关于各种分辨率的区分

关于各种分辨率的区分
关于各种分辨率的区分

1.图像分辨率image resolution 能区分图像上两个像元的最小距离。指图象中存储的信息量。

图像分辨率为数码相机可选择的成像大小及尺寸,单位为dpi。常见的有640 x 480;1024 x 768;1600 x 1200;2048 x 1536。在成像的两组数字中,前者为图片宽度,后者为图片的高度,两者相乘得出的是图片的像素。像素越高,其图片的分辨率越大。分辨率表示的是图片在长和宽上占的点数的单位。

数码相机能产生在每寸图像内,点数最多的图片,通常以dpi为单位,英文为Dot per inch。分辨率越大,图片的面积越大。

像素越大,分辨率越高,照片越清晰,可输出照片尺寸也可以越大。

表示图像分辨率的方法有很多种,这主要取决于不同的用途。下面所要探讨的,就是在各种情况下分辨率所起的作用,以及它们相互间的关系。

在平面设计中,图像的分辨率以PPI来度量,它和图像的宽、高尺寸一起决定了图像文件的大小及图像质量。该值越大图形文件所占用的磁盘空间也就越多。图象分辨率以比例关系影响着文件的大小,即文件大小与其图象分辨率的平方成正比。如果保持图象尺寸不变,将图象分辨率提高一倍,则其文件大小增大为原来的四倍。

在计算机中处理的图像,有时要输出印刷。在大多数印刷方式中,都使用CMYK(品红、青、黄、黑)四色油墨来表现丰富多彩的色彩,但印刷表现色彩的方式和电视、照片不一样,它使用一种半色调点的处理方法来表现图像的连续色调变化,不像后两者能够直接表现出连续色调的变化。

在电视工业中,分辨率分为水平分辨率和垂直分辨率,在大多数情况下两者是相等的,因此在技术指标中一般仅给出水平分辨率,其度量单位电视线也往往简称为线。

总的说来,设备分辨率反映了硬件设备处理图像时的效果,图像分辨率指标的高低反映了图像清晰度的好坏。认清设备分辨率和图像分辨率的关系,在图像处理中选择合适的设备分辨率值和图像分辨率值,既能保证图像质量,又能提高工作效率和减少投资。在工作中我们应注意积累这方面的经验。

图象的分辨率的单位严格来说应该是ppi,即每英寸的像素数,这是数字图象在生成的时候写入到图象文件中的信息,可以通过photoshop等软件来改变的,它只会影响打印尺寸,不会影响图象质量。

扫描仪扫描彩色图像时,通常要指定图像的分辨率,用每英寸多少点(dots per inch,DIP)表示。如果用300 DIP来扫描一幅8″×10″的彩色图像,就得到一幅2400×3000个像素的图像。分辨率越高,像素就越多。

2.显示分辨率

是指显示屏上能够显示出的像素数目。例如,显示分辨率为640×480表示显示屏分成480行,每行显示640个像素,整个显示屏就含有307200个显像点。屏幕能够显示的像素越多,说明显示设备的分辨率越高,显示的图像质量也就越高。

是最大显示分辨率是衡量显示系统性能优劣的主要技术指标之一。

3.打印机分辨率dpi

也就是每英寸打多少个点。举个例子:比如一幅300*600大小的图象(分辨率是150ppi),,那么打印出来的尺寸就是(300/150)*(600/150)=2*4英寸了,如果打印机分辨率是300dpi,那么一个像素就由2*2=4个点来构成。

4.扫描分辨率

扫描分辨率:指在扫描一幅图象之前所设定的分辨率,它将影响所生成的图象文件的质量和使用性能,它决定图象将以何种方式显示或打印。如果扫描图象用于640×480像素的屏幕显示,则扫描分辨率不必大于一般显示器屏幕的设备分辨率,即一般不超过

120DPI。但大多数情况下,扫描图象是为了在高分辨率的设备中输出。如果图象扫描分辨率过低,会导致输出的效果非常粗糙。反之,如果扫描分辨率过高,则数字图象中会产生超过打印所需要的信息,不但减慢打印速度,而且在打印输出时会使图象色调的细微过渡丢失。一般情况下,图象分辨率应该是网幕频率的2倍。扫描分辨率以ppi为单位。

5.网屏分辨率

网屏分辨率(Screen Resolution):网屏分辨率(ScreenResolution):又称网幕频率(是印刷术语),指的是印刷图像所用的网屏的每英寸的网线数(即挂网网线数),以(LPI)来表示。例如,150LPI是指每英寸加有150条网线。

6.图象的位分辨率

图象的位分辨率(Bit Re solution):又称位深,是用来衡量每个像素储存信息的位数。这种分辨率决定可以标记为多少种色彩等级的可能性。一般常见的有8位、16位、24位或32位色彩。有时我们也将位分辨率称为颜色深度。所谓“位”,实际上是指“2”

的平方次数,8位即是2的八次方,也就是8个2相乘,等于256。所以,一副8位色彩深度的图象,所能表现的色彩等级是256级。

7.设备分辨率

设备分辨率(Device Resolution):又称输出分辨率,指的是各类输出设备每英寸上可产生的点数,如显示器、喷墨打印机、激光打印机、绘图仪的分辨率。这种分辨率通过DPI来衡量,目前,PC显示器的设备分辨率在60至120DPI之间。而打印设备的分辨率则在360至1440DPI之间。

7.1 扫描仪、打印机、显示器的分辨率

对扫描仪、打印机及显示器等硬件设备来说,其分辨率用每英寸上可产生的点数即DPI(Dots Per Inch)来度量。

7.1.1扫描仪的分辨率要从三个方面来确定:光学部分、硬件部分和软件部分。光学分辨率是扫描仪的光学部件在每平方英寸面积内

所能捕捉到的实际的光点数, 是指扫描仪CCD的物理分辨率,也是扫描仪的真实分辨率,它的数值是由CCD的像素点除以扫描仪水平最大可扫尺寸得到的数值。

扩充部分的分辨率(由硬件和软件所生成的)是通过计算机对图像进行分析,对空白部分进行科学填充所产生的(这一过程也叫插值处理)。

有的扫描仪写9600×9600DPI,这只是通过软件插值得到的最大分辨率,并不是扫描仪真正光学分辨率。所以对扫描仪来讲,其分辨率有光学分辨率(或称光学解析度)和最大分辨率之说。

7.1.2 我们说某台打印机的分辨率为360DPI,是指在用该打印机输出图像时,在每英寸打印纸上可以打印出360个表征图像输出效

果的色点。表示打印机分辨率的这个数越大,表明图像输出的色点就越小,输出的图像效果就越精细。打印机色点的大小只同打印机的硬件工艺有关,而与要输出图像的分辨率无关。

7.1.3我们说某个品牌的显示器的分辨率为80DPI,是指在显示器的有效显示范围内,显示器的显像设备可以在每英寸荧光屏上产生

80个光点。举个例子来说,一台14英寸的显示器(荧光屏对角线长度为14英寸),其点距为0.28mm,那么:显示器分辨率=25.3995mm/inch÷0.28mm/Dot≈90DPI(1 inch=25.3995mm)。显示器出厂时一般并不标出表征显示器分辨率的DPI值,只给出点距,我们根据上述公式即可算出显示器的分辨率。根据我们算出的DPI值,我们进而可以推算出显示器可支持的最高显示模式。假设该14英寸显示器荧光屏有效显示范围的对角线长度为11.5英寸,因显示器的水平方向和垂直方向的显示比例为4:3,故可设有效显示范围水平宽度为4X英寸,垂直高度为3X英寸,根据数学上的勾股定理,可得X=11.5÷5=2.3英寸。所以有效显示范围宽度为2.3×4=9.2英寸,垂直高度为2.3×3=6.8英寸。最高显示模式约为:800(9.2×90)×600(6.8×90),这时是用一个点(Dot)表示一个像素(pixel)。

设备分辨率与用该设备处理的图像的分辨率是两个既有联系又有区别的概念。设备分辨率是由硬件设备的生产工艺决定的,尽

管可以通过软件的方法调整有些设备的分辨率,但它们都有一个局限的最高分辨率,用户不能对它有任何突破。图像的分辨率是描述图像本身精细程度的一个量度。对于扫描仪、打印机处理的图像,其分辨率以每英寸上的像素数即PPI(Pixels Per Inch)来衡量。用于计算机视频处理的图像,以水平和垂直方向上所能显示的像素数来表示分辨率,比如800×600、640×480等等。图像本身是否精细只与图像自身的分辨率有关,而与处理它的硬件设备的分辨率无关,但图像的处理结果是否精细却与处理它的设备的分辨率直接相关。举例来说,一幅90PPI的图像是比较精细的了,如果将它放在分辨率为40DPI的打印机上打印,打印效果也是相当糟糕的。对扫描仪来讲,其分辨率的高低与生成图像的精细程度成正比,但其分辨率只能为图像分辨率给出一个初始值(这个PPI值与扫描仪的分辨率的DPI的设定值是相等的),并不对图像的分辨率产生限制,我们可以用软件任意调整扫描生成的图像的分辨率。另外,需要注意的是,我们通常说一幅640×480的图像,说的是图像的大小,其中并不包括图像分辨率的含义。

