利用超连续谱激光实现自由空间光通信

利用超连续谱激光实现自由空间光通信

黄龙,冯国英,廖宇

(四川大学电子信息学院激光微纳工程研究所,四川成都610064)

摘要:超连续谱光源具有丰富的带宽,是信号载体的优秀候选者。设计并搭建了利用超连续谱光源的空间无线光通信系统,讨论了超连续谱产生的条件以及输出光斑直径不同位置下的光谱。采用了电光调制方式对超连续谱光源进行调制,通过比较输入与输出的数字方波信号证明了电光调制进行超连续谱空间光通信的可行性。成功利用该系统演示了对原始图像信号的采集和显示,最后通过对接收端信号的整形放大恢复出了原始信号,实现了图像信号在4m 范围内的传输。实验结果表明:将超连续谱作为光信号载体,在空间大气信道条件下可以实现对图像信号进行无线传输。

关键词:超连续谱激光;自由空间光通信;电光调制;非线性光学

中图分类号:TN929.1文献标志码:A 文章编号:1007-2276(2015)12-3530-05

Free space optical communication based on supercontinuum

laser source

Huang Long,Feng Guoying,Liao Yu

(Institute of Laser &Micro/Nano Engineering,College of Electronics &Information Engineering,Sichuan University,

Chengdu 610064,China)

Abstract:Supercontinuum laser source is an excellent candidate as signal carrier because of its wealth of bandwidth.Free space optical communication system based on supercontinuum laser source was designed and established.The conditions of supercontinuum generation and the out spectrum at different locations of laser beam spot were discussed.The supercontinuum laser source was modulated by electro-optic modulator.And the feasibility of free space optical communication based on supercontinuum laser source which used electro-optic modulator was proved by comparing the input and output of digital square wave signals.Besides,the image signals collection and display were successfully demonstrated.Finally,the original signals were recovered by the shaping amplificaton of receiving end signals,the image signals transmission in the range of 4m was successfully realized.According to the experiments mentioned above,supercontinuum laser source under the condition of the free space can realize transmission of wireless video signals.

Key words:supercontinuum laser source;

free space optical communication;electro-optic modulation;

nonlinear optics

收稿日期:2015-04-09;修订日期:2015-05-11基金项目:四川大学-中国工程物理研究协同创新联合基金(0020505419507)

作者简介:黄龙(1989-),男,硕士生,主要从事光通信和激光通信方面的研究三Email:h249139571@https://www.360docs.net/doc/513744726.html,

导师简介:冯国英(1969-),女,教授,博士生导师,博士,主要从事固体激光技术和光通信方面的研究三

Email:guoing_feng@https://www.360docs.net/doc/513744726.html, 第44卷第12期

红外与激光工程2015年12月

Vol.44No.12Infrared and Laser Engineering Dec.2015

激光通信的应用

激光通信的应用 1. 激光的定义:由受激发射的光放大产生的辐射。 2. 激光通信: 定义1:利用激光进行信息传递的通信。 定义2:利用激光传输信息的通信方式。按传输媒介的不同,可分为大气激光通信和光纤通信。 3. 激光通信的原理: 无线激光通信设备的激光通信终端每一侧分别包括专用望远物镜(Telescope)、激光收发器部分、线路接口、电源、机械支架,部分厂商的设备还包括伺服、监控、远程管理等部分。 激光是一种光波,也具有电磁波的性质。然而。激光与一般的无线电波又有明显的不同,激光的频率为几亿兆周,是微波(超高频电磁波)频率的10万倍以上。由波长 与波速C及频率 的关系式 可知,激光的波长非常短,所以其波动性远比无线电波差。相反,激光却具有奇特的粒 子性,因而使它在军事通信中成为引人注目的“后起之秀”。 激光通信与无线电通信基本相似,在发送端用激光器发出的激光作为载波。话音信号通过发话器变为电信号送入调制器,调制器控制载波的某个参数(频率、振幅或相位)使其按话音的变化把话音信号寄载在激光光波上,通过发射望远镜(也称发射天线)发送出去在媒质中传播。在接收端,接收望远镜(也称接收天线)将激光信号按发送端的逆方向转化为话音信号。 根据传输媒质的不同,激光通信可分为宇宙通信(激光在大气层以外的宇宙空间传播)、大气通信(激光在大气层以内传播)、水下通信(激光在水下传播)以及光纤通信(激光在光导纤维内传播)。四.激光通信的优缺点: 相比于微波通信等其他几种接入方式,无线激光通信主要优势包括: 1.无须授权执照 无线激光通信工作频段在365~326 THz(目前提供无线激光通信设备的厂商使用的光波长范围多在820nm~920nm),设备间无射频信号干扰,所以无需申请频率使用许可证。 2.安全保密 激光的直线定向传播方式使它的发射光束窄,方向性好, 激光光束的发散角通常都在毫弧度,甚至微弧度量级,因此具有数据传递的保密性,除非其通信链路被截断,否则数据不易外泄。

