8086 汇编指令集

8086 汇编指令集

一、数据传输指令

它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.

1. 通用数据传送指令

MOV 传送字或字节.

格式为: MOV DST,SRC

执行的操作:(DST)<-(SRC)

MOVSX 先符号扩展,再传送.

MOVZX 先零扩展,再传送.

PUSH 把字压入堆栈.

格式为:PUSH SRC

执行的操作:(SP)<-(SP)-2 ((SP)+1,(SP))<-(SRC)

POP 把字弹出堆栈.

格式为:POP DST

执行的操作:(DST)<-((SP+1),(SP)) (SP)<-(SP)+2

PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI 依次压入堆栈.

POPA 把DI,SI,BP,SP,BX,DX,CX,AX 依次弹出堆栈.

PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI 依次压入堆栈.

POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX 依次弹出堆栈.

BSWAP 交换32 位寄存器里字节的顺序

XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)

格式为:XCHG OPR1,OPR2

执行的操作:(OPR1)<-->(OPR2)

CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )

XADD 先交换再累加.( 结果在第一个操作数里)

2. 输入输出端口传送指令.

IN I/O 端口输入. ( 语法: IN 累加器,{端口号│DX} )

长格式为:

IN AL,PORT(字节)

IN AX,PORT(字)

执行的操作:

(AL)<-(PORT)(字节)

(AX)<-(PORT+1,PORT)(字)

短格式为:

IN AL,DX(字节)

IN AX,DX(字)

执行的操作: AL<-((DX))(字节)

AX<-((DX)+1,DX)(字)

OUT I/O 端口输出. ( 语法: OUT {端口号│DX},累加器),输入输出端口由立即方式指定时,其范围是0-255;由寄存器DX 指定时,其范围是0-65535.

长格式为: OUT PORT,AL(字节)

OUT PORT,AX(字)

执行的操作: (PORT)<-(AL)(字节)

(PORT+1,PORT)<-(AX)(字)

短格式为: OUT DX,AL(字节)

OUT DX,AX(字)

执行的操作: ((DX))<-(AL)(字节)

((DX)+1,(DX))<-AX(字)

XLAT 换码指令

字节查表转换,BX 指向一张256 字节的表的起点,AL 为表的索引值

(0-255,即0-FFH);返回AL 为查表结果. 执行的操作: ( [BX+AL]->AL )

格式为: XLAT OPR

或: XLAT

3. 目的地址传送指令.

LEA 装入有效地址. 格式为: LEA REG,SRC

执行的操作:(REG)<-SRC

指令把源操作数的有效地址送到指定的寄存器中.

例: LEA DX,string ;把偏移地址存到DX.

LDS 传送目标指针,把指针内容装入DS.

格式为: LDS REG,SRC

执行的操作:(REG)<-(SRC) (DS)<-(SRC+2)

把源操作数指定的 4 个相继字节送到由指令指定的寄存器及DS 寄存器中.该指令常指定SI寄存器.

例: LDS SI,string ;把段地址:偏移地址存到DS:SI.

LES 传送目标指针,把指针内容装入ES.

格式为: LES REG,SRC

执行的操作: (REG)<-(SRC) (ES)<-(SRC+2)

把源操作数指定的 4 个相继字节送到由指令指定的寄存器及ES 寄存器中.该指令常指定DI寄存器.

例: LES DI,string ;把段地址:偏移地址存到ES:DI.

LFS 传送目标指针,把指针内容装入FS.

例: LFS DI,string ;把段地址:偏移地址存到FS:DI.

LGS 传送目标指针,把指针内容装入GS.

例: LGS DI,string ;把段地址:偏移地址存到GS:DI.

LSS 传送目标指针,把指针内容装入SS.

例: LSS DI,string ;把段地址:偏移地址存到SS:DI.

4. 标志传送指令.

LAHF 标志寄存器传送,把标志装入AH.

格式为: LAHF

执行的操作:(AH)<-(PWS 的低字节)

SAHF 标志寄存器传送,把AH 内容装入标志寄存器.

格式为: SAHF

执行的操作:(PWS 的低字节)<-(AH)

PUSHF 标志入栈.

格式为: PUSHF

执行的操作:(SP)<-(SP)-2 ((SP)+1,(SP))<-(PSW)

POPF 标志出栈.

格式为: POPF

执行的操作:(PWS)<-((SP)+1,(SP)) (SP)<-(SP+2)

PUSHD 32 位标志入栈.

POPD 32 位标志出栈.

二、算术运算指令

ADD 加法.

格式: ADD DST,SRC

执行的操作:(DST)<-(SRC)+(DST)

ADC 带进位加法.

格式: ADC DST,SRC

执行的操作:(DST)<-(SRC)+(DST)+CF

INC 加1.

格式: INC OPR

执行的操作:(OPR)<-(OPR)+1

AAA 加法的ASCII 码调整.

DAA 加法的十进制调整.

SUB 减法.

格式: SUB DST,SRC

执行的操作:(DST)<-(DST)-(SRC)

SBB 带借位减法.

格式: SBB DST,SRC

执行的操作:(DST)<-(DST)-(SRC)-CF

DEC 减1.

格式: DEC OPR

执行的操作:(OPR)<-(OPR)-1

NEC 求反(以0 减之).

格式: NEG OPR

执行的操作:(OPR)<- -(OPR)

CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).

格式: CMP OPR1,OPR2

执行的操作:(OPR1)-(OPR2)

该指令与SUB 指令一样执行减法操作,但不保存结果,只是根据结果设置条件标志. AAS 减法的ASCII 码调整.

DAS 减法的十进制调整.

MUL 无符号乘法.

格式: MUL SRC

执行的操作:

字节操作数:(AX)<-(AL)*(SRC)

字操作数:(DX,AX)<-(AX)*(SRC)

IMUL 整数乘法.

格式: IMUL SRC

执行的操作:与MUL 相同,但必须是带符号数,而MUL 是无符号数.

以上两条,结果回送AH 和AL(字节运算),或DX 和AX(字运算),

AAM 乘法的ASCII 码调整.

DIV 无符号除法.

非组合BCD 码乘法调整指令

格式: DIV SRC

执行的操作:

字节操作:(AL)<-(AX)/(SRC)的商

(AH)<-(AX)/(SRC)的余数

字操作: (AX)<-(DX,AX)/(SRC)的商

(AX)<-(DX,AX)/(SRC)的余数

IDIV 整数除法.

格式: DIV SRC

执行的操作:与DIV 相同,但操作数必须是带符号数,商和余数也均为带符号数,且余数的符号与被除数的符号相同.

以上两条,结果回送:

商回送AL,余数回送AH,(字节运算);

或商回送AX,余数回送DX,(字运算).

AAD 除法的ASCII 码调整.

非组合BCD 码除法调整指令

CBW 字节转换为字. (把AL 中字节的符号扩展到AH 中去)

格式: CBW

执行的操作:AL 的内容符号扩展到AH.即如果(AL)的最高有效位为0,则(AH)=00;如(AL)的最高有效位为1,则(AH)=0FFH

CWD 字转换为双字. (把AX 中的字的符号扩展到DX 中去)

格式: CWD

执行的操作:AX 的内容符号扩展到DX.即如(AX)的最高有效位为0,则(DX)=0;否则(DX)=0FFFFH.

这两条指令都不影响条件码.

CWDE 字转换为双字. (把AX 中的字符号扩展到EAX 中去)

CDQ 双字扩展. (把EAX 中的字的符号扩展到EDX 中去)

三、逻辑运算指令

AND 与运算.

格式: AND DST,SRC

执行的操作:(DST)<-(DST)^(SRC)

OR 或运算.