7.2 数码相机的分辨率

数码相机分辨率的高低决定了所拍摄影像最终所能打印出画面的大小,或在计算机显示器上所能显示画面的大小。数码相机分辨率的高低,取决于相机中CCD(Charge Coupled Device:电荷耦合器件)芯片上像素的多少,像素越多,分辨率越高。数码相机的分辨也是由其生产工艺决定的,在出厂时就固定了的,用户只能选择不同分辨率的数码相机,却不能调整一台数码相机的分辨率。就同类数码相机而言,分辨率越高,相机档次越高,但高分辨率的相机生成的数据文件很大,对加工、处理的计算机的速度、内存和硬盘的容量以及相应软件都有较高的要求。

数码相机像素水平的高低与最终所能打印一定分辨率照片的尺寸,可用以下方法简单计算:假如彩色打印机的分辨率为N DPI,数码相机水平像素为M,最大可打印出的照片为M÷N英寸。比如,打印机的分辨率为300DPI,那么水平像素为3600的数码相机,其所摄的影像文件不作插值处理能够打印出的最大照片尺寸为12英寸(3600÷300)。很显然,要打印出尺寸越大的数码照片,就需要越高像素水平的数码相机。计算显示尺寸的方法与打印尺寸的方法相同。

7.3投影机的分辨率

投影机的分辨率有两种常见的表示方式,一种是以电视线(TV线)的方式表示,另一种是以像素的方式表示。以电视线表示时,其分辨率的含义与电视相似,这种分辨率表示方式主要是为了匹配接入投影机的电视信号而提供的。以像素方式表示时通常表示为1024×768等形式,从某种意义上讲这种分辨率的限制是对输入投影机的VGA信号的行频及场频作一定要求。当VGA信号的行频或场频超过这个限制后,投影机就不能正常投显了。

8.显微物镜的分辨率

显微物镜的分辨率即物面上能分开的最短距离,由以下公式计算

σ=0.61λ/NA

其中σ为显微物镜分辨率,λ为光源波长,NA为显微物镜的数值孔径。

9.商业印刷领域的分辨率

在商业印刷领域,分辨率以每英寸上等距离排列多少条网线即LPI(Lines Per Inch)表示。在传统商业印刷制版过程中,制版时要在原始图像前加一个网屏,这一网屏由呈方格状的透明与不透明部分相等的网线构成。这些网线也就是光栅,其作用是切割光线解剖图像。由于光线具有衍射的物理特性,因此光线通过网线后,形成了反映原始图像影像变化的大小不同的点,这些点就是半色调点。一个半色调点最大不会超过一个网格的面积,网线越多,表现图像的层次越多,图像质量也就越好。因此商业印刷行业中采用了LPI表示分辨率。

10.电视的分辨率

在电视工业中,分辨率指的是在荧光屏等于像高的距离内人眼所能分辨的黑白条纹数,单位是电视线(TV线)。

我们国家采用的电视标准是PAL制式,它规定每秒25帧,每帧625扫描行。由于采用了隔行扫描方式,625行扫描线分为奇数行和偶数行,这分别构成了每一帧的奇、偶两场,由于在每一帧中电子束都要从上面开始扫描,因此存在着电子束从终点回到起点的扫描逆程期,在这期间被消隐的扫描行是不可能分解图像的。扫描逆程期约占整个扫描时间的8%,因此625行中用于扫描图像的有效行数只有576行,由此推导出图像在垂直方向上的分辨率为576点。按现行4∶3宽高比的电视标准,图像在水平方向上的分辨率应为576×4/3=768点,这就得到了768×576这一常见的图像大小。另外,在计算机视频捕捉时,我们还会遇到遵循CCIR601

鼠标的分辨率是指每移动一英寸能检测出的点数,分辨率越高,质量也就越高。以前鼠标的分辨率通常为100DPI,现在的鼠

标分辨率从200DPI到1000DPI不等。高分辨率的鼠标通常用于制图和精确计算机绘图等。

12.触摸屏的分辨率

触摸屏的分辨率是指将屏幕分割成可识别的触点数目。通常用水平和垂直方向上的触点数目来表示,如32×32。有的人认为触摸屏的分辨率越高越好,其实并非如此,在选用触摸屏时应根据具体用途加以考虑。采用模拟量技术的触摸屏分辨率很高,可达到1024×1024,能胜任一些类似屏幕绘画和写字(手写识别)的工作。而在多数场合下,触摸技术的应用只是让人们用手触摸来选择软件设计的“按钮”,没有必要使用非常高的分辨率。例如在14英寸显示器上使用触摸屏时,显示区域的实际大小一般是

25cm×18.5cm,一个分辨率为32×32的触摸屏就能把屏幕分割成1024个0.78cm×0.58cm(比一支香烟还细小)的触点。人的手指按

压触摸屏的触点比香烟的直径大多了,所以这样一个触点就已经足够了。

13. 辐射分辨率

辐射分辨率(英文名Radiometric Resolution)是指传感器能分辨的目标反射或辐射的电磁辐射强度的最小变化量。在可见、近红外波段用噪声等效反射率表示,在热红外波段用噪声等效温差、最小可探测温差和最小可分辨温差表示。辐射分辨率算法是RL =(Rmax-Rmin )/D,Rmax为最大辐射量值,Rmin为最小辐射量值,D为量化级。

14. 光谱分辨率spectral resolution

遥感器能分辨的最小波长间隔,是遥感器的性能指标。遥感器的波段划分得越细,光谱的分辨率就越高,遥感影像区分不同地物的能力越强。

光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。细分光谱可以提高自动区分和识别目标性质和组成成分的能力。

传感器的波谱范围,一般来说识别某种波谱的范围窄,则相应光谱分辨率高。

举个例子:可以分辨红外、红橙黄绿青蓝紫紫外的传感器的光谱分辨率就比只能分辨红绿蓝的传感器的光谱分辨率高。

一般来说,传感器的波段数越多波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强

15. 空间分辨率(spatial resolution)

空间分辨率是指遥感影像上能够识别的两个相邻地物的最小距离。对于摄影影像,通常用单位长度内包含可分辨的黑白“线对”数表示(线对/毫米);对于扫描影像,通常用瞬时视场角(IFOV)的大小来表示(毫弧度mrad),即像元,是扫描影像中能够分辨的最小面积。空间分辨率数值在地面上的实际尺寸称为地面分辨率。对于摄影影像,用线对在地面的覆盖宽度表示(米);对于扫描影像,则是像元所对应的地面实际尺寸(米)。如陆地卫星多波段扫描影像的空间分辨率或地面分辨率为79米(像元大小56×79米2)。但具有同样数值的线对宽度和像元大小,它们的地面分辨率不同。对光机扫描影像而言,约需2.8个像元才能代表一个摄影影像上一个线对内相同的信息。空间分辨率是评价传感器性能和遥感信息的重要指标之一,也是识别地物形状大小的重要依据。

空间分辨率直观的理解就是通过仪器可以识别物体的临界几何尺寸。

影像学中的空间分辨率:是指在某物体间对X线吸收具有高的差异、形成高对比的条件下,鉴别其细微结构的能力。

16. 时间分辨率

是指在同一区域进行的相邻两次遥感观测的最小时间间隔。对轨道卫星,亦称覆盖周期。时间间隔大,时间分辨率低,反之时间分辨率高。时间分辨率是评价遥感系统动态监测能力和“多日摄影”系列遥感资料在多时相分析中应用能力的重要指标。根据地球资源与环境动态信息变化的快慢,可选择适当的时间分辨率范围。按研究对象的自然历史演变和社会生产过程的周期划分为5种类型:①超短期的。如台风、寒潮、海况、鱼情、城市热岛等,需以小时计;②短期的。如洪水、冰凌、旱涝、森林火灾或虫害、作物长势、绿被指数等,要求有以日数计;③中期的。如土地利用、作物估产、生物量统计等,一般需要以月或季度计;④长期的。如水土保持、自然保护、冰川进退、湖泊消长、海岸变迁、沙化与绿化等,则以年计;⑤超长期的。如新构造运动、火山喷发等地质现象,可长达数十年以上。

