考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质。

分析:(1)根据∠ADP与∠EPB都是∠APD的余角,根据同角的余角相等,即可求证;

(2)首先证得△PAD≌△EGP,可以证得△BCG是等腰直角三角形,可以证得∠EBG=45°,即可证得∠CBE=45°;(3)这两个三角形是直角三角形,若相似,则对应边的比相等,即可求得的值.

解答:证明:(1)∵四边形ABCD是正方形.

∴∠A=∠PBC=90°,AB=AD,

∴∠ADP+∠APD=90°,

∵∠DPE=90°,

∴∠APD+∠EPB=90°,

∴∠ADP=∠EPB;

(2)过点E作EQ⊥AB交AB的延长线于点Q,则∠EQP=∠A=90°,

又∵∠ADP=∠EPB,PD=PE,

∴△PAD≌△EQP,

∴EQ=AP,AD=AB=PQ,

∴AP=EQ=BQ,

∴∠CBE=∠EBQ=45°;

(3)当=时,△PFD∽△BFP,

设AD=AB=a,则AP=PB=a,

∴BF=BP?=a.

∴PD==a,PF==a,

∴==

又∠DPF=∠PBF=90°,

∴△PFD∽△BFP.

点评:本题主要考查了正方形的性质,以及三角形相似的判定与性质,正确探究三角形相似的性质是解题的关键.7、(2011?江汉区)如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;

(2)若AD=1,DE=3,求BD的长.

考点:相似三角形的判定与性质;勾股定理;圆周角定理。

分析:(1)结合已知条件就可以推出∠ABC=∠ADB,再加上公共角就可以推出结论;

(2)由(1)的结论就可以推出AB的长度,规矩勾股定理即可推出BD的长度.

解答:(1)证明:∵AB=AC,

∴.

∴∠ABC=∠ADB.(2分)

又∠BAE=∠DAB,

∴△ABD∽△AEB.(4分)

(2)解:∵△ABD∽△AEB,

∴.

∵AD=1,DE=3,

∴AE=4.

∴AB2=AD?AE=1×4=4.

∴AB=2.(6分)

∵BD是⊙O的直径,

∴∠DAB=90°.

在Rt△ABD中,BD2=AB2+AD2=22+12=5,

∴BD=.(8分)

点评:本题主要考查了勾股定理、相似三角形的判定和性质、圆周角定理,解题的关键在于找到∠ABC=∠ADB,求

证三角形相似.

8、(2011?济宁)如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.

(1)设点P的纵坐标为p,写出p随变化的函数关系式.

(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;

(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由.

考点:相似三角形的判定与性质;一次函数综合题;勾股定理;圆周角定理;切线的性质。

专题:代数几何综合题。

分析:(1)由切线的性质知∠AOB=∠OAD=∠ADB=90°,所以可以判定四边形OADB是矩形;根据⊙O的半径是2求得直径AD=4,从而求得点P的坐标,将其代入直线方程y=kx+3即可知p变化的函数关系式;

(2)连接DN.∵直径所对的圆周角是直角,∴∠AND=90°,∴根据图示易证∠AND=∠ABD;然后根据同弧所对的圆周角相等推知∠ADN=∠AMN,再由等量代换可知∠ABD=∠AMN;最后利用相似三角形的判定定理AA证明△AMN∽△ABP;

(3)存在.把x=0代入y=kx+3得y=3,即OA=BD=3,然后由勾股定理求得AB=5;又由相似三角形的相似比推知相似三角形的面积比.分两种情况进行讨论:①当点P在B点上方时,由相似三角形的面积比得到k2﹣4k﹣2=0,解关于k的一元二次方程;②当点P在B点下方时,由相似三角形的面积比得到k2+1=﹣(4k+3),解关于k的一元二次方程.

解答:解:(1)∵y轴和直线l都是⊙C的切线,

∴OA⊥AD,BD⊥AD;

又∵OA⊥OB,

∴∠AOB=∠OAD=∠ADB=90°,

∴四边形OADB是矩形;

∵⊙C的半径为2,

∴AD=OB=4;

∵点P在直线l上,

∴点P的坐标为(4,p);

又∵点P也在直线AP上,

∴p=4k+3;

(2)连接DN.