格式: OR DST,SRC

执行的操作:(DST)<-(DST)V(SRC)

XOR 异或运算.

格式: XOR DST,SRC

执行的操作:(DST)<-(DST)V(SRC)

NOT 取反.

格式: NOT OPR

执行的操作:(OPR)<-(OPR)

TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果).

格式: TEST OPR1,OPR2

执行的操作:(DST)^(SRC)

两个操作数相与的结果不保存,只根据其特征置条件码

SHL 逻辑左移.

格式: SHL OPR,CNT(其余的类似)

其中OPR 可以是除立即数以外的任何寻址方式.移位次数由CNT 决定,CNT 可以是 1 或CL.

SAL 算术左移.(=SHL)

SHR 逻辑右移.

SAR 算术右移.(=SHR)

ROL 循环左移.

ROR 循环右移.

RCL 通过进位的循环左移.

RCR 通过进位的循环右移.

以上八种移位指令,其移位次数可达255 次.

移位一次时,可直接用操作码. 如SHL AX,1.

移位>1 次时,则由寄存器CL 给出移位次数.

如MOV CL,04

SHL AX,CL

四、串指令

DS:SI 源串段寄存器:源串变址.

ES:DI 目标串段寄存器:目标串变址.

CX 重复次数计数器.

AL/AX 扫描值.

D 标志0 表示重复操作中SI 和DI 应自动增量;1 表示应自动减量.

Z 标志用来控制扫描或比较操作的结束.

MOVS 串传送.

格式:可有三种

MOVS DST,SRC

MOVSB(字节)

MOVSW(字)

其中第二、三种格式明确地注明是传送字节或字,第一种格式则应在操作数中表明是字

还是字节操作,例如:

MOVS ES:BYTE PTR[DI],DS:[SI]

执行的操作:

1)((DI))<-((SI))

2)字节操作:

(SI)<-(SI)+(或-)1,(DI)<-(DI)+(或-)1

当方向标志DF=0 时用+,当方向标志DF=1 时用-

3)字操作:

(SI)<-(SI)+(或-)2,(DI)<-(DI)+(或-)2

当方向标志DF=0 时用+,当方向标志DF=1 时用-

该指令不影响条件码.

CMPS 串比较.

格式: CMPS SRC,DST

CMPSB

CMPSW

执行的操作:

1)((SI))-((DI))

2)字节操作:(SI)<-(SI)+-1,(DI)<-(DI)+-1

字操作: (SI)<-(SI)+-2,(DI)<-(DI)+-2

指令把由(SI)指向的数据段中的一个字(或字节)与由(DI)指向的附加段中的一个字(或

字节)相减,但不保存结果,只根据结果设置条件码,指令的其它特性和MOVS 指令的规定相同.

SCAS 串扫描.

把AL 或AX 的内容与目标串作比较,比较结果反映在标志位.

格式: SCAS DST

SCASB

SCASW

执行的操作:

字节操作: (AL)-((DI)),(DI)<-(DI)+-1

字操作: (AL)-((DI)),(DI)<-(DI)+-2

该指令把AL(或AX)的内容与由(DI)指定的在附加段中的一个字节(或字)进行比较,并不

保存结果,只根据结果置条件码.指令的其他特性和MOVS 的规定相同.

LODS 装入串.

把源串中的元素(字或字节)逐一装入AL 或AX 中.

格式: LODS SRC

LODSB

LODSW

执行的操作:

字节操作:(AL)<-((SI)),(SI)<-(SI)+-1

字操作: (AX)<-((SI)),(SI)<-(SI)+-2

该指令把由(SI)指定的数据段中某单元的内容送到AL 或AX 中,并根据方向标志及数据类型修改SI 的内容.指令允许使用段跨越前缀来指定非数据段的存储区.该指令也不影响条件码.

一般说来,该指令不和REP 联用.有时缓冲区中的一串字符需要逐次取出来测试时,可使用本指令.

STOS 保存串.

是LODS 的逆过程.

格式: STOS DST

STOSB(字节)

STOSW(字)

执行的操作:

字节操作:((DI))<-(AL),(DI)<-(DI)+-1

字操作: ((DI))<-(AX),(DI)<-(DI)+-2

该指令把AL 或AX 的内容存入由(DI)指定的附加段的某单元中,并根据DF 的值及数据类型修改DI 的内容,当它与REP 联用时,可把AL 或AX 的内容存入一个长度为(CX)的缓冲区中.

REP 当CX/ECX<>0 时重复.

格式: REP string primitive

其中String Primitive 可为MOVS,LODS 或STOS 指令

执行的操作:

1)如(CX)=0 则退出REP,否则往下执行.

2)(CX)<-(CX)-1

3)执行其中的串操作

4)重复1)~3)

REPE/REPZ 当ZF=1 或比较结果相等,且CX/ECX<>0 时重复.

格式: REPE(或REPZ) String Primitive

其中String Primitive 可为CMPS 或SCAS 指令.

执行的操作:

1)如(CX)=0 或ZF=0(即某次比较的结果两个操作数不等)时退出,否则往下执行

2)(CX)<-(CX)-1

3)执行其后的串指令

4)重复1)~3)

REPNE/REPNZ 当ZF=0 或比较结果不相等,且CX/ECX<>0 时重复.

格式: REPNE(或REPNZ) String Primitive

其中String Primitive 可为CMPS 或SCAS 指令

执行的操作:

除退出条件(CX=0)或ZF=1 外,其他操作与REPE 完全相同.

REPC 当CF=1 且CX/ECX<>0 时重复.

REPNC 当CF=0 且CX/ECX<>0 时重复.

五、程序转移指令

1>无条件转移指令(长转移)

JMP 无条件转移指令

1)段内直接短转移

格式:JMP SHORT OPR

执行的操作:(IP)<-(IP)+8 位位移量

2)段内直接近转移

格式:JMP NEAR PTR OPR

执行的操作:(IP)<-(IP)+16 位位移量

3)段内间接转移

格式:JMP WORD PTR OPR

执行的操作:(IP)<-(EA)

4)段间直接(远)转移

格式:JMP FAR PTR OPR

执行的操作:(IP)<-OPR 的段内偏移地址

(CS)<-OPR 所在段的段地址

5)段间间接转移

格式:JMP DWORD PTR OPR

执行的操作:(IP)<-(EA) (CS)<-(EA+2)

2>条件转移指令(短转移,-128 到+127 的距离内)

1)根据单个条件标志的设置情况转移

JZ(或JE)(Jump if zero,or equal) 结果为零(或相等)则转移

格式:JE(或JZ) OPR

测试条件:ZF=1

JNZ(或JNE)(Jump if not zero,or not equal) 结果不为零(或不相等)则转移

格式:JNZ(或JNE) OPR

测试条件:ZF=0

JS(Jump if sign) 结果为负则转移

格式: JS OPR

测试条件:SF=1

JNS(Jump if not sign) 结果为正则转移

格式:JNS OPR

测试条件:SF=0

JO(Jump if overflow) 溢出则转移

格式: JO OPR

测试条件:OF=1

JNO(Jump if not overflow) 不溢出则转移

格式: JNO OPR

测试条件:OF=0

JP(或JPE)(Jump if parity,or parity even) 奇偶位为1 则转移

格式: JP OPR

测试条件:PF=1

JNP(或JPO)(Jump if not parity,or parity odd) 奇偶位为0 则转移

格式: JNP(或JPO) OPR

测试条件:PF=0

JB(或JNAE,JC)(Jump if below,or not above or equal,or carry) 低于,或者不高于或等于, 或进位位为1 则转移