17. 温度分辨率

是指热红外传感器分辨地表热辐射最小差异的能力。在(热)红外遥感影像上,以灰度差别的等级来代表温度差别的程度。是遥感器的一项技术指标。能分辨的最小温度差。

18. 灰度分辨率(gray level resolution)

体现显示器区分灰度的能力。灰度分辨率越大,可展现在屏幕上的灰度越多。早期显示器为16色设计,灰度分辨率很低,后来提升到256色,再后来提升到8位、16位和32位,对显示器灰度分辨率要求也越高。由于显示器每种色彩通过红绿蓝通道灰度混合表现,所以显示器区分灰度能力基本决定显示器还原真实色彩的能力。

在数字图像处理教程中,灰度分辨率指的是色阶,色阶是表示图像亮度强弱的指数标准,也就是我们说的色彩指数。灰度分辨率指亮度,和颜色无关,但最亮的只有白色,最不亮的只有黑色。

19.超分辨率(Super-Resolution)

即通过硬件或软件的方法提高原有图像的分辨率,通过一系列低分辨率的图像来得到一幅高分辨率的图像过程就是超分辨率重建。超分辨率重建的核心思想就是用时间带宽(获取同一场景的多帧图像序列)换取空间分辨率,实现时间分辨率向空间分辨率的转换。

在大量的电子图像应用领域,人们经常期望得到高分辨率(简称HR)图像。高分辨率意味着图像中的像素密度高,能够提供更多的细节,而这些细节在许多实际应用中不可或缺。使用高分辨率卫星图像就很容易从相似物中区别相似的对象;如果能够提供高分辨的图像,计算机视觉中的模式识别的性能就会大大提高。自从上世纪七十年代以来,电荷耦合器件(CCD)、CMOS图像传感器已被广泛用来捕获数字图像。

增加空间分辨率最直接的解决方法就是通过传感器制造技术减少像素尺寸(例如增加每单元面积的像素数量)。然而,随着像素尺寸的减少,光通量也随之减少,它所产生的散粒噪声使得图像质量严重恶化。不受散粒噪声的影响而减少像素的尺寸有一个极限,对于0.35微米的CMOS处理器,像素的理想极限尺寸大约是40平方微米。当前的图像传感器技术大多能达到这个水平。

另外一个增加空间分辨率的方法是增加芯片的尺寸,从而增加图像的容量。因为很难提高大容量的偶合转换率,因此这种方法一般不认为是有效的。

一种很有前途的方法就是采用信号处理的方法从多个可观察到的低分辨率(简称LR)图像得到高分辨率图像。最近这样的一种分辨率增强技术正成为最热的研究领域之一,在文献中人们把它叫超分辨率(简称SR或者HR)图像复原或者简单地叫做分辨率增强。在克服低分辨率图像系统固有的分辨率限制方面,“超分率”术语中的“超”字代表了一个非常好的技术特性。信号处理方法最大的好处就是它的成本低,同时现存的低分辨率图像系统仍能使用。在许多实际应用中,特别是在医疗图像、卫星图像和视频等领域,同样场景的多帧低分辨率图像很容易得到的情况下,SR图像复原被证明是非常有用的。一种应用就是用便宜的LR数码相机/便携式摄像机复原高质量的数字图像以便打印/停格使用,通常对于一个便携式摄像机,很有可能连续显示放大帧;另外一种非常重要的应用是在监控、法院、科学、医疗和卫星图像应用中缩放感兴趣区域(简称ROI),例如,在监控和法院中,目前数字摄像机(简称DVR)已经普遍取代了闭路电视(简称CCTV),就很有必要放大场景中的目标如汽车牌照或者疑犯的脸部。在诸如CT和核磁共振(简称MRI)等医疗应用中,分辨率质量有限的而获取多幅图像有是可能的情况下,SR技术是非常有用的;在遥感和地球资源卫星(简称LANDSA T)一类卫星图像应用中,在同一地区的多幅图像可提供的情况下,可以考虑使用SR技术增强目标的分辨率;另外一种非常迫切而现实的应用是把一般的NTSC格式低清电视信号转换为高清电视信号(简称HDTV)而不失真地在HDTV 上播放。

在基于SR的空间分辨率增强技术中,其基本前提是通过同一场景可以获取多幅LR细节图像。在SR中,典型地认为LR图像代表了同一场景的不同侧面,也就是说LR图像是基于亚像素精度的平移亚采样。如果仅仅是整数单位的像素平移,那么每幅图像中都包含了相同的信息,这样就不能为HR图像的复原提供新的信息。如果每幅LR图像彼此之间都是不同的亚像素平移,那么它们彼此之间就不会相互包含,在这种情况下,每一幅LR图像都会为HR图像的复原提供一些不同的信息。为了得到同一场景的不同侧面,必须通过一帧接一帧的多场景或者视频序列的相关的场景运动。

与SR技术相关的另一个课题是图像插值,即增加单幅图像的尺寸。尽管这个领域已经被广泛地研究,即使一些基本的功能已经建立,从一幅近似的LR图像放大图像的质量仍然是有限的,这是因为对单幅图像插值不能恢复在LR采样过程中损失的高频部分。因此图像插值方法不能被认作是SR技术。为了在这方面有更大的改进,下一步就需要应用基于同一场景的相关的额外数据。基于同一场景的不同的观察信息的融合就构成了基于场景的SR复原。

20. 地图比例尺scale on map

地图上的线段长度与实地相应线段长度之比。它表示地图图形的缩小程度,又称缩尺。

比例尺与地图内容的详细程度和精度有关。一般讲,大比例尺地图,内容详细,几何精度高,可用于图上测量。小比例尺地图,内容概括性强,不宜于进行图上测量

根据用图的目的和要求的不同,地图比例尺也有大小之分。通常按比值的大小来徇。比值的大小可按比例

尺的分母确定,分母小则比值大,比例尺就大;分母大则比值小,比例尺就小。图幅大小与相同的地图,

比例尺越大,图幅所包含的实地面积就越小,但显示的地形就详细,精度也就越高。因此,大比例尺地图

我国的国家基本比例尺地图的比例尺应为:1∶500、1∶1000、1∶2000、1∶5000、1∶10000、1∶25000、1∶50000、1∶1∶100000、1∶250000、1∶500000、1∶1000000。

21. 地理格网geographic grid

将地球椭球体面用一定间隔划分经线与纬线所形成的网格。通常是指以一定长度或经纬度间隔表示的格网。

22.数字地球digital earth

一个以地球坐标为依据的、具有多分辨率的海量数据和多维显示的地球虚拟系统。

戈尔的数字地球学是关于整个地球、全方位的GIS与虚拟现实技术、网络技术相结合的产物。在戈尔的文章内,他将数字地球看成是“对地球的三维多分辨率表示、它能够放入大量的地理数据”。

数字地球要解决的技术问题,包括计算机科学、海量数据存贮、卫星遥感技术、宽带网络、互操作性、元数据等。可以预见,

随着地球空间信息学的发展,而建立起的数字地球,必将促进测绘事业的现代化,为测绘事业与整个国民经济建立更加紧密的联系,作出更大的贡献,在未来和知识经济社会中产生巨大的经济效益和社会效益。

数字地球核心思想是用数字化的手段来处理整个地球的自然和社会活动诸方面的问题,最大限度地利用资源,并使普通百姓能够通过一定方式方便地获得他们所想了解的有关地球的信息,其特点是嵌入海量地理数据,实现多分辨率、三维对地球的描述,即"虚拟地球"。

通俗地讲,就是用数字的方法将地球、地球上的活动及整个地球环境的时空变化装入电脑中,实现在网络上的流通,并使之最大限度地为人类的生存、可持续发展和日常的工作、学习、生活、娱乐服务。

严格地讲,数字地球是以计算机技术、多媒体技术和大规模存储技术为基础,以宽带网络为纽带运用海量地球信息对地球进行多分辨率、多尺度、多时空和多种类的三维描述,并利用它作为工具来支持和改善人类活动和生活质量。

数字地球的技术基础是要在电子计算机上实现数字地球不是一个很简单的事,它需要诸多学科,特别是信息科学技术的支撑。这其中主要包括:信息高速公路和计算机宽带高速网络技术、高分辨率卫星影像、空间信息技术、大容量数据处理与存贮技术、科学计算以及可视化和虚拟现实技术。

数字地球将需要存贮1015字节的(Quadrillions)信息。美国NASA的行星地球计划EOS-AM1 99年上天,每天将产生1000GB(即1TB)的数据和信息,1米分辨率影像覆盖广东省,大约有1TB的数据,而广东才是中国的1/53。所以要建立起中国的数字地球,仅仅影像数据就有53TB,这还只是一个时刻的,多时相的动态数据,其容量就更大了。目前美国的NASA和NOAA已着手建立用原型并行机管理的可存贮1800TM的数据中心,数据盘带的查找由机器手自动而快速地完成,相信到下一世纪,还会有新的突飞猛进。