∵AD是⊙C的直径,

∴∠AND=90°,

∵∠ADN=90°﹣∠DAN,∠ABD=90°﹣∠DAN,

∴∠ADN=∠ABD,

又∵∠ADN=∠AMN,

∴∠ABD=∠AMN(4分)

∵∠MAN=∠BAP(5分)

∴△AMN∽△ABP(6分)

(3)存在.(7分)

理由:把x=0代入y=kx+3得y=3,即OA=BD=3

AB=

∵S△ABD=AB?DN=AD?DB

∴DN==

∴AN2=AD2﹣DN2=

∴,即(8分)

当点P在B点上方时,

∵AP2=AD2+PD2=AD2+(PB﹣BD)2=42+(4k+3﹣3)2=16(k2+1)

或AP2=AD2+PD2=AD2+(BD﹣PB)2=42+(3﹣4k﹣3)2=16(k2+1)

S△ABP=PB?AD=(4k+3)×4=2(4k+3)

整理得k2﹣4k﹣2=0解得k1=2+k2=2﹣(9分)

当点P在B点下方时,

∵AP2=AD2+PD2=42+(3﹣4k﹣3)2=16(k2+1)

S△ABP=PB?AD=[﹣(4k+3)]×4=﹣2(4k+3)

化简,得k2+1=﹣(4k+3)解得k=﹣2

综合以上所得,当k=2±或k=﹣2时,△AMN的面积等于(10分)

点评:本题主要考查了梯形的性质,矩形的判定,相似三角形的判定和性质以及一次函数的综合应用,要注意的是(3)中,要根据P点的不同位置进行分类求解.

9、(2011?济南)如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD 交CE于点N,AE与BD交于点P,连接PC.

(1)求证:△ACE≌△DCB;

(2)请你判断△AMC与△DMP的形状有何关系并说明理由;

(3)求证:∠APC=∠BPC.

考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰三角形的性质。

分析:(1)证明∠ACE=∠DCB,根据“SAS”证明全等;

(2)由(1)得∠CAM=∠PDM,又∠AMC=∠DMP,所以两个三角形相似;

(3)由(2)得对应边成比例,转证△AMD∽△CMP,得∠APC=∠ADC;同理,∠BPC=∠BEC.在两个等腰三角形中,顶角相等,则底角相等.

解答:(1)证明:∵∠ACD=∠BCE,

∴∠ACD+∠DCE=∠BCE+∠DCE,

∴∠ACE=∠DCB,

又∵CA=CD,CE=CB,

∴△ACE≌△DCB.

(2)△AMC∽△DMP.

理由:∵△ACE≌△DCB,

∴∠CAE=∠CDB,

又∵∠AMC=∠DMP,

∴△AMC∽△DMP.

(3)∵△AMC∽△DMP,

∴MA:MD=MC:MP.

又∵∠DMA=∠PMC,

∴∠ADC=∠APC.

同理∠BEC=∠BPC.

∵CA=CD,CB=CE,

∴∠ADC=(180°﹣∠ACD),

∠BEC=(180°﹣∠BCE).

∵∠ACD=∠BCE,

∴∠ADC=∠BEC,

∴∠APC=∠BPC.

点评:此题考查相似(包括全等)三角形的判定和性质,综合性较强,第三问难度较大.

10、(2011?大连)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点

F.

(1)当AB=AC时,(如图1),

①∠EBF=22.5°;

②探究线段BE与FD的数量关系,并加以证明;

(2)当AB=kAC时(如图2),求的值(用含k的式子表示).

考点:相似三角形的判定与性质;角平分线的性质;等腰直角三角形。

专题:常规题型;计算题。

分析:(1)①根据题意可判断△ABC为等腰直角三角形,据此即可推断∠C=45°,进而可知∠EDB=22.5°.然后求出∠EBF的度数.

②根据题意证明△BEF∽△DEB,然后利用相似三角形的性质,得到BE与FD的数量关系.

(2)作∠ACB的平分线,得到∠C的正切值,然后证明△BEF∽△DEB,利用三角形相似的性质得到BE与FD的数

量关系.

解答:解:(1)①∵AB=AC∠A=90°

∴∠ABC=∠C=45°

∵∠EDB=∠C

∴∠EDB=22.5°

∵BE⊥DE

∴∠EBD=67.5°

∴∠EBF=67.5°﹣45°=22.5°

②在△BEF和△DEB中

∵∠E=∠E=90°

∠EBF=∠EDB=22.5°

∴△BEF∽△DEB

如图:作BG平分∠ABC,交DE于G点,

∴BG=GD△BEG是等腰直角三角形

设EF=x,BE=y,

则:BG=GD=y

FD=y+y﹣x

∵△BEF∽△DEB

∴=

即:=

得:x=(﹣1)y

∴FD=y+y﹣(﹣1)y=2y

∴FD=2BE.