格式:JB(或JNAE,JC) OPR

测试条件:CF=1

JNB(或JAE,JNC)(Jump if not below,or above or equal,or not carry) 不低于,或者高于

或者等于,或进位位为0 则转移

格式:JNB(或JAE,JNC) OPR

测试条件:CF=0

2)比较两个无符号数,并根据比较的结果转移

JB(或JNAE,JC)

格式:同上

JNB(或JAE,JNC)

格式:同上

JBE(或JNA)(Jump if below or equal,or not above) 低于或等于,或不高于则转移

格式:JBE(或JNA) OPR

测试条件:CFVZF=1

JNBE(或JA)(Jump if not below or equal,or above) 不低于或等于,或者高于则转移格式:JNBE(或JA) OPR

测试条件:CFVZF=0

3)比较两个带符号数,并根据比较的结果转移

JL(或LNGE)(Jump if less,or not greater or equal) 小于,或者不大于或者等于则转移格式:JL(或JNGE) OPR

测试条件:SFVOF=1

JNL(或JGE)(Jump if not less,or greater or equal)不小于, 或者大于或者等于则转移格式:JNL(或JGE) OPR

测试条件:SFVOF=0

JLE(或JNG)(Jump if less or equal,or not greater) 小于或等于,或者不大于则转移格式:JLE(或JNG) OPR

测试条件:(SFVOF)VZF=1

JNLE(或JG)(Jump if not less or equal,or greater) 不小于或等于,或者大于则转移格式:JNLE(或JG) OPR

测试条件:(SFVOF)VZF=0

4)测试CX 的值为0 则转移指令

JCXZ(Jump if CX register is zero) CX 寄存器的内容为零则转移

格式:JCXZ OPR

测试条件:(CX)=0

注:条件转移全为8 位短跳!

3>循环控制指令(短转移)

LOOP CX 不为零时循环.

格式: LOOP OPR

测试条件:(CX)<>0

LOOPE/LOOPZ CX 不为零且标志Z=1 时循环.

格式: LOOPZ(或LOOPE) OPR

测试条件:(CX)<>0 且ZF=1

LOOPNE/LOOPNZ CX 不为零且标志Z=0 时循环.

格式: LOOPNZ(或LOOPNE) OPR

测试条件:(CX)<>0 且ZF=0

这三条指令的步骤是:

1)(CX)<-(CX)-1

2)检查是否满足测试条件,如满足则(IP)<-(IP)+D8 的符号扩充.

JCXZ CX 为零时转移.

JECXZ ECX 为零时转移.

4>子程序

CALL 调用指令

RET 返回指令

5>中断指令

INT 中断指令

格式: INT TYPE

或INT

执行的操作: (SP)<-(SP)-2 ((SP)+1,(SP))<-(PSW)

(SP)<-(SP)-2 ((SP)+1,(SP))<-(CS)

(SP)<-(SP)-2 ((SP)+1,(SP))<-(IP)

(IP)<-(TYPE*4) (CS)<-(TYPE*4+2)

INTO 溢出中断

执行的操作:若OF=1 则:

(SP)<-(SP)-2 ((SP)+1,(SP))<-(PSW)

(SP)<-(SP)-2 ((SP)+1,(SP))<-(CS)

(SP)<-(SP)-2 ((SP)+1,(SP))<-(IP)

(IP)<-(10H) (CS)<-(12H)

IRET 中断返回

格式: IRET

执行的操作: (IP)<-((SP)+1,(SP))

(SP)<-(SP)+2

(CS)<-((SP)+1,(SP))

(SP)<-(SP)+2

(PSW)<-((SP)+1,(SP))

(SP)<-(SP)+2

六、处理器控制指令

1.标志处理指令

CLC 进位位置0 指令(Clear carry)CF<-0

CMC 进位位求反指令(Complement carry)CF<-CF

STC 进位位置1 指令(Set carry)CF<-1

CLD 方向标志置0 指令(Clear direction)DF<-0

STD 方向标志置1 指令(Set direction)DF<-1

CLI 中断标志置0 指令(Clear interrupt)IF<-0

STI 中断标志置1 指令(Set interrupt)IF<-0

2.其他处理机控制指令

NOP 无操作指令

该指令不执行任何操作,其机器码占有一个字节,在调试程序时往往用这条指令占有一定

的存储单元,以便在正式运行时用其他指令取代.

HLT 停机指令

该指令可使机器暂停工作,使处理机处于停机状态以便等待一次外部中断到来,中断结束

后可继续执行下面的程序.

WAIT 等待指令

该指令使处理机处于空转状态,它也可以用来等待外部中断的发生,但中断结束后仍返回WAIT 指令继续德行.

ESC 换码指令

格式ESC mem

其中mem指出一个存储单元,ESC 指令把该存储单元的内容送到数据总线去.当然ESC 指令不允许使用立即数和寄存器寻址方式.这条指令在使用协处理机(Coprocessor)执行某些

操作时,可从存储器指得指令或操作数.协处理机(如8087)则是为了提高速度而可以选配

的硬件.

LOCK 封锁指令

该指令是一种前缀,它可与其他指令联合,用来维持总线的锁存信号直到与其联合的指令执行完为止.当CPU 与其他处理机协同工作时,该指令可避免破坏有用信息.

七、伪指令

DW 定义字(2 字节).

PROC 定义过程.

ENDP 过程结束.

SEGMENT 定义段.

ASSUME 建立段寄存器寻址.

ENDS 段结束.

END 程序结束.

8086汇编语言程序设计

实验1 简单汇编语言程序设计 一、实验目的与要求 1.熟悉汇编语言运行、调试环境及方法。 2.掌握简单汇编语言程序的设计方法。 3.熟悉调试工具DEBUG,并运用DEBUG 工具调试程序。 二、实验内容 根据下列要求,编写汇编源程序,汇编连接汇编源程序,并利用DEBUG 工具调试程序,验证程序的正确性。 1. 若X、Y、R、W 是存放8 位带符号数字节单元的地址,Z 是16 位字单元的 地址。试编写汇编程序,完成Z←((W-X) ÷5-Y)?(R+ 2) 。 2.试编写一个程序,测试某数是否是奇数。如该数是奇数,则把DL 的第0 位置1,否则将该位置0。 三、实验报告要求 1.程序算法流程图。 2.源程序清单。 3.程序运行结果。 4.调试过程中遇到的问题和解决的方法。

实验2 分支及循环程序设计 一、实验目的与要求 1.熟悉汇编语言运行、调试环境及方法。 2.掌握分支程序和循环程序的设计方法。 3.熟悉调试工具DEBUG,并运用DEBUG工具调试程序。 二、实验内容 根据下列要求,编写汇编源程序,汇编连接汇编源程序,并利用DEBUG工具调试程序,验证程序的正确性。 1.编写汇编程序,统计某存储区若干个数据中英文字母的个数,并将结果在屏幕上显示。 2.从键盘任意输入一组字符数据,请编写汇编程序将该组数据加密后在屏幕上显示。参考加密方法是:每个数乘以2。(说明:本题的加密方法,同学们可以自己拟定) 三、实验报告要求 1.程序算法流程图。 2.源程序清单。 3.程序运行结果。 4.调试过程中遇到的问题和解决的方法。