另一方面,为了在海量数据中迅速找到需要的数据,元数据(metadata)库的建设是非常必要的,它是关于数据的数据,通过它可以了解有关数据的名称、位置、属性等信息,从而大大减少用户寻找所需数据的时间。

数字地球的一个显著的技术特点是虚拟现实技术。建立了数字地球以后,用户戴上显示头盔,就可以看见地球从太空中出现,使用"用户界面"的开窗放大数字图像;随着分辨率的不断提高,他看见了大陆,然后是乡村、城市,最后是私人住房、商店、树木和其它天然和人造景观;当他对商品感兴趣时,可以进入商店内,欣赏商场内的衣服,并可根据自己的体型,构造虚拟自己试穿衣服。

数字地球的核心是地球空间信息科学,地球空间信息科学的技术体系中最基础和基本的技术核心是"3S"技术及其集成。所谓"3S"是全球定位系统(GPS)、地理信息系统(GIS)和遥感(RS)的统称。没有"3S"技术的发展,现实变化中的地球是不可能以数字的方式进入计算机网络系统的。

"三S"作为数字地球的技术基础和核心将得到迅速发展,一方面数字地球的研究和建设为"三S"技术的发展创造了条件,另一方面"三S"技术的发展为数字地球的建设提供了技术支持。

"三S"集成是指将上述三种对地观测新技术及其他相关技术有机地集成在一起。这里所说的集成,是英文Integration 的中译文,是指一种有机的结合,在线的连接、实时的处理和系统的整体性。GPS、RS、GIS集成的方式可以在不同技术水平上实现。"三S"集成包括空基三S集成与地基三S集成。

空基"三S"集成:用空─地定位模式实现直接对地观测,主要目的是在无地面控制点(或有少量地面控制点)的情况下,实现航空航天遥感信息的直接对地定位、侦察、制导、测量等。

地基"三S"集成:车载、舰载定位导航和对地面目标的定位、跟踪、测量等实时作业。

数字地球的应用在很大程度上超出我们的想象,可以乐观地说下一世纪中,数字地球将进入千家万户和各行各业。

总之,随着"三S"技术及相关技术的发展,数字地球将对社会生活的各个方面产生巨大的影响。其中有些影响我们可

以想象,有些影响也许我们今日还无法想象。

分辨力和分辨率的区别

1、分辨力和分辨率的区别及应用场合 分辨力是指传感器能检出被测信号的最小变化量,是有量纲的数。当被测量的变化小于分辨力时,传感器对输入量的变化无任何反应。 例如,用满量程为20kg的机械磅秤称葡萄。指示值为1kg。您再加一颗葡萄(假设每个10克),指针不会动。加两颗,还没动静。当您加第三颗时,指针动了。那么,这台机械磅秤的分辨率为30g。原因可能有:指针的转轴生锈了等等哈。 那么这台磅秤的分辨率为30g/20kg=0.15%。并不是很差的磅秤啦。原因是,不应该用20kg的磅秤来称数量较小的物体。 那么,是不是该磅秤的绝对误差就是30g呢?不是!它的绝对误差一般地说,大于分辨力。误差的来源还有刻度误差啦,读数误差啦,零点误差啦,多拉。综合起来,就大了。 对数字仪表而言,如果没有其他附加说明,一般可以认为该表的最后一位所表示的数值就是它的分辨力。一般地说,分辨力的数值小于仪表的最大绝对误差。例如,作业中的图1-9所示数字式温度计的分辨力为0.1℃,若该仪表的精度为1.0级,则最大绝对误差将

达到±2.0℃,比分辨力大得多。但是若没有其它附加说明,有时也可以认为分辨力就等于它的最大绝对误差。 又如,电子市场可以买到十几元的数字式万用表。那里头的电阻啦什么的元器件极差啦,误差有的达到10%。这样的元件能做出什么好东西啦?可能这台数字万用表是3,1/2的。也就是说,分辨率高达1/2000=0.05%。。如果用于测量电压,所选择的量程为10V,那么,它的它的最后一位可以被认为就是分辨力,等于0.01V=10mV,似乎误差只有10mV,好厉害,好好啦。但是我们学过检测技术的第一章后,就会明白,这种地摊货的绝对误差是很大嘀,准确度不会优于5%。也就是说,当所选择的量程为10V时,绝对误差可能达到0.5V,是分辨力的20倍。 当该数字表的示值为5V,误差可能达到±0.5V,也就是被测量的范围可能从4.5V~5.5V。从以上分析你就可以知道,商家所说的这个0.05%是万万相信不得的。 2、课后作业14页第6题第1问中说: “将分辨力除以仪表的满度量程就是仪表的分辨率” 光盘中提到:“仪表的最大显示值的倒数就是仪表的分辨率”,这两种说法,计算结果是一样的。但是,第一种说法比较不容易引起误会。在第二种说法中,计算

视频的码率、帧率、分辨率

为了了解视频的码率、帧率、分辨率。我们先来看看视频编码的基本原理:视频图像数据有极强的相关性,也就是说有大量的冗余信息。其中冗余信息可分为空域冗余信息和时域冗余信息。压缩技术就是将数据中的冗余信息去掉(去除数据之间的相关性),压缩技术包含帧内图像数据压缩技术、帧间图像数据压缩技术和熵编码压缩技术。视频文件一般涉及到三个参数:帧率、分辨率和码率。 帧率:每秒显示的图片数。影响画面流畅度,与画面流畅度成正比:帧率越大,画面越流畅;帧率越小,画面越有跳动感。由于人类眼睛的特殊生理结构,如果所看画面之帧率高于16的时候,就会认为是连贯的,此现象称之为视觉暂留。并且当帧速达到一定数值后,再增长的话,人眼也不容易察觉到有明显的流畅度提升了。 分辨率:(矩形)图片的长度和宽度,即图片的尺寸 码率:把每秒显示的图片进行压缩后的数据量。影响体积,与体积成正比:码率越大,体积越大;码率越小,体积越小。(体积=码率×时间) 帧率X分辨率=压缩前的每秒数据量(单位应该是若干个字节) 压缩比=压缩前的每秒数据量/码率(对于同一个视频源并采用同一种视频编码算法,则:压缩比越高,画面质量越差。) 所谓“清晰”,是指画面十分细腻,没有马赛克。并不是分辨率越高图像就越清晰。 简单说: 在码率一定的情况下,分辨率与清晰度成反比关系:分辨率越高,图像越不清晰,分辨率越低,图像越清晰。 在分辨率一定的情况下,码率与清晰度成正比关系,码率越高,图像越清晰;码率越低,图像越不清晰。 但是,事实情况却不是这么简单。可以这么说: 在码率一定的情况下,分辨率在一定范围内取值都将是清晰的;同样地,在分辨率一定的情况下,码率在一定范围内取值都将是清晰的。 在视频压缩的过程中,I帧是帧内图像数据压缩,是独立帧。而P帧则是参考I帧进行帧间图像数据压缩,不是独立帧。在压缩后的视频中绝大多数都是P帧,故视频质量主要由P帧表现出来。由于P帧不是独立帧,而只是保存了与邻近的I帧的差值,故实际上并不存在分辨率的概念,应该看成一个二进制差值序列。而该二进制序列在使用熵编码压缩技术时会使用量化参数进行有损压缩,视频的质量直接由量化参数决定,而量化参数会直接影响到压缩比和码率。 视频质量可以通过主观和客观方式来表现,主观方式就是通常人们提到的视频清晰度,而客观参数则是量化参数或者压缩比或者码率。在视频源一样,压缩算法也一样的前提下比较,量化参数,压缩比和码率之间是有直接的比例关系的。 分辨率的变化又称为重新采样。由高分辨率变成低分辨率称为下采样,由于采样前数据充足,只需要尽量保留更多的信息量,一般可以获得相对较好的结果。而由低分辨率变成高分辨率称为上采样,由于需要插值等方法来补充(猜测)缺少的像素点,故必然会带有失真,