(2)如图:作∠ACB的平分线CG,交AB于点G,∵AB=kAC

∴设AC=b,AB=kb,BC= b

利用角平分线的性质有:

=

即:=

得:AG=

∵∠EDB=∠ACB

∴tan∠EDB=tan∠ACG=

∵∠EDB=∠ACB

∠ABC=90°﹣∠ACB

∴∠EBF=90°﹣∠ABC﹣∠EDB=∠ACB

∴△BEF∽△DEB

∴EF=BE

ED=BE=EF+FD

∴FD=BE﹣BE=BE.

∴=.

点评:本题考查的是相似三角形的判定与性质,(1)利用等腰直角三角形的性质进行判定和计算.(2)结合图形利用三角函数和相似三角形进行计算求出线段间的关系.

11、(2011?大连)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.

(1)求该抛物线的解析式;

(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.

考点:二次函数综合题。

分析:(1)把三点坐标代入函数式,列式求得a,b,c的值,即求出解析式;

(2)求得抛物线顶点P,从直线BC的斜率算起,设过点P的直线,解得直线代入抛物线解析式解得点Q;

(3)求得点M,由点M,P的纵坐标关系可知,点R存在,y=2代入解得.

解答:解:(1)把三点代入抛物线解析式

即得:,

所以二次函数式为y=﹣x2+2x+3;

(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4,

则顶点P(1,4),

由B,C两点坐标可知,直线BC解析式为y=﹣x+3,

设过点P与直线BC平行的直线为:y=﹣x+b,

将点P(1,4)代入,得y=﹣x+5,

则直线BC代入抛物线解析式是否有解,有则存在点Q,

﹣x2+2x+3=﹣x+5,

即x2﹣3x+2=0,

解得x=1或x=2,

代入直线则得点(1,4)或(2,3),

已知点P(1,4),所以点Q(2,3),

由对称轴及直线BC解析式可知M(1,2),PM=2,

设过P′(1,0)且与BC平行的直线为y=﹣x+c,

将P′代入,得y=﹣x+1,

联立,解得或,

∴Q(,)或Q(,);

(3)由题意求得直线BC代入x=1,则y=2,

∴M(1,2),

由点M,P的坐标可知:

点R存在,即过点M平行于x轴的直线,

则代入y=2,x2﹣2x﹣1=0,

解得x=1﹣(在对称轴的左侧,舍去),x=1,

即点R(1).

点评:本题考查了二次函数的综合运用,考查到了三点确定二次函数解析式,两直线相等,即斜率相等,两三角形面积相等,由同底等高;点M的纵坐标的长度是点P的一半,从而解得.本题逻辑思维性强,需要耐心和细心,是道好题.

12、(2011?淄博)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;

(2)当直线DF与⊙O相切时,求⊙O的半径.

考点:切线的判定与性质;等边三角形的判定与性质。

专题:证明题。

分析:(1)连接OE.欲证直线EF是⊙O的切线,只需证明EF⊥AC.利用等边三角形的三个内角都是60°、等腰三角形OBE以及三角形的内角和定理求得同位角∠BOE=∠A=60°,从而判定OE∥AC,所以由已知条件EF⊥AC判定OE⊥EF,即直线EF是⊙O的切线;

(2)连接DF.设⊙O的半径是r.由等边三角形的三个内角都是60°、三条边都相等、以及在直角三角形中30°所对的直角边是斜边的一半求得关于r的方程4﹣r=2(4r﹣4),解方程即可.

解答:解:(1)证明:连接OE.

∵△ABC是等边三角形,

∴∠A=∠B=∠C=60°;

在△BOE中,OB=OE,∠B=60°,

∴∠B=∠OEB=∠BOE=60°(三角形内角和定理),

∴∠BOE=∠A=60°,

∴OE∥AC(同位角相等,两直线平行);

∵EF⊥AC,

∴OE⊥EF,即直线EF是⊙O的切线;

(2)连接DF.

∵DF与⊙O相切,

∴∠ADF=90°.

设⊙O的半径是r,则EB=r,EC=4﹣r,AD=4﹣2r.

在Rt△ADF中,∠A=60°,

∴AF=2AD=8﹣4r.

∴FC=4r﹣4;

在Rt△CEF中,∵∠C=60°,∴EC=2FC,

∴4﹣r=2(4r﹣4),

解得,r=;

∴⊙O的半径是.