实验3 子程序程序设计 一、实验目的与要求 1.熟悉汇编语言运行、调试环境及方法。 2.掌握子程序的设计方法。 3.熟悉调试工具DEBUG,并运用DEBUG工具调试程序。 二、实验内容 根据下列要求,编写汇编源程序,并利用DEBUG工具调试程序,验证程序的正确性。 1.编程以十进制形式和十六进制形式显示AX的内容,并把两个显示功能分别封装成子程序dispDEC和dispHEX。 2.设在以EXAMSCORE为首地址的数据缓冲区依次存放某班10名同学5门功课的成绩,现要统计各位同学的总分,并将总分放在该学生单科成绩后的单元,并调用第1个程序封装好的子程序,以十进制方式显示统计情况,显示格式自行设计。请编程完成此功能。数据缓冲区参考数据定义如下: EXAMSCORE DB 01 ;学号 DB 89,76,54,77,99 ;单科成绩 DW ? ;该学生的总分 DB 02 ;学号 DB 79,88,64,97,92 ;单科成绩 DW ? ;该学生的总分 三、实验报告要求 1.程序算法流程图。 2.源程序清单。 3.程序运行结果。 4.调试过程中遇到的问题和解决的方法。

x86汇编指令集

x86汇编指令集 数据传输指令它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据. 1. 通用数据传送指令. MOV 传送字或字节. MOVSX 先符号扩展,再传送. MOVZX 先零扩展,再传送. MOVSX reg16,r/m8 ; o16 0F BE /r [386] MOVSX reg32,r/m8 ; o32 0F BE /r [386] MOVSX reg32,r/m16 ; o32 0F BF /r [386] MOVZX reg16,r/m8 ; o16 0F B6 /r [386] MOVZX reg32,r/m8 ; o32 0F B6 /r [386] MOVZX reg32,r/m16 ; o32 0F B7 /r [386] PUSH 把字压入堆栈. POP 把字弹出堆栈. PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈. POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.

PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈. POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈. BSWAP 交换32位寄存器里字节的顺序 XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD 先交换再累加.( 结果在第一个操作数里) XLAT 字节查表转换. ── BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即 0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL ) 2. 输入输出端口传送指令. IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} ) OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器) 输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时, 其范围是0-65535. 3. 目的地址传送指令. LEA 装入有效地址. 例: LEA DX,string ;把偏移地址存到DX. LDS 传送目标指针,把指针内容装入DS. 例: LDS SI,string ;把段地址:偏移地址存到DS:SI. LES 传送目标指针,把指针内容装入ES. 例: LES DI,string ;把段地址:偏移地址存到ES:DI. LFS 传送目标指针,把指针内容装入FS.

微机原理第6章习题参考答案

第6章习题参考答案 1.CPU与外部设备通信为什么要使用接口? 答: CPU要与外部设备直接通信会存在以下两个方面的问题:首先是速度问题,CPU的运行速度要比外设的处理速度高得多,通常仅使用简单的一条输入/输出指令是无法完成CPU与外设之间的信息交换的;其次,外设的数据和控制线也不可能与CPU直接相连,如一台打印机不能将其数据线与CPU的管脚相连,键盘或者其他外设也是如此,同时外设的数据格式千差万别,也不可能直接与CPU 连接。所以,要完成CPU与外部各通信设备的信息交换,就需要接口电路以解决以上问题。 2. I/O接口有什么用途? 答: 主要由以下几个方面的用途: a完成地址译码或设备选择,使CPU能与某一指定的外部设备通信。 b状态信息的应答,以协调数据传输之前的准备工作。 c进行中断管理,提供中断信号。 d进行数据格式转换,如正负逻辑转换、串行与并行数据转换。 e进行电平转换,如TTL电平与MOS电平间的转换。 f协调速度,如采用锁存、缓冲、驱动等。 h时序控制,提供实时时钟信号。 3.I/O端口有哪两种寻址方式?各有何优缺点? 答: I/O端口的寻址方式有存储器映像I/O和I/O映像I/O两种寻址方式。存储器映像I/O 方式是将系统中存储单元和I/O端口的地址统一编址,这样一个I/O端口

地址就是一个存储单元地址,在硬件上没有区别,对I/O端口的访问与存储器的访问相同。其缺点是占用了储存器的地址空间,同时由于存储器地址和I/O 端口在指令形式上没有区别,增加了程序设计的难度。其优点是不需要专门为I/O端口设计电路,可与存储器地址访问硬件混合设计。另一个优点是,由于I/O端口和存储器地址是相同的形式,就可以直接使用与存储器相同的指令,这将会丰富对I/O端口的操作指令。 与存储器映像I/O相反,I/O映像I/O就必须为I/O端口设计专门的硬件电路,其端口地址也是独立于存储器,也有专门的输入/输出指令等其优缺点与存储器映像I/O正好相反。 4.在8086微机系统中有个外设,使用存储器映像的I/O寻址方式该外设地址为01000H。试画出其译码器的连接电路,使其译码器输出满足上述地址要求,译码器使用74LS138芯片。 答: 见图6-1

8086汇编指令手册

8086汇编指令手册 一、数据传输指令 它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据. 1. 通用数据传送指令. MOV 传送字或字节. MOVSX 先符号扩展,再传送. MOVZX 先零扩展,再传送. PUSH 把字压入堆栈. POP 把字弹出堆栈. PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈. POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈. PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈. POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈. BSWAP 交换32位寄存器里字节的顺序 XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD 先交换再累加.( 结果在第一个操作数里) XLAT 字节查表转换. —— BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即 0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL ) 2. 输入输出端口传送指令. IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} ) OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器) 输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时, 其范围是0-65535. 3. 目的地址传送指令. LEA 装入有效地址. 例: LEA DX,string ;把偏移地址存到DX. LDS 传送目标指针,把指针内容装入DS. 例: LDS SI,string ;把段地址:偏移地址存到DS:SI. LES 传送目标指针,把指针内容装入ES. 例: LES DI,string ;把段地址:偏移地址存到ES:DI. LFS 传送目标指针,把指针内容装入FS. 例: LFS DI,string ;把段地址:偏移地址存到FS:DI. LGS 传送目标指针,把指针内容装入GS. 例: LGS DI,string ;把段地址:偏移地址存到GS:DI. LSS 传送目标指针,把指针内容装入SS. 例: LSS DI,string ;把段地址:偏移地址存到SS:DI. 4. 标志传送指令. LAHF 标志寄存器传送,把标志装入AH. SAHF 标志寄存器传送,把AH内容装入标志寄存器.

汇编语言知识大全

第一章基础知识: 一.机器码:1.计算机只认识0,1两种状态。而机器码只能由0,1组成。故机器码相当难认,故产生了汇编语言。 2.其中汇编由三类指令形成:汇编指令(有机器码对应),伪指令,其他符号(编译的时候有用)。 每一总CPU都有自己的指令集;注意学习的侧重点。 二.存储器:1.存储单元中数据和指令没任何差别。 2.存储单元:Eg:128个储存单元(0~127)128byte。 线: 1.地址总线:寻址用,参数(宽度)为N根,则可以寻到2^N个内存单元。 据总线:传送数据用,参数为N根,一次可以传送N/8个存储单元。 3.控制总线:cpu对元器件的控制能力。越多控制力越强。 四.内存地址空间:1.由地址总线决定大小。 2.主板:cpu和核心器件(或接口卡)用地址总线,数据总线,控制总 线连接起来。 3.接口卡:由于cpu不能直接控制外设,需通过接口卡间接控制。

4.各类存储器芯片:RAM,BIOS(主板,各芯片)的ROM,接卡槽的 RAM CPU在操控他们的时候,把他们都当作内存来对待,把他们总的看作一个由 若干个存储单元组成的逻辑存储器,即我们所说的内存地址空间。 自己的一点理解:CPU对内存的操作是一样的,但是在cpu,内存,芯片之间的硬件本身所牵扯的线是不同的。所以一些地址的功能是对应一些芯片的。 第二章寄存器 引入:CPU中含有运算器,寄存器,控制器(由内部总线连接)。而寄存器是可以用来指令读写的部件。8086有14个寄存器(都是16位,2个存储空间)。 一.通用寄存器(ax,bx,cx,dx),16位,可以分为高低位 注意1.范围:16位的2^16-1,8位的2^8-1 2.进行数据传送或运算时要注意位数对应,否则会报错 二.字:1. 1个字==2个字节。 2. 在寄存器中的存储:0x高位字节低位字节;单元认定的是低单元 数制,16进制h,2进制b

8086汇编指令大全.