测量中的重要概念——精确度,准确度,敏感度和分辨率

测量中的重要概念——精确度,准确度,敏感度和分辨率 问题简述:在测量中经常会遇到测量精确度(accuracy)、准确度(precision)、敏感度(sensitivity)以及分辨率(resolution)的概念,它们的含义是什么,以及在何种程度上会影响到测量结果,是不是分辨率越高精确度就越好,本文就这些内容作一个探讨。 问题解答:对于精确度(accuracy)和准确度(precision),简单来说,精确度表征的是测量结果与真实值偏差的多少,准确度则是指多次测量结果的一致性如何。以下图为例,我们将测量比作打靶。精确度越高,多次测量结果取平均值就越接近真实值;准确度越高,多次测量结果越一致。 工程应用中,准确度(precision)也是一个十分重要的指标。由于实际现场存在许多不可预期因素,测量结果的精确度总是会随着时间、温度、湿度、光线强度等因素的变化而发生变化。但如果测量的准确度足够高,即测量结果的一致性较好,就可以通过一定的方式对测量结果进行校正,减小系统误差,提高精确度。 在测量系统中,分辨率(resolution)和敏感度(sensitivity)也是常见指标。以NI 的M 系列数据采集卡为例。下图是NI 6259 的部分技术参数: 可以看到,6259 模拟输入的分辨率是16 位,即采用的是16 位的ADC。那么在满量程下(-10,10V),ADC 的码宽为20/2^16=305μV ,通常我们也将该值称为1LSB(1LSB = V FSR/2N,其中V FSR为满量程电压,N 是ADC 的分辨率)。在满量程下,6259 的精确度为

1920μV。敏感度是采集卡所能感知到的最小电压变化值。它是噪声的函数。 数据采集卡可能在基准电压,可编程仪器放大器(PGIA),ADC 等处引入测量误差,如下图所示。 NI 的数据采集卡精确度遵循以下计算公式: 精确度= 读数×增益误差+ 量程×偏移误差+ 噪声不确定度 增益误差= 残余增益误差+ 增益温度系数×上次内部校准至今的温度改变+ 参考温度系数×上次外部校准至今的温度改变 偏移误差= 残余偏移误差+ 偏置温度系数×上次内部校准的温度改变+ INL_误差 可以在625X 的技术手册中查找公式中的各项参数,如下表所示: 其中增益误差主要由于放大器的非线性引起,而ADC 的分辨率主要影响INL(Integral nonlinearity)误差(积分非线性误差)。 DNL(Differential nonlinearity)误差定义(微分非线性误差)为实际量化台阶与对应于1LSB 的理想值之间的差异(见下图)。对于一个理想ADC,跳变值之间的间隔为精确的1LSB。若DNL误差指标≤1LSB,就意味着传输函数具有保证的单调性,没有丢码。当一个ADC 的数字量输出随着模拟输入信号的增加而增加时(或保持不变),就称其具有单调性,相应传输函数曲线的斜率没有变号。

像素和分辨率有什么不同

像素 译自英文Pixel,图像元素(Picture element)的简称,是单位面积中构成图像的点的个数。每个像素都有不同的颜色值。单位面积内的像素越多,分辨率越高,图像的效果就越好。像素有时被简称为pel(picture element的缩写)。 数码相机的像素分为最大像素数和有效像素数。 最大像素: 英文名称为Maximum Pixels,所谓的最大像素是经过插值运算后获得的。插值运算通过设在数码相机内部的DSP芯片,在需要放大图像时用最临近法插值、线性插值等运算方法,在图像内添加图像放大后所需要增加的像素。插值运算后获得的图像质量不能够与真正感光成像的图像相比。 在市面上,有一些商家会标明经硬件插值可达XXX像素,这也是相同的原理,只不过在图像的质量和感光度上,以最大像素拍摄的图片清晰度比不上以有效像素拍摄的。 最大像素,也直接指CCD/CMOS感光器件的像素,一些商家为了增大销售额,只标榜数码相机的最大像素,在数码相机设置图片分辨率的时候,的确也有拍摄最高像素的分辨率图片,但是,用户要清楚,这是通过数码相机内部运算而得出的值,再打印图片的时候,其画质的减损会十分明显。 有效像素: 有效像素数英文名称为Effective Pixels。与最大像素不同,有效像素数是指真正参与感光成像的像素值。最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。以美能达的DiMAGE7为例,其CCD像素为524万(5.24Megapixel),因为CCD有一部分并不参与成像,有效像素只为490万。 数码图片的储存方式一般以像素(Pixel)为单位,每个象素是数码图片里面积最小的单位。像素越大,图片的面积越大。要增加一个图片的面积大小,如果没有更多的光进入感光器件,唯一的办法就是把像素的面积增大,这样一来,可能会影响图片的锐力度和清晰度。所以,在像素面积不变的情况下,数码相机能获得最大的图片像素,即为有效像素。 用户在购买数码相机的时候,通常会看到商家标榜最大像素达到XXX和有效像素达到XXX,那用户应该怎样选择呢?在选择数码相机的时候,应该注重看数码相机的有效像素是多少,有效像素的数值才是决定图片质量的关键。 数码相机的像素设置与冲印照片尺寸对照表: 部分数码相机的像素设置与可冲印最佳照片尺寸对照表,可以根据自己希望冲印照片的

各种废塑料如何鉴别

各种废塑料如何鉴别 废塑料回收乃是一个系统工程,要分清各种废塑料,恐怕还得去购买些关于高分子材料类书籍!我们在这里作一些简单的介绍,看看对你是否有所帮助。 塑料的具体分类很多,就高分子材料而言,恐怕不是三言两语就能囊括的,但就塑料而言,可从以下几种分类法: 热固性塑料与热塑性塑料 热固性塑料的定义: 高分子树脂通过加热塑化或引入助剂塑化,经冷却固化定型后不能再次通过热塑成型的物质,如酚醛塑料,脲醛塑料,191树脂钢化塑料等。即热固性塑料不能再次回收造粒。 热塑性塑料的定义: 高分子树脂通过加热塑化,通过冷却定型后,可以再次根据需要二次加热塑化成型,周而复始。塑料回收造粒指的就是这类塑料。 进一步分类热塑性塑料又可分为常规热塑性通过用塑料和工程塑料,常用热塑性通用塑料有聚乙烯(PE)聚丙烯(PP)聚氯乙烯(PVC)聚苯乙烯(PS)等等,工程塑料有丙烯晴-丁二烯-苯乙烯(ABS)高抗冲击性聚苯乙烯(AS)或(HIPS)。 简易的塑料鉴别,可用如下几种方法: 直观鉴别法 是指用人的感观去体验塑料的一些直观特征。用眼看外观: 透明?半透明?不透明?颜色(未染色时)如何?放到水里,漂浮?下沉?用鼻闻: 有无气味?什么气味?用手摸:

光滑还是粗糙?感觉冷还是热?用手指甲划一下,有无痕迹?用手拉伸一下,是硬还是软?有无韧性和弹性?将塑料摔一摔,耳听其音声,响亮?清脆?或是低沉?易碎?或是坚韧?通过这些感官检查,可鉴别是哪种塑料。 (PE) 聚乙烯LDPE的原材料为白色蜡状物,透明;HDPE为白色粉末状或白色半透明颗粒状树脂。在水中漂浮,无臭无味,具有蜡样光滑感,划后有痕迹,膜软可拉伸。LDPE柔软,有延伸性,可弯曲,但容易折断;MDP E、HDPE较坚硬,刚性及韧性较好,音低沉(PP) 聚丙烯原材料白色蜡状、半透明,在水中漂浮,无臭无味,手感光滑,划后无痕迹,可弯曲,不易折断,拉伸强度与刚性较好,音响亮 (PS) 聚苯乙烯标准型玻璃般透明;耐冲击无光泽,在水中下沉,无臭无味,手感光滑,性脆,易折断用指甲弹打有金属声,俗称“响胶” ABS 乳白色或米黄色,非晶态,不透明,无光泽,在水中下沉无臭无味,质材坚韧、质硬,刚性好。不易折断,音清脆 (PVC) 聚氯乙烯制品视增塑与填料情况而异,有的不透明。在水中下沉,随品种而异硬制品加热到50℃时就软,且可弯曲;软制品会下垂,有的还有弹性,硬制品如门窗,下水道管等,PA-6 PA-66 聚酰胺(尼龙)原材料乳白色,如胶质。加热到250℃以上时成水饴状。在水中下沉无臭无味表面硬有热感,轻轻锤打时不会折断,音低沉 PMMA