点评:本题考查了切线的判定与性质、等边三角形的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

菁优网版权所有

仅限于学习使用,不得用于任何商业用途

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

中考数学二次函数-经典压轴题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E 113 +113 + 3)点Q的坐 标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1?x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=1 2 CD=CE.利 用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛 物线的解析式联立,得出方程组 223 33 y x x y x ?=-- ? =-+ ? ,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1?x2=﹣(m+1),

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

(完整版)初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数2 1 (1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线2 23y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2 y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62 -+=x y 可由抛物线262 -=x y 向 平移 个单位得到. 5.抛物线342 ++=x x y 在x 轴上截得的线段长度是 . 6.抛物线() 422 2-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2 ,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2 y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数2 1(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和 B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .2 1xy x += B . 2 20x y +-= C . 2 2y ax -=- D .2 2 10x y -+= 2 2 3x y -=

12.在同一坐标系中,作2 2y x =、2 2y x =-、2 12 y x = 的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线12 2+--=m mx x y 的图象过原点,则m 为( ) A .0 B .1 C .-1 D .±1 14.把二次函数122 --=x x y 配方成为( ) A .2 )1(-=x y B . 2)1(2--=x y C .1)1(2 ++=x y D .2)1(2 -+=x y 15.已知原点是抛物线2 (1)y m x =+的最高点,则m 的范围是( ) A . 1-m D . 2->m 16、函数2 21y x x =--的图象经过点( ) A 、(-1,1) B 、(1 ,1) C 、(0 , 1) D 、(1 , 0 ) 17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、2 3(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、2 3(1)2y x =-+ 18、已知h 关于t 的函数关系式2 12 h gt = ( g 为正常数,t 为时间)如图,则函数图象为 ( ) 19、下列四个函数中, 图象的顶点在y 轴上的函数是( ) A 、2 32y x x =-+ B 、25y x =- C 、2 2y x x = -+ D 、2 44y x x =-+ 20、已知二次函数2 y ax bx c =++,若0a <,0c >,那么它的图象大致是( ) 21、根据所给条件求抛物线的解析式: (1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0) 22.已知二次函数c bx x y ++=2 的图像经过A (0,1),B (2,-1)两点. (1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上? 23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

2019中考二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 图2

2.(2010绵阳)如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积. 3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由. 题型二:构造直角三角形 【例2】(2010山东聊城)如图,已知抛物线y =ax 2 +bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式; (2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,C E D G A x y O B F

中考数学二次函数-经典压轴题及详细答案

-X 二次函数真题与模拟题分类汇编(难题易错题) 1.已知二次函数y = α√-2αχ + 3的最大值为4,且该抛物线与A 轴的交点为C ,顶点为 D ? (1) 求该二次函数的解析式及点C , D 的坐标: (2) 点P(ΛO)是X 轴上的动点, ① 求IPC - PDl 的最大值及对应的点P 的坐标: ② 设0(0,2/)是y 轴上的动点,若线段PQ 与函数y = a ?x ?1 -2a ?x ?+3的图像只有一个 公共 点,求f 的取值范围. 【答案】(i) y = -χ2+2x + 3, C 点坐标为(0,3),顶点D 的坐标为(1,4); (2)①最 _ 3 7 大值是J∑, P 的坐标为(一 3,0),②,的取值范围为U_3或才Qv3或心?? 2 2 【解析】 【分析】 孕=1,计算对称轴,即顶点坐标为(1, 4),再将两点代 2a 入列二元一次方程组求出解析式: (2)根据三角形的三边关系:可知P 、C 、D 三点共线时IPC-PDl 取得最大值,求出直线CD 与X 轴的交点坐标,就是此时点P 的坐标; —χ-+ 2Λ"+3, X n 0, , ,此函数是两个二次函数 —XJ — 2x + 3, X < 0. 的一部分,分三种情况进行计算:①当线段PQ 过点(0, 3 ),即点Q 与点C 重合时,两 图象有一个公共点,当线段PQ 过点(3, 0),即点P 与点(3, 0)重合时,两函数有两 个公共点,写出t 的取值:②线段PQ 与当函数y=a∣x∣2-2a∣×∣+c (x>0)时有一个公共点 时,求t 的值:③当线段PQ 过点 (-3, 0),即点P 与点(-3, 0)重合时,线段PQ 与当 函数y=a∣x∣2-2a∣x∣+c (×<0)时也有一个公共 点,则当t 冬3时,都满足条件;综合以上结 论,得出t 的取值. 【详解】 —2a (I) VX= ???y = ax'-ax+3的对称轴为X = 1? T y = ax 2 -ax + 3人最大值为4, ???抛物线过点(1,4). 得 a-2a+3 = 4, 解得a = -l. ???该二次函数的解析式为y = —X? + 2x + 3. C 点坐标为(0,3),顶点 D 的坐标为(1,4). (2) ①.? IPC-PDI≤CD, (1)先利用对称轴公式X= (3)先把函数中的绝对值化去,可知y = <

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

精选中考二次函数压轴题(含答案)

精选中考二次函数压轴题(含答案)

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 2 1的图象经过点D ?? ? ??- 29,3,与x 轴交 于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?