标志寄存器:9个有效位,分 6个状态寄存器和 3个控制寄存器 CF 当执行一个加法(减法使最高位产生进位(借位时 CF=1 否则 CF=0 PF 指令执行的结果低 8位有偶数个一时, CF=1 否则 CF=0 AF 当执行一个加法(减法使运算结果低 4位向高 4位有进位(借位时 AF=1 否则 AF+0 ZF 当前运算结果为零, ZF=1 否则 ZF=0 SF 符号标志位 OF 溢出标志位 DF 方向标志位 IF 中断允许位 IF=1时响应外部中断

TF 跟踪标志位 操作数:[目的操作数(OPD ,源操作数(OPS ] ;立即操作数,寄存器操作数,存储器操作数。寻址方式: 1 寄存器寻址例:INC AX ; MOV AX , BX 2 寄存器间接寻址 (寄存器只能是 BX , DI , SI , BP ; [PA=(BX 、 DI 、 SI +DS》 4 或 BP+SS》4] 3 寄存器相对寻址 4 基址变址寻址 5 相对基址变址寻址 6 直接寻址 7 立即数寻址 i. 立即数寻址立即数寻址不能用在单操作数指令中 ii. 在双操作数中,立即数寻址方式不能用于目的操作数字段 指令系统: 1 数据传送指令 mov 注意: 不允许在两个存储单元之间直接传送数据

不允许在两个段寄存器之间传送数据 不允许用立即数直接为段寄存器赋值 不影响标志位 不允许寄存器或存储单元到除 CS 外的段寄存器 2 入栈(出栈指令 PUSH (POP 注意: PUSH 操作数不能是“立即数” POP 操作数不能是段寄存器 CS 不影响标志位 先进后出 单操作符 3 交换指令 XCHG 注意:

常用8086汇编指令(彩色版)

8086/8088指令系统 一、数据传送指令 1.通用数据传送指令 MOV(Move)传送 PUSH(Push onto the stack)进栈 POP(Pop from the stack)出栈 XCHG(Exchange)交换 .MOV指令 格式为:MOV DST,SRC 执行的操作:(DST)<-(SRC) .PUSH进栈指令 格式为:PUSH SRC 执行的操作:(SP)<-(SP)-2 ((SP)+1,(SP))<-(SRC) .POP出栈指令 格式为:POP DST 执行的操作:(DST)<-((SP+1),(SP)) (SP)<-(SP)+2 .XCHG交换指令 格式为:XCHG OPR1,OPR2 执行的操作:(OPR1)<-->(OPR2) 2.累加器专用传送指令 IN(Input)输入 OUT(Output)输出 XLAT(Translate)换码 这组指令只限于使用累加器AX或AL传送信息. .IN输入指令 长格式为:IN AL,PORT(字节) IN AX,PORT(字) 执行的操作:(AL)<-(PORT)(字节) (AX)<-(PORT+1,PORT)(字) 短格式为:IN AL,DX(字节) IN AX,DX(字) 执行的操作:AL<-((DX))(字节) AX<-((DX)+1,DX)(字) .OUT输出指令 长格式为:OUT PORT,AL(字节) OUT PORT,AX(字)

执行的操作:(PORT)<-(AL)(字节) (PORT+1,PORT)<-(AX)(字) 短格式为:OUT DX,AL(字节) OUT DX,AX(字) 执行的操作:((DX))<-(AL)(字节) ((DX)+1,(DX))<-AX(字) 在IBM-PC机里,外部设备最多可有65536个I/O端口,端口(即外设的端口地址)为0000~FFFFH.其中前256个端口(0~FFH)可以直接在指令中指定,这就是长格式中的PORT,此时机器指令用二个字节表示,第二个字节就是端口号.所以用长格式时可以在指定中直接指定端口号,但只限于前256个端口.当端口号>=256时,只能使用短格式,此时,必须先把端口号放到DX寄存器中(端口号可以从0000到0FFFFH),然后再用IN或OUT指令来传送信息. .XLAT换码指令 格式为:XLAT OPR 或:XLAT 执行的操作:(AL)<-((BX)+(AL)) 3.有效地址送寄存器指令 LEA(Load effective address)有效地址送寄存器 LDS(Load DS with Pointer)指针送寄存器和DS LES(Load ES with Pointer)指针送寄存器和ES .LEA有效地址送寄存器 格式为:LEA REG,SRC 执行的操作:(REG)<-SRC 指令把源操作数的有效地址送到指定的寄存器中. .LDS指针送寄存器和DS指令 格式为:LDS REG,SRC 执行的操作:(REG)<-(SRC) (DS)<-(SRC+2) 把源操作数指定的4个相继字节送到由指令指定的寄存器及DS寄存器中.该指令常指定SI寄存器. .LES指针送寄存器和ES指令 格式为:LES REG,SRC 执行的操作:(REG)<-(SRC) (ES)<-(SRC+2) 把源操作数指定的4个相继字节送到由指令指定的寄存器及ES寄存器中.该指令常指定DI寄存器. 4.标志寄存器传送指令 LAHF(Load AH with flags)标志送AH SAHF(store AH into flags)AH送标志寄存器 PUSHF(push the flags)标志进栈 POPF(pop the flags)标志出栈 .LAHF标志送AH

8086汇编语言指令的寻址方式有哪几类

1. 8086汇编语言指令的寻址方式有哪几类?用哪一种寻址方式的指令执行速度最快? 寄存器寻址最快 7. 下面这些指令哪些是正确的?哪些是错误的?如是错误的,请说明原因。 XCHG CS , AX ;不能修改CS MOV [BX] , [1000] ;不能在两个内存单元之间直接进行数据传送 XCHG BX , IP ;不能用名字直接访问IP PUSH CS POP CS ;不允许直接修改CS值 IN BX , DX ;输入数据必须使用累加器AL或AX MOV BYTE [BX] , 1000 ;格式错误,且超范围,应为MOV word PTR [BX],1000 MOV CS , [1000];不允许直接修改CS值 20.带参数的返回指令用在什么场合?设栈顶地址为3000H,当执行RET 0006后,SP的值为多少? 利用堆栈传递参数时使用;对于近调用SP=3008H,对于远调用SP=300AH 27.设当前SS=2010H,SP=FE00H,BX=3457H,计算当前栈顶地址为多少?当执行 PUSH BX指令后,栈顶地址和栈顶2个字节的内容分别是什么? 栈顶地址:SS:SP,物理地址为:2FF00H;PUSH 完以后栈顶地址为:SS:SP=2010:FDFEH,即物理地址为:2FEFEH,内容为:57H 34H(由低地址到高地址) B P7 5. 设(DS)=3000H,(BX)=1100H,(CS)=0062H,(S1)=0002H,(31100H)=52H, (31101H)=8FH,(31162H)=6BH,(31163H)=99H,(31103H)=F6H, (32200H)=AAH,(32201H)=B6H,(32800H)=55H,(32801H)=77H,给出下列各指令执行后AX寄存器的内容: (1) MOV AX,BX (2) MOV AX,[BX] (3) MOV AX,4200H (4) MOV AX,[2800H] (5) MOV AX,1100H[BX] (6) MOV AX,[1160H+SI] 9. 分别执行下列各指令组,写出AX的内容: (1) MOV AX,93A4H NEG AX 73A4-8c5c,e689-1977 (AX)=6C5CH (2) XY DW "AB" MOV AX,XY (AX)=4142H (3) MOV AX,2B7EH MOV CX,4DB5H ADD AX,CX (AX)=7933H (4) XA DW 0BD57H MOV AX,0FBCDH AND AX,XA (AX)=B945H (5) STC MOV BX, 0B69FH MOV AX, 43A2H SBB AX, BX