视频图像超分辨率重构算法的研究以及应用

目录 第一章绪论 (1) 1.1引言 (1) 1.2 研究背景与意义 (3) 1.2.1研究背景 (3) 1.2.2研究目的与意义 (3) 1.3 国内外研究现状 (4) 1.3.1国外研究现状 (4) 1.3.2国内研究现状 (5) 1.3.3论文创新点 (6) 第二章耦合特征空间中的快速图像超分辨率重构 (8) 2.1稀疏表示重构图像的主要思想 (8) 2.2图像超分辨率重构稀疏表示模型 (9) 2.3耦合特征空间字典学习 (10) 2.3.1耦合特征空间 (10) 2.3.2耦合空间字典学习 (11) 2.4算法流程 (12) 2.5实验结果分析 (16) 2.5.1参数设置 (16) 2.5.2 块大小和重叠像素大小的影响 (17) 2.5.3字典大小的影响 (19) 2.5.4 值的影响 (20) 2.6算法性能评估 (21) 2.7算法复杂度 (23) 2.8本章小结 (23) 第三章基于稀疏表示和近邻嵌入的图像超分辨率重构 (25) 3.1基于稀疏表示和近邻嵌入的图像超分辨率重构的主要思想 (25) 3.2图像块近邻嵌入模型 (26) 3.3基于稀疏表示和图像块近邻的图像超分辨率重构 (27) 3.4算法流程 (28) 3.5实验结果分析 (29) 3.5.1参数设置 (29) IV

3.5.2实验参数的影响 (30) 3.6实验结果对比 (33) 3.7本章小结 (35) 第四章基于动态纹理合成的视频图像超分辨率重构 (36) 4.1基于动态纹理合成的视频图像超分辨率重构基本思想 (36) 4.2图像分割以及归类重构 (37) 4.3基于动态纹理合成的视频图像超分辨率重构 (40) 4.4算法流程图 (41) 4.5实验结果分析 (44) 4.5.1参数设置 (44) 4.5.2实验设置的影响 (45) 4.6算法性能评估 (45) 4.7本章小结 (47) 第五章结论与展望 (48) 5.1主要结论 (48) 5.2展望 (48) 参考文献 (49) 攻读学位期间取得的研究成果 (54) 致谢 (55) V

ps的分辨率与像素的区别

1 分辨率 分辨率跟文件尺寸是相对的,在一个固定的图片中(特指位图),尺寸越小相对的像素就越大,也就是感觉越清晰。尺寸调的越大像素就会越小,就会很模糊。也就是说像素越大,图片的精度就越大。也就是大尺寸的照片缩成小尺寸为什么会变的不清楚的原因。相片最好用高精度输出(所谓的输出就是拍照的相机)。 最后说一点,一个图他的原始分辨率如果本来就不高,那么你怎么修改它的分辨率也不会比原来更清晰到哪里去。这是“先天”原因! 在这里提醒一下修改分辨率是让照片变清晰的一种方法哦。但是也 是要有相知的哦。 2 像素 分辨率是像素的密度,单位一般是像素\英寸,如果是100,表示1英寸的距离有100个像素 假设一个图片长100个像素,宽100个像素,图片大小是一英寸x,分辨率就是100像素除以1英寸等于100像素/英寸,简称分辨率100,如果在像素不变的情况下降图片大小放大为2英寸x2英寸,分辨率 就是100像素除以2英寸等于50 72像素/英寸的图片如果输出打印的话你做/照的图尺寸多大,打印出来就有多大。但是如果你想打印的更大的话就会非常模糊了 但是在300像素/英寸的情况下你可以放大图像直到300-72之间,图像都不会出现模糊。 这个是photoshop中设置的图像的分辨率。会影响到图像的打印效果。

厘米是公制单位,英寸是英制单位,1英寸=2.54厘米。 即是说,72像素/英寸=28.346像素/厘米 在实际使用中,根椐用户使用的尺寸单位来制定。在不须要打印的情况下并没有区别。 补充: 每单位的像素越多,打印的效果就越好,前提是要打印机或者印刷机能够支持较大的分辨率。 300像素/厘米的效果要好于300像素/英寸。 问题区: 1 网页作图ps分辨率:72 2需要打印出来的图片分辨率:300 3 用PS将图片做的清晰分明些,可以调整色阶曲线或用图层叠加的方法使图片明亮干净些,然后再用下锐化。 4 ps的分辨率是多少? 最大300000*300000像素 最小1*1

各种塑料简易鉴别方法(完整版)

在采用各种塑料再生方法对废旧塑料进行再利用前,大多需要将塑料分拣。由于塑料消费渠道多而复杂,有些消费后的塑料又难于通过外观简单将其区分,因此,最好能在塑料制品上标明材料品种。中国参照美国塑料协会(SPE)提出并实施的材料品种标记制定了GB/T16288—1996“塑料包装制品回收标志”,虽可利用上述标记的方法以方便分拣,但由于中国尚有许多无标记的塑料制品,给分拣带来困难,为将不同品种的塑料分别,以便分类回收,首先要掌握鉴别不同塑料的知识,下面介绍塑料简易鉴别法: 1.塑料的外观鉴别 通过观察塑料的外观,可初步鉴别出塑料制品所属大类:热塑性塑料,,热固性塑料或弹性体。一般热塑性塑料有结晶和无定形两类。结晶性塑料外观呈半透明,乳浊状或不透明,只有在薄膜状态呈透明状,硬度从柔软到角质。无定形一般为无色,在不加添加剂时为全透明,硬度从硬于角质橡胶状(此时常加有增塑剂等添加剂)。热固性塑料通常含有填且不透料明,如不含填料时为透明。弹性体具橡胶状手感,有一定的拉伸 率。 2.塑料的加热鉴别 上述三类塑料的加热特征也是各不相同的,通过加热的方法可以鉴别。热塑性塑料加热时软化,易熔融,且熔融时变得透明,常能从熔体拉出丝来,通常易于热合。热固性塑料加热至材料化学分解前,保持其原有硬度不软化,尺寸较稳定,至分解温度炭化。弹性体加热时,直到化学分解温度前,不发生流动,至分解温 度材料分解炭化。 常用热塑性塑料的软化或熔融温度范围见表 3.塑料的溶剂处理鉴别 热塑性塑料在溶剂中会发生溶胀,但一般不溶于冷溶剂,在热溶剂中,有些热塑性塑料会发生溶解,如聚乙烯溶于二甲苯中,热固性塑料在溶剂中不溶,一般也不发生溶胀或仅轻微溶胀,弹性体不溶于溶剂,但通 常会发生溶胀。

分辨率与精度

分辨率与精度的区别 2010-10-07 10:28:37 很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。 我们搞编码器制做和销售的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。 简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。从定义上看,这两个量应该是风马牛不相及的。(是不是有朋友感到愕然^_^)。很多卖传感器的JS就是利用这一点来糊弄人的了。简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!) 所以在这里利用这个例子帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。呵呵,希望对大家有用!^_^ 加工精度是加工后零件表面的实际尺寸、形状、位置三种几何参数与图纸要求的理想几何参数的符合程度。理想的几何参数,对尺寸而言,就是平均尺寸;对表面几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对表面之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。零件实际几何参数与理想几何参数的偏离数值称为加工误差。加工精度与加工误差都是评价加工表面几何参数的术语。加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。加工精度高,就是加工误差小,反之亦然。 任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。 机器的质量取决于零件的加工质量和机器的装配质量,零件加工质量包含零件加工精度和表面质量两大部分。 机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。它们之间的差异称为加工误差。加工误差的大小反映了加工精度的高低。误差越大加工精度越低,误差越小加工精度越高。 加工精度包括三个方面内容: 尺寸精度指加工后零件的实际尺寸与零件尺寸的公差带中心的相符合程度。 形状精度指加工后的零件表面的实际几何形状与理想的几何形状的相符合程度。 位置精度指加工后零件有关表面之间的实际位置与理想 精度就是结果值与结果真值的差值。 精度Accuracy 观测结果、计算值或估计值与真值(或被认为是真值)之间的接近程度。每一种物理量要用数值表示时,必须先要制定一种标准,并选定一种单位(unit)。标准及单位的制定,是为了沟通人与人之间对于物理现象的认识。这种标准的制定,通常是根据人们对于所要测量的物理量的认识与了解,并且要考虑这标准是否容易复制,或测量的过程是否容易操作等实际问题。由