4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别 为(-4,0)和(2,0),BC =AC 与直线x =4交于点E . (1)求以直线x =4为对称轴,且过C 与原点O 的抛物线的 函数关系式,并说明此抛物线一定过点E ; (2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该 抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值. 5.(2010湖南邵阳)如图,抛物线y =2 13 4 x x -++与x 轴交于点A 、 B ,与y 轴相交于点 C ,顶点为点 D ,对称轴l 与直线BC 相交于点E ,与x 轴交于点F 。 (1)求直线BC 的解析式; (2)设点P 为该抛物线上的一个动点,以点P 为圆心,r 为 半径作⊙P 。 ①当点P 运动到点D 时,若⊙P 与直线 BC 相交 ,求r 的取值 范围; ②若r ,是否存在点P 使⊙P 与直线BC 相切,若存在,请

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

初中二次函数压轴题及答案

27.如图,抛物线y=1 2 x2+mx+n与直线y=- 1 2 x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A (0,3),C(3,0). (Ⅰ)求抛物线的解析式和tan∠BAC的值; (Ⅱ)在(Ⅰ)条件下: (1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度 运动到E点,再沿线段EA A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?

(1)抛物线的解析式为y=12x 2-52x+3.13;(2)(11,36)、(133,149)、(173,449 );点E 的坐标为(2,1). 试题分析: (Ⅰ)只需把A 、C 两点的坐标代入y= 12 x 2 +mx+n ,就可得到抛物线的解析式,然后求出直线AB 与抛物线的交点B 的坐标,过点B 作BH ⊥x 轴于H ,如图1.易得∠BCH=∠ACO=45°, 而得到∠ACB=90°,然后根据三角函数的定义就可求出tan ∠BAC 的值; (Ⅱ)(1)过点P 作PG ⊥y 轴于G ,则∠PGA=90°.设点P 的横坐标为x ,由P 在y 轴右侧可得x >0,则PG=x ,易得∠APQ=∠ACB=90°.若点G 在点A 的下方,①当∠PAQ=∠CAB 时,△PAQ ∽△CAB .此时可证得△PGA ∽△BCA ,根据相似三角形的性质可得AG=3PG=3x .则有P (x ,3-3x ),然后把P (x ,3-3x )代入抛物线的解析式,就可求出点P 的坐标②当∠PAQ=∠CBA 时,△PAQ ∽△CBA ,同理,可求出点P 的坐标;若点G 在点A 的上方,同理,可求出点P 的坐标;(2)过点E 作EN ⊥y 轴于N ,如图3.易得 ,则点M 在整个运动中所用 的时间可表示为 1DE =DE+EN .作点D 关于AC 的对称点D′,连接D′E ,则有D′E=DE ,D′C=DC ,∠D′CA=∠DCA=45°,从而可得∠D′CD=90°,DE+EN=D′E+EN .根据两点之间线段最短可得:当D′、E 、N 三点共线时,DE+EN=D′E+EN 最小.此时可证到四边形OCD′N 是矩形,从而有ND′=OC=3,ON=D′C=DC .然后求出点D 的坐标,从而得到OD 、ON 、NE 的值,即可得到点E 的坐标. 试题解析:(Ⅰ)把A (0,3),C (3,0)代入y= 12 x 2 +mx+n ,得 31 902n mx n =????++=??,解得:523m n ? =- ???=? .∴抛物线的解析式为y=12x 2-52x+3. 联立2132153 22 y x y x x ? =-+????=-+??,解得:03x y =??=?或41x y =??=?,∴点B 的坐标为(4,1). 过点B 作BH ⊥x 轴于H ,如图1. ∵C (3,0),B (4,1),∴BH=1,OC=3,OH=4,CH=4-3=1,∴BH=CH=1. ∵∠BHC=90°,∴∠BCH=45°, ACO=45°, ∴∠ACB=180°-45°-45°=90°,∴tan ∠ BAC= 1 3 BC AC ==; (Ⅱ)(1)存在点P ,使得以A ,P ,Q 为顶点的三角形与△ACB 相似. 过点P 作PG ⊥y 轴于G ,则∠PGA=90°.

相关文档
最新文档