8086 汇编语言中断程序设计

汇编语言程序设计实验报告 学院:计算机科学与技术专业:计算机科学与技术班级:计科131

LEA DX,FNAME MOV CX,0 ;语句1 INT 21H JC EXIT MOV FNUM,AX MOV BX,AX ;语句2 MOV CX,100 MOV AH,40H LEA DX ,BUF INT 21H MOV BX,FNUM MOV AH,3EH INT 21H EXIT: MOV AH,4CH INT 21H CODE ENDS END START 使用相应的文本编辑器建立文件LAB7.asm,内容如上所示。 2.汇编并运行此程序后,在当前目录建立的文件名是什么?其内容是什么? 1>汇编: C:\masm> masm lab7; 2>连接: C:\masm> link lab7; 3>运行: C:\masm> lab7 3.若将语句1 改为mov cx,1,则运行情况与前面会有什么区别? 4.若将语句1 改为mov cx,2,则运行结果同上会有什么不同?并简要说明此语句的作用. 5.若将语句2 改为mov bx,1,则运行结果会有什么不同?简要说明则语句的作用. 实验二:编写0 号中断的处理程序,使得在除法溢出发生时,在屏幕中间显示字符串“divide error!”,然后返回到DOS。源程序下: assume cs:code code segment start: mov ax,cs mov ds,ax

mov si,offset do mov ax,0 mov es,ax mov di,200h mov cx,offset doend-offset do ;安装中断例程cld rep movsb mov word ptr es:[0],200h mov word ptr es:[2],0 ;设置中断向量表 mov dx,0ffffh mov bx,1 ;测试一下 div bx mov ax,4c00h int 21h do:jmp short dostart db 'divide error!' dostart: mov ax,0 mov ds,ax mov si,202h mov ax,0b800h mov es,ax mov di,160*12+60 mov cx,13 s: mov al,ds:[si] mov ah,15 mov es:[di],ax inc si inc di inc di loop s mov ax,4c00h int 21h doend:nop code ends end start

微机原理第2章习题与答案

习题 一、选择题 1.8086/8088CPU内部有一个始终指示下条指令偏移地址的部件是_______。 A. SP B.CS C.IP D.BP 答案:C 2. 指令队列的作用是_________。 A.暂存操作数地址 B.暂存操作数 C.暂存指令地址 D.暂存预取指令 答案:D 3. 8086/8088下列部件中与地址形成无关的是______。 A. ALU B. 通用寄存器 C. 指针寄存器 D. 段寄存器 答案:A 4.对于8086,下列说法错误的是_______。 A.段寄存器位于BIU中 B.20位的物理地址是在EU部件中形成的 C.复位后CS的初值为FFFFH D.指令队列的长度为6个字节 答案:B 5.8086/8088中ES、DI分别属于_______。 A. EU、BIU B. EU、EU C. BIU、BIU D. BIU、EU 答案:D 6.BIU与EU工作方式的正确说法是_______。 A. 并行但不同步工作 B.同步工作 C. 各自独立工作 D. 指令队列满时异步工作,空时同步工作 答案:A 7.在执行转移、调用和返回指令时,指令队列中原有的内容_______。 A.自动清除 B.用软件清除 C.不改变 D.自动清除或用软件清除 答案:A 8.下列说法中,正确的一条是______ A. 8086/8088标志寄存器共有16位,每一位都有含义。 B. 8088/8086的数据总线都是16位。 C. 8086/8088的逻辑段不允许段的重叠和交叉 D. 8086/8088的逻辑段空间最大为64KB,实际应用中可能小于64KB。 答案:D 9.8086/8088工作于最大模式,是因为_____。 A.可以扩展存储容量 B.可以扩大I/O空间 C.可以构成多处理器系统 D.可以提高CPU主频 答案:C 10.8088/8086最大模式比最小模式在结构上至少应增加_____。 A.中断优先级控制器 B.总线控制器 C.数据驱动器 D.地址锁存器 答案:B 11.组成最大模式下的最小系统,除CPU、时钟电路,ROM,RAM及I/O接口外,至少需增加的芯片类型为______。

8086汇编指令表

8086汇编指令表

MOV MOV DST,SRC DST≠CS、IP和imm 不影响 标志位 MOV [9AF0H],AL MOVS MOVS mem, mem MOVSB/W 不影响 标志位 字符串传送ES:DI←(DS:SI) SI←(SI)(+/-)1 DI←(DI)(+/-)1 MOVS ES:BYTE PTR[DI], DS:[SI] MUL MUL r/m8 设置CF OF S Z A P无法预 测 无符号乘法:AX←AL*r/m8 MUL CL MUL r/m16 无符号乘法:DX:AX←AX*r/m16 MUL CX NEG NEG reg/mem CF OF SF ZF AF PF 求补:取反加一 0-(DST) NEG CL NOP NOP 不影响空操作NOP NOT NOT reg/mem 不影响按位取反NOT CL OR 同AND PF SF ZF CF=OF=0 逻辑或 OR AL,0FH (不变\置1) OUT OUT imm8,AL/AX/EAX 不影响 标志位 将AL/AX/EAX输出到imm8指定端 口 OUT 0FFH,AL OUT DX,AL/AX/EAX 将AL/AX/EAX输出到DX指定的端口OUT DX,AL POP POP DST DST!=imm & CS 不影响 标志位 DST←((SP)+1,(SP)) SP←(SP)+2 POP WORD Ptr [87EAH] POPF POPF 设置所有标志位从堆栈中弹出16位标志寄存器POPF PUSH PUSH SRC 8086 SRC!=imm 不影响 标志位 SP<--(SP)-2 ((SP)+1,(SP))←(SRC) [SP循 环] PUSH WORD Ptr [87EAH] PUSHF PUSHF 不影响压栈16位标志寄存器PUSHF RCL 同SHL 同ROL 带进位循环左移 RCL AL,1 RCR 同SHL 同ROL 带进位循环右移 RCR AL,1 ROL 同SHL 移一位后符号位 改变则OF=1 循环左移: ROL AL,1 ROR 同SHL 同ROL 循环右移: ROR AL,1 REP REP String operation 不影响 标志位 CX=0则终止---CX←(CX)-1 ---串操作---SI/DI增量 REPZ REPE REPE String operation AF CF OF PF SF ZF CX=0||ZF=0则终止 ---CX←(CX)-1 ---串比较---SI/DI增量 REPNZ REPNE REPNE String operation AF CF OF PF SF ZF CX=0||ZF=1则终止--- CX←(CX)-1 ---串比较---SI/DI增量 RET RET 恢复压栈标志位 POP IP[CS] 子过程返回(Near)/(Far) RET RET imm16 子过程返回后SP←(SP)+imm16 RET 08