任意比例视频图像放大算法的研究与实现

任意比例视频图像放大算法的研究与实现 摘要:随着多媒体信息技术的发展,针对视频信号的处理技术应运而生。其中实时缩放正是视频信号处理技术的关键。对于图像缩放,所用数学模型的优劣会直接影响用户观看图像的质量。在视频处理中,图像的缩放算法不仅影响视频质量,而且算法的处理速度也会影响视频流的显示,从而影响用户观看的连续性。本文针对视频信号对处理速度和精度的要求,采用只对亮度信号进行复杂处理的方法。分析图像边缘区域的特性,并通过数学推导,在边缘区域的插值中设计四个模板,从而设计改进的视频缩放算法。实验结果表明,本设计的视频信号缩放算法在主观视觉上保持了图像纹理细节和边缘信息。客观评价中,本算法处理得到的图像高频分量丢失少,且保证较好的低频分量处理效果;平均峰值信噪比较双线性插值提高0.24dB。 关键词:视频信号;图像处理;缩放;边缘 ABRSTRACT:With the rapid development of multimedia information technology,video signal's processing technology emerges at that time. Video’s real-time scaling is the key issue in video signal's processing technology. For image scaling,the mathematical model affects the picture’s visual quality. In video processing,not only the scaling algorithm influences the video’s quality,but also the alg orithm’s performance affects the display of the video so that influences the video playing smoothly.Due to the speed and precision demanded in video signal’s processing,only employ the proposed algorithm in Y channel signal. Under the analysis on the characteristic of the edge in image,four scaling masks are deduced mathematically. This paper issues a lot of experiments on the infrastructure of the theoretical study,which show that the video signal's scaling algorithm designed in this paper has obtained the better effectiveness than traditional algorithms. Our design keeps texture details in subjective vision,raises the PSNR 0.24dB on average,and it has well performance in both high and low frequency component in spectrum at the same. This is satisfied with the designated target of the project. Key words: video signals; image processing; scaling; edge 1 绪论 1.1 研究背景及意义 信息技术和互联网发展到今天,多媒体信息技术的应用范围日趋广泛,多媒体信息包括音频数据、图像和视频数据及文字数据。而人类获取的各种信息中,图像信息占有绝大部分,图像带给人们直观并具体的事物形象,这是声音、语言和文字不能比拟的。 人眼看到的是连续变化的景物,是模拟图像,而在数字设备中存储和显示的图像是经过采样和量化的数字图像。为满足人类视觉和实现信息传输的需求,针对图像和视频信息的实时缩放技术在生活中起着不可忽略的作用[1]。 视频图像的后期缩放处理势必将会作为显示呈现在终端之前的一个重要环节。无论其输入视频信源的分辨率大小尺寸多少,最终都应该以用户的实际物理显示设备的最佳观看分辨率作为显示输出结果,通常由于带宽有限的关系,该显示过程通常以放大为主,即输入视频图像分辨率小于输出分辨率。为了满足不同终端用户对图像尺寸的需求,改变图像尺寸的缩放技术应运而生。 图像缩放是数字图像处理中非常重要的技术之一。对于网络传输的图像,由于客观条件的种种限制,想要快速地传输高分辨率的图像一般难以达到,同时由于硬件性能的限制,图片往往也无法满足所需要的分辨率,而硬件的改进却需要复杂的技术并付出昂贵的代价,所以如果能够从软件技术方面进行改进,采用图像插值技术提高图像质量来达到所期望的分辨率和清晰度,其具有的实用意义将是十分重大的。因此,利用插值的方法将低分辨率图像插值放大成高分辨率图像就成为人们追求的目标。 用图像缩放算法进行处理时,存在一对相悖的要素:图像处理速度和图像精度。一般情况下,要想获得比较高的速度甚至达到实时的图像输出速率,只能采用相对来说运算量比较简单的缩放算法;而如果要想获得处理效果比较好的图像,就只能考虑牺牲处理速度,采用计算量大、比较复杂的缩放算法。图像缩

AD精度和分辨率的区别

最近做了一块板子,当然考虑到元器件的选型了,由于指标中要求精度比较高,所以对于AD的选型很慎重。很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。我们搞电子开发的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。 简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。从定义上看,这两个量应该是风马牛不相及的。(是不是有朋友感到愕然^_^)。很多卖传感器的JS就是利用这一点来糊弄人的了。简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!) 回到电子技术上,我们考察一个常用的数字温度传感器:AD7416。供应商只是大肆宣扬它有10位的AD,分辨率是1/1024。那么,很多人就会这么欣喜:哇塞,如果测量温度0-100摄氏度,100/1024……约等于0.098摄氏度!这么高的精度,足够用了。但是我们去浏览一下AD7416的数据手册,居然发现里面赫然写着:测量精度0.25摄氏度!所以说分辨率跟精度完全是两回事,在这个温度传感器里,只要你愿意,你甚至可以用一个14位的AD, 获得1/16384的分辨率,但是测量值的精度还是0.25摄氏度^_^ AD的参考电压为VREF,则AD理论上能测到的最小电压值为分辨率*VREF。实际上还跟精度有关系。 所以很多朋友一谈到精度,马上就和分辨率联系起来了,包括有些项目负责人,只会在那里说:这个系统精度要求很高啊,你们AD的位数至少要多少多少啊…… 其实,仔细浏览一下AD的数据手册,会发现跟精度有关的有两个很重要的指标:DNL和INL。似乎知道这两个指标的朋友并不多,所以在这里很有必要解释一下。 DNL:DifferencialNonLiner——微分非线性度 INL:IntergerNonLiner——积分非线性度(精度主要用这个值来表示) 他表示了ADC器件在所有的数值点上对应的模拟值,和真实值之间误差最大的那一点的误差值。也就是,输出数值偏离线性最大的距离。单位是LSB(即最低位所表示的量)。 当然,像有的AD如△—∑系列的AD,也用Linearity error 来表示精度。 为什么有的AD很贵,就是因为INL很低。分辨率同为12bit的两个ADC,一个INL=±3LSB,而一个做到了±1.5LSB,那么他们的价格可能相差一倍。 所以在这里帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。呵呵,希望对大家有用!^_^

塑料的识别方法

PS料: 容易被点燃,当火源移开后会继续燃烧,并 有黑烟释放 PP料: 容易被点燃,当火源移开后会继续燃烧,但 火焰颜色与PS料不同,且没有黑烟释放. ABS料: 不容易被点燃,当火源移开后不会继续燃 烧 新料目测区分: 分别用手抓起一把新料,摊开手掌 PS料: 透明颗粒状 PP料: 半透明(略成乳白色)颗粒状 ABS料: 淡黄色颗粒状 HIPS的截断面发白,但GPPS没有,EPS主要用于泡沫。 常见塑料鉴别 首先,要先辨别是热塑性塑料还是热固性塑料。可以回收利用的是热塑性塑料PP、PE、PC、PVC、PET、PETG、ABS、PMMA、POM、NYLONG等,不能回收的是热固性塑料,加热时如不能滴淌就是环氧树脂或硅胶,如能滴淌则是聚氰氨、尿甲醛或酸醛树脂(可以理解为加热后能否回收)。 第二,就是针对每一类型的塑料再细分。热固性塑料在加热下,如不能滴淌就是环氧树脂或硅胶,能滴淌是三聚氰氨、尿甲醛或者是酚醛树脂。热塑性的塑料种类比较繁多。主要是要针对常见的塑料进行细分。 ①一般把塑料放在水上,如比水轻,可能是PP、PE、EVA,但PE比较软,PP较硬,一看就清楚了。 ②然后放在火上烧,能自动熄灭的一般就是PVC(燃烧较困难商火自动熄灭软化可拉成丝)、PC(慢慢着火、慢慢熄灭熔融,起泡)PEI,不能自动熄是POM*熔融滴落)、PMMA (高度透明、抗划伤性差、融化,起泡)、、ABS(冒黑烟、软化,烧焦)、PS(跌落有金属响声)、PET(火焰黄色冒黑烟、软化无溶液)、NYLONG(慢慢燃烧慢慢熄灭黄色,边缘黄色,熔融滴落,起泡)、PBT(火焰明亮、劈啪声、起滴、多黑烟) ③溶解试验 溶液溶解种类溶液溶解种类 丙酮PMMC、PC、PVC、PS 5%苯酚PMMC、尼龙 硝酸(稀释)纤维素三氯甲烷PPE 硝酸(浓缩)PPE、PMO 乙酸戍酯PS 盐酸尼龙热的甲苯PES、PP

几种视频压缩算法对比

视频压缩算法对比 视频2008-05-23 10:10:09 阅读557 评论0 字号:大中小订阅 视频压缩标准及比较原始的数字视频信号的数据量是相当惊人的,例如,NTSC 图像以大约640X480的分辨率,24bist/象素,每秒30帧的质量传输时,则视频数据有640X480x24X30=221Mb/S或28MB/s秒,显然这样庞大的数据流对大多数传输线路来说是无法承受的,而且也是无法存储的。为此人们开始专门研究将这些视频、音频数据流进行压缩。很多压缩编码标准相继推出,主要有JPEG月吐一JPEG‘,幻,_H.261旧.263和MPEG等标准。其中JPEG标准主要是用在静止图像的压缩。M一PJEG是将PJEG改进后用到运动图像上,在压缩比不高时,有较好的复现图像质量,但占用存储空间大;在压缩比高的情况下,复现图像质量差。.H261爪.263标准是专门为用于图像质量要求不高的视频会议和可视电话设计。MpEG(MovnigPictureExPertGorPu即活动图像专家组)。它是由150(国际标准化组织)和正(c国际电工委员会)于1988年联合成立的。专门致力于运动图像及伴音编码标准化工作。它们推出了MPEG编码标准【1卜,1l。到现在为止,专家组己制定了MPEG一1,MPEG一2和MPEG一4三种标准,由于其标准化、较大的压缩比及较高的画面质量,成为视频压缩系统首选算法。 MPEGI是一种压缩比高但图像质量稍差的技术;而MPEGZ技术主要专注于图像质量,压缩比小,因此需要的存储空间就大;MPEG4技术是时下比较流行的技术,使用这种技术可以节省空间、提高图像质量、节省网络传输带宽等优点。 来自:https://www.360docs.net/doc/5117505238.html,/blog/static/80720305200842310109120/

示波器的垂直精度与垂直分辨率

广州致远电子股份有限公司 示波器的垂直精度与垂直分辨率 示波器的垂直世界 类别 内容 关键词 垂直精度、垂直分辨率 摘 要 示波器的垂直精度与垂直分辨率解析

修订历史

目录 1. 概述 (1) 1.1垂直精度 (1) 1.2垂直分辨率解析 (1) 1.3算法提高分辨率 (1) 1.3.1几个基本概念 (1) 1.3.2平均算法 (2) 1.3.3高分辨率算法 (3) 2. 小结 (4) 3. 免责声明 (5)

1. 概述 数字存储示波器与万用表相比,测量电压到底是谁更准确呢?当然是万用表,但是为什么大家还会经常使用示波器来进行测量呢? 1.1 垂直精度 提到测量问题,就会涉及到测量精度。用数字存储示波器测量模拟波形第一步就是用ADC将连续的模拟波形信号转换成量化的数字信号,最常用的是8位ADC,也就说对于任何一个波形值都是用256个0和1来重组。 当我们用同一个示波器在不同垂直档位下测量同一信号时,一般情况下得到的测量结果是不一样的,事实上,它涉及到垂直精度的问题,假设当垂直档位为500mV/div时,示波器垂直方向有8格,则其垂直精度分别为(500mV*8)/256=15.625 mV,也就是小于15.625 mV 的电压不会准确测量出来,测量同一个信号,在垂直档位为50mV/div的情况下,即(50mV*8)/256=1.5625 mV,垂直精度就达到了1.5625 mV,小于该垂直精度的电压值是不能测量出来的,即数字测量仪器都是存在采集的量化误差的,只能说ADC的位数越高,量化误差就会越小,但它只能无限减小,并不能消除。 所以当我们在对波形进行测量时,尽量使波形占满示波器屏幕,目的就是为了提高垂直精度,使测量结果更准确。 图1.1 垂直精度示意图 1.2 垂直分辨率解析 我们通常用示波器的垂直分辨率来描述数字示波器中ADC的位数,即位数越高,垂直分辨率越高,该分辨率由硬件决定,一旦确定无法改变。而示波器整个系统的有效位数(ENOB)形成的分辨率与前者不同,它可以由8位变为12位,甚至16位! 示波器整个系统的有效位数(ENOB),它限制着测量系统区分和表示小信号的能力,该能力用噪声失真比(SINAD)表示,其值越大代表信号的噪声干扰越小,有效位数(ENOB)与噪声失真比(SINAD)之间的关系为: SINAD(噪声失真比,单位:dB)=6.02* ENOB(有效位数)+1.76 根据该数学关系式可知,SINAD(噪声失真比)大约每增加6 dB,ENOB(有效位数)就能增加1bit。所以提高信噪比,就能提高所谓的系统等效分辨率。 但是只要ADC位数不变,无论怎样提高所谓的分辨率归根结底都是对ADC采样后的数据进行数字信号处理,最终只能是在“软件”上提高了分辨率,并不能达到硬件上实现的性能,因为软件算法提高分辨率会产生副作用,影响采样率等关键指标,波形显示可能会发生失真现象等等。 1.3 改善等效分辨率 示波器都是如何通过改变算法来实现提高分辨率的呢? 1.3.1 几个基本概念 我们将ADC转换成的离散数字信号称为采样点,相邻采样点之间的时间称为采样时间

视频的超分辨率增强技术综述

收稿日期:2004202226;修返日期:2004206211 基金项目:国家专项工程项目(“613”项目);国家杰出青年科学基金资助项目(60225015);高等学校优秀青年教师教学科研奖励计划资助项目 视频的超分辨率增强技术综述 3 王 勇1,2,郑 辉1,胡德文2 (11西南电子电信技术研究所国家重点实验室,四川成都610041;21国防科学技术大学机电工程与自动化学 院,湖南长沙410073) 摘 要:视频超分辨率增强的目的在于从时间上弥补视频采样设备采样帧率的不足,描述高速运动变化对象的细节信息;在空间上复原视频图像截止频率之外的信息,以使图像获得更多的细节。这项技术广泛应用于视频通信、监控、遥感和高清晰度电视等多个领域。从视频超分辨率的含义、发展现状、主要技术方法和未来研究展望等方面,对视频超分辨率增强领域的研究进行了综述。关键词:视频;图像;超分辨率;时空 中图法分类号:TP391 文献标识码:A 文章编号:100123695(2005)0120004204 Survey on Video Super 2Resolution Enhancement W ANG Y ong 1,2,ZHE NG Hui 1,H U De 2wen 2 (11National K ey Laboratory ,Southwest Institute o f Electronic &Telecommunication Techniques ,Chengdu Sichuan 610041,China ;21College o f Mecha 2tronics &Automation ,National University o f De fense Technology ,Changsha Hunan 410073,China ) Abstract :Video super 2res olution enhancement technique has tw o main aims.T he first is rein forcing the sh ortage of video device frame rate ,describing the details of fast 2m oving object.An other is recovering the lost image space in formation.T he technique is widely ap 2plied to many fields ,such as video communication ,surveillance ,rem ote 2sensing and H DT V.T his paper gives an overview of super 2res o 2lution in term of main used techniques.W ith the present problems in this area ,the paper gives s ome w ork and open issues that can be researched m ore in the future.K ey w ords :Video ;Image ;Super 2Res olution ;S pace 2T ime 1 引言 视频的超分辨率增强是指融合来自相同动态场景的多个低分辨率视频序列的信息,去重构一个高时空分辨率的视频序列。可想而知,视频超分辨率包括时间超分辨率和空间超分辨率。视频中某些事件发生变化比较快,这样就需要用所谓高速(高帧率)的摄像机来采样,如果使用普通帧率的摄像机,那么在时间上就会有一些细节信息的丢失。视频的时间超分辨率就是要恢复这些丢失的时间上的细节信息,而视频空间超分辨率就是通常人们提到的图像超分辨率复原。 摄像机在时间和空间上的分辨率能力是有限的。空间分辨率取决于摄像机光学传感器的空间密度及其本身引入的模糊误差,这些因素限制了图像中被观察到的物体或特征的最小空间尺寸;时间分辨率取决于摄像机的帧率和曝光时间,这就限制了视频序列中能被观察到的动态事件的最大变化速度。比摄像机帧率发生更快的动态事件在记录下来的视频序列中是不可见或者不正确的,如在网球比赛的视频中是不可能观察到高速运动的网球的全部运动和状态的。有两类非常 典型的由高速运动引起的可视化效果:①运动模糊,它是摄像机的曝光时间引起的,如高速运动的网球所带有的尾迹;②运动混淆,它是由于帧率限制的时间采样引起的,如一个小球以正弦波形向前运动,摄像机的帧率如果与小球正弦运动周期可比或相等,记录下的视频上就将观察到小球以很长的周期正弦运动或直线运动,这类似于一维信号的欠采样。这两种视频效果都不能依靠视频的慢速播放而消除,甚至使用复杂的时间插值算法来增加帧率也收效甚微[1],这是因为包含在单个视频序列中的信息是不足以恢复高速动态事件中丢失的信息。多个视频序列提供了附加的动态时空场景采样,这样就可融合这些信息去弥补丢失的信息,产生一个高时空分辨率的视频序列。 2 相关工作 图像超分辨率的概念和方法最早由Harris 和G oodman [2,3] 于20世纪60年代提出;随后有许多人对其进行了研究,并相继提出了各种方法,如长椭球波函数法[4]、线性外推法[5]、叠加正弦模板法[6]。以上这些方法虽然能给出令人印象深刻的仿真结果,但在实际应用中并没有获得理想的结果。80年代末之后,人们在超分辨率图像复原方法研究上取得了突破性的进展。Hunt 等人不仅在理论上说明了超分辨率存在的可能性[7],而且提出和发展了许多有实用价值的方法,如能量连续降减法[8]、Bayesian 分析法[9~12]和凸集投影法[13]。超分辨率 ?4?计算机应用研究2005年

相关文档
最新文档