8086汇编语言上机调试步骤

8086汇编语言上机调试步骤 1、在网络课堂-微机原理与接口技术-实验指导-汇编工具下载,下载汇编工具并解压,文件夹名为“masm”。 2、用鼠标点击“masm”文件夹。进入该文件夹后将看到 MASM.EXE, LINK.EXE , DEBUG.EXE3个文件进行复制操作。 3、用鼠标点击“我的电脑”再点击D: 盘,并在 D: 盘上建立新的“ MASM”文件夹,最后将上面的3个文件全部复制到该文件夹中。(注意实验所有的文件都放在该文件夹内) 4、用文本编辑软件UltraEdit-32、WINDOWS 中的记事本或其它的文本编辑器输入汇编语言程序, 注意在最后一行的 END输入完后要按一次回车键,保存的源 文件的扩展各一定要是“.asm”如: example.asm 。(建议用记事本输入源程序,另存时,保持类型选择“所有文件”如图所示) 5、进入MS-DOS方式 ( 从开始>程序>附件>命令提示符) 或者(从程序 > 运行输入“cmd”回车,进入MS-DOS环境。

6、进入D:>MASM文件夹 7、显示MASM文件夹内所有文件“dir”命令 8、在 DOS 提示符下进行汇编、连接、动态调试等操作。 例如: 对源文件 example.asm 进行的操作

D:\MASM\MASM example.asm;汇编源程序操作 D:\MASM\LINK example.dbj;连接并生成扩展名为 .EXE 的可执行文件 D:\MASM\DEBUG example.exe;对可执行文件进行调试 9、要求掌握的调试命令(在 DEBUG 中使用的命令) a: U - 反汇编命令 用法: -U 代码段地址:起始偏移地址如:-U CS:100 b: D - 显示内存中的数据命令 用法: -D 数据段地址:存放数据的偏移地址如:-D DS:00 20 c: T - 单步执行程序命令 用法: -T 要执行的指令条数如:-T 3 d: G - 连续执行程序命令 用法: -G=代码段地址:指令的起始偏移地址指令的结束偏移地址如: -G=CS:100 106 注意: 结束地址一定要是操作码的所在地址 e: R - 查看和修改寄存器数据命令 用法: -R 回车如:-R AX f: F - 对内存单元填充数据命令 用法: -F 数据段地址:偏移首地址偏移未地址填入的数据 如: -F DS:100 120 ff g: Q - 退出”DEBUG“应用程序命令 10、应用例子 ;二进制到BCD转换(a.asm) ;将给定的一个二进制数,转换成二十进制(BCD)码 DATA SEGMENT RESULT DB 3 DUP(?) DATA ENDS CODE SEGMENT

微机原理习题-第3章

3.18086CPU有多少根数据线和地址线?它能寻址多少内存地址单元和I/O端口?8088又有多少根数据线 和地址线?为什么要设计8088CPU? 3.28086CPU内部按功能可分为哪两大部分?它们各自的主要功能是什么?8086与8088CPU中的指令队列 缓冲器有何区别?在微处理器中设置指令队列缓冲器有什么作用? 3.38086CPU内部的总线接口单元(BIU)由哪些功能部件组成?它们的基本操作原理是什么? 3.4什么叫微处理器的并行操作方式?为什么说8086CPU具有并行操作的功能?在什么情况下8086的执行 单元(EU)才需要等待总线接口单元(BIU)提取指令? 3.5逻辑地址和物理地址有何区别?为什么8086微处理器要引入“段加偏移”的技术思想?“段加偏移” 的基本含义是什么?试举例说明。 3.6段地址和段起始地址相同吗?两者是什么关系?8086的段起始地址就是段基址吗?它是怎样获得的? 3.7在8086微计算机中,若段寄存器中装入如下数值,试写出每个段的起始地址和结束地址。(假设段的最 大长度为64K) (1)1000H (2)1234H (3)E000H (4)AB00H 3.8已知8088微处理器组成的系统中,对于下列CS:IP组合,计算出要执行的下条指令的存储器地址。 (1)CS=1000H和IP=2000H (2)CS=2400H和IP=1A00H (3)CS=1A00H和IP=B000H (4)CS=3456H和IP=ABCDH 3.9已知计算机中两个16位数算术运算的结果为0E91BH,求PF = ?,SF = ?,ZF = ? 3.10一个基本的总线周期由几个状态组成?微处理器在什么情况下才执行总线周期?在什么情况下需要插 入等待状态? 3.11什么叫做非规则字,微处理器对非规则字是怎样操作的?字节、字在存储单元的存放顺序与存储单元的 地址有什么关系?字符在存储单元中以什么形式存放,举例说明? 3.128086对1MB的存储空间是如何按高位库和低位库来进行选择和访问的?用什么控制信号来实现对两个 库的选择? 3.13堆栈的深度由哪个寄存器确定?为什么说一个堆栈的深度最大为64KB?在执行一条入栈或出栈指令 时,栈顶地址将如何变化? 3.148086/8088CPU对(RESET)复位信号的复位脉冲宽度有何要求?复位后内部寄存器的状态如何? DT/信号起什么作用?它在什么情况下被浮置为高3.15ALE信号起什么作用?它在使用时能否被浮空?R 阻状态? 3.168086/8088CPU的哪些引脚采用了分时复用技术?哪些引脚具有两种功能?

8086汇编语言程序设计实验指导书.

汇编语言上机实验指导书 一、概述 上机实验总学时为16学时,其中综合性实验为2学时。实验共有6项暂定为8次,每次2学时。 1.实验辅导的主要内容 实验辅导的内容包括每个实验的实验目的;实验内容;对实验的算法及实验方法的必要说明;实验准备;实验步骤;实验报告要求;实验程序及参考框图。开始的实验介绍较细,后面的实验简要介绍。 2.实验的软硬件要求 关于汇编语言程序设计的硬件要求不高,有IBM-PC/XT即可,但应有彩色显示器以便进行图形实验。软件方面应有MASM.EXE5.0版(包括LINK.EXE),与MS-DOS版本配套的DEBUG程序和EDIT.EXE编辑软件(其它编辑软件也可以)。 3.加强实践能力的培养 实验目的不光是为了验证书本理论,更重要的是对实践能力的培养。其中包括: 实际调试程序的能力,例如修改程序参数的能力,查看结果的能力,设置断点调试运行的能力等; 开发汇编语言应用程序的能力,例如应用有关汇编软件的能力,进行系统调用和BIOS功能调用的能力,进行模块程序设计的能力等。 对某一问题用不同的程序实现的能力,例如我们为每个实验提供了参考程序(或程序段),目的是让每个实验者参照样板程序将实验成功地实现,在掌握其方法后,自己改变程序或自己编制程序加以实现。 实验一汇编语言运行环境及方法、简单程序设计(2学时、验证性) 1.实验目的: (1) 熟悉汇编语言运行环境和方法 (2)了解如何使用汇编语言编制程序 (3) 熟悉DEBUG有关命令的使用方法 (4) 利用DEBUG掌握有关指令的功能 (5) 利用DEBUG运行简单的程序段 2.实验内容 (1)学会输入、编辑汇编语言程序 (2)学会对汇编语言程序进行汇编、连接和运行 (3)进入和退出DEBUG程序 (4)学会DEBUG中的D命令、E命令、R命令、T命令、A命令、G命令等的使用。对于U命令、N命令、W命令等,也应试一下。 3.实验准备 (1)仔细阅读有关汇编语言环境的内容,事先准备好使用的例子。 (2)准备好源程序清单、设计好调试步骤、测试方法、对运行结果的分析。 (3) 编写一个程序:比较2个字符串所含的字符是否相同。若相同则显示’Match.’,否则显示’No match!’;(1)仔细阅读有关DEBUG 命令的内容,对有关命令,都要事先准备好使用的例子。 4.实验步骤 (1)在DOS提示符下,进入MASM目录。 (2)在MASM目录下启动EDIT编辑程序,输入源程序,并对其进行汇编、连接和运行。 ①调用edit输入、编辑源程序并保存在指定的目录中;例:edit abc.asm ②用汇编程序masm对源程序汇编产生目标文件obj。例:masm abc 不断修改错误,直至汇编通过为止。 ③用连接程序link产生执行文件exe.例:link abc ④执行程序 可直接从DOS执行程序,即在DOS环境中,输入文件名即可。 (3)详细记录每一步所用的命令,以及查看结果的方法和具体结果。 5.实验报告要求 (1)源程序清单。 (2) 如何启动和退出EDIT程序。 (3) 如何对源程序进行汇编及编辑。

8086指令系统之算术运算类指令

8086 指令系统之算术运算类指令 2007-04-17 07:51 1 加法指令 1.1 加法指令 ADD ADD reg,imm/reg/mem ;reg←reg+imm/reg/mem ADD mem,imm/reg ;mem←mem+imm/reg 2.17a: 例 2.17a:加法运算 mov add mov mov add add al,0fbh ;al=0fbh al,07h ;al=02h word ptr[200h],4652h ;[200h]=4652h bx,1feh ;bx=1feh al,bl ;al=00h word ptr[bx+2],0f0f0h ;[200h]=3742h
ADD 指令按照状态标志的定义相应设置这些标志的 0 或 1 状态。例如 在 07+FBH→02H 运算后:标志为 OF=0、SF=0、ZF=0、AF=1、PF=0、CF=1;用调 试程序单步执行后,上述标志状态依次为 NV、PL、NZ、AC、PO、CY。 同样进行 4652h+f0f0h→3742H 运算后,标志为 OF=0、SF=0、ZF=0、 AF=0、PF=1、CF=1;调试程序依次显示为 NV、PL、NZ、NA、PE、CY。注意,PF 仅反映低 8 位中“1”的个数,AF 只反映 D3 对 D4 位是否有进位。 1.2 带进位加法指令 ADC ADC reg,imm/reg/mem ;reg←reg+imm/reg/mem+CF ADC mem,imm/reg ;mem←mem+imm/reg+CF ;mem←mem+imm/reg+CF 加法运算外, CF, ADC 指令除完成 ADD 加法运算外,还要加进位 CF,其用法及对状态标志的 指令一样。 影响也与 ADD 指令一样。ADC 指令主要用于与 ADD 指令相结合实现多精度 数相加。 数相加。 2.17b: 例 2.17b:无符号双字加法运算 mov ax,4652h ;ax=4652h add ax,0f0f0h ;ax=3742h,CF=1 mov dx,0234h ;dx=0234h adc dx,0f0f0h ;dx=f325h,CF=0 上述程序段完成 DX.AX = 0234 4652H + F0F0 F0F0H = F325 3742H。 1.3 增量指令 INC INC reg/mem ;reg/mem←reg/mem+1 增量)。 INC 指令对操作数加 1(增量)。

汇编语言程序的设计实验篇(emu8086)

1.汇编语言程序设计实验篇 1.1.汇编系统软件简介 Emu8086-Microprocessor Emulator是集源代码编辑器、汇编/反汇编工具以及debug的模拟器。它能模拟一台"虚拟"的电脑运行程序,拥有独立的“硬件”,避免访问真实硬件。该软件兼容Intel的下一代处理器,包括PentiumII、Pentium4。利用该软件提供的调试工具,能够单步跟踪程序,观察程序执行过程中寄存器、标志位、堆栈和存单元的容。 1.1.1创建程序 https://www.360docs.net/doc/5119089613.html, TEMPLATE程序 本章与指令相关的实验都是用COM TEMPLATE类型的程序完成的。打开emu8086,在“welcome…”对话框中,单击按钮,创建文件。 在“choose code template”对话框中,选择“COM template-simple and tiny executable file format, pure machine code.”后,单击按钮。

在如所示的编辑界面中,在“;add your code here”部分输入相应的指令,第一条指令默认的偏移地址为100h。 输入全部指令后,单击按钮,保存相应的程序段。 2.EXE TEMPLATE程序 本章与DOS功能调用和汇编源程序相关的实验都是用EXE TEMPLATE程序完成的。打开emu8086,在“welcome…”对话框中,单击按钮,创建文件。

在“choose code template”对话框中,选择“EXE template-advanced executable file.header: relocation, checksum.”后,单击按钮。 在如图所示的编辑界面中,已经可以给出了源程序的框架,包含数据段、堆栈段和代码段的定义以及必要的功能调用等,在“add your data here”和“;add your code here”部分可以分别输入相应的变量定义和指令。

汇编语言指令分类详解

3.1 8086/8088寻址方式 计算机中的指令由操作码字段和操作数字段组成。 操作码:指计算机所要执行的操作,或称为指出操作类型,是一种助记符。 操作数:指在指令执行操作的过程中所需要的操作数。该字段除可以是操作数本身外,也可以是操作数地址或是地址的一部分,还可以是指向操作数地址的指针或其它有关操作数的信息。 寻址方式就是指令中用于说明操作数所在地址的方法,或者说是寻找操作数有效地址的方法。8086/8088的基本寻址方式有六种。 1.立即寻址 所提供的操作数直接包含在指令中。它紧跟在 操作码的后面,与操作码一起放在代码段区域中。 如图所示。 例如:MOV AX,3000H 立即数可以是8位的,也可以是16位的。若 是16位的,则存储时低位在前,高位在后。 立即寻址主要用来给寄存器或存储器赋初值。 2.直接寻址 操作数地址的16位偏移量直接包含在指令中。它与操作码—起存放在代码段区域,操作数一般在数据段区域中,它的地址为数据段寄存器DS加上这16位地址偏移量。如图2-2所示。 例如:MOV AX,DS:[2000H];

图2-2 (对DS来讲可以省略成MOV AX,[2000H],系统默认为数据段)这种寻址方法是以数据段的地址为基础,可在多达64KB的范围内寻找操作数。 8086/8088中允许段超越,即还允许操作数在以代码段、堆栈段或附加段为基准的区域中。此时只要在指令中指明是段超越的,则16位地址偏移量可以与CS或SS或ES相加,作为操作数的地址。 MOV AX,[2000H] ;数据段 MOV BX,ES:[3000H] ;段超越,操作数在附加段 即绝对地址=(ES)*16+3000H 3.寄存器寻址 操作数包含在CPU的内部寄存器中,如寄存器AX、BX、CX、DX等。 例如:MOV DS,AX MOV AL,BH 4.寄存器间接寻址 操作数是在存储器中,但是,操作数地址的16位偏移量包含在以下四个寄存器SI、DI、BP、BX之一中。可以 分成两种情况: (1)以SI、DI、BX间接寻址,则 通常操作数在现行数据段区域 中,即数据段寄存器(DS)*16 加上SI、DI、BX中的16位偏移 量,为操作数的地址, 例如:MOV AX,[SI] 操作数地址是:(DS)*16+(SI) (2)以寄存器BP间接寻址,则操作数在堆栈段区域中。即堆栈段寄存器(SS)*16与BP的内容相加作为操作数的地址, 例如:MOV AX,[BP] 操作数地址是:(SS)*16+(BP)若在指令中规定是段超越的,则BP的内容也可以与其它的段寄存器相加,形成操作数地址。 例如:MOV AX,DS:[BP] 操作数地址是:(DS)*16+(BP)5.变址寻址 由指定的寄存器内容,加上指令中给出的8位或16位偏移量(当然要由一个

相关文档
最新文档