自由空间光通信系统的光学天线的制作方法

本技术新型公开了一种自由空间光通信系统的光学天线,属于光通信技术领域。该光学天线包括可360°旋转的设置于一伸缩杆顶部的天线传输头外壳,该伸缩杆通过可沿底座表面旋转的转轴链接于底座表面;其中,天线传输头外壳内部远离伸缩杆顶部一侧依次设有消杂光光阑、瞄准器、副镜开孔的卡塞格伦天线、预准直装置和激光发射接受装置;所述激光发射接受装置包括半导体激光器和接收器;瞄准器包括三个呈中心对称的探测器,该探测器内设有激光光强感应器。本技术新型光学天线的激光束采用空间转直角坐标变换初步对准后,利用以探测器形成的等边三角形的三个顶点为基础,逐一进行对准的方法进行精确对准,可以针对任何变形和信息丢失的波形。 技术要求

1.一种自由空间光通信系统的光学天线,包括天线传输头外壳(1),其特征在于:天线传输头外壳(1)可360°旋转的设置于一伸缩杆(2)顶部,该伸缩杆(2)通过可沿底座(4)表面旋转的转轴(3)链接于底座(4)表面;所述天线传输头外壳(1)内部远离伸缩杆(2)顶部一侧依次设有消杂光光阑(7)、瞄准器(8)、卡塞格伦天线(9)、预准直装置(10)和激光发射接受装置(11);所述激光发射接受装置(11)包括半导体激光器(11-1),半导体激光器(11-1)靠近预准直装置(10)一侧底部设有接收器(11-3),半导体激光器(11-1)与接收器(11-3)之间设有半透半反玻璃(11-2),接收器(11-3)接收到的激光信息输入电脑进行解码分析;所述卡塞格伦天线(9)包括主镜(9-1)和副镜(9-2),其中副镜(9-2)开孔;所述瞄准器(8)包括三个呈中心对称的探测器(8-1),该探测器(8-1)由可在天线传输头外壳(1)径向移动的支撑柱(8-2)和支撑柱(8-2)底部的激光光强感应器(8-3)构成,整个光学天线系统的控制电路设于各部件内部由电脑控制。 2.根据权利要求1所述的一种自由空间光通信系统的光学天线,其特征在于:所述天线传输头外壳(1)前端设有防尘玻璃(6),前端顶部设有遮光檐(5)。 3.根据权利要求1所述的一种自由空间光通信系统的光学天线,其特征在于:所述消杂光光阑(7)由若干内孔径依次减小的遮光圈构成。 技术说明书 一种自由空间光通信系统的光学天线 技术领域 本技术新型属于光通信技术领域,具体是一种自由空间光通信系统的光学天线。 背景技术

自由空间光通信的现状与发展趋势

自由空间光通信的现状与发展趋势 自由空间光通信的现状与发展趋势(一) 1 前言 20世纪90年代后期,随着全光接入网的发展,人们对传输速率的要求越来越高;随着通信范围的延伸,人们对快捷通信链路建立的兴趣进一步提高。自由空间光通信技术因其具有独到的优势,在固定无线宽带技术中,能为宽带接入的快速部署提供一种灵活的解决方案,又得到了极大的关注。其应用范围已从军用和航天逐渐迈入民用领域,其技术本身也在不断的完善中。 自由空间光通信可在以下一些范围发挥重要作用。1)可以作为光纤通信和微波通信冗余链路的备份;2)可以应用于移动通信基站间的互连,无线基站数据回传;3)应用于城域网的建设以及最后一公里接入;4)在技术上或经济上不宜敷设光缆的地区,在不宜采用或限制使用无线电通信的地方;5)在军事设施或其他要害部门需要严格保密的场合6)在企业内部网互连和数据传输。 2 自由空间光通信的基本原理及其特点

自由空间光通信系统(FSO)是以大气作为传输媒质来进行光信号的传送的。只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,通信就可以进行。 系统所用的基本技术是光电转换。在点对点传输的情况下,每一端都设有光发射机和光接收机,可以实现全双工的通信。光发射机的光源受到电信号的调制,并通过作为天线的光学望远镜,将光信号经过大气信道传送到接收端的望远镜。高灵敏度的光接收机,将望远镜收到的光信号再转换成电信号。由于大气空间对不同光波长信号的透过率有较大的差别,可以选用透过率较好的波段窗口。光的无线系统通常使用850nm或1550nm的工作波长。同时考虑到1500nm的光波对于雾有更强的穿透能力,而且人眼更安全,所以1550nm波长的FSO系统具有更广阔的使用前景。 自由空间光通信与微波技术相比,它具有调制速率高、频带宽、不占用频谱资源等特点;与有线和光纤通信相比,它具有机动灵活、对市政建设影响较小、运行成本低、易于推广等优点。自由空间光通信可以在一定程度弥补光纤和微波的不足。它的容量与光纤相近,但价格却低得多。它可以直接架设在屋顶,由空中传送。既不需申请频率执照,也没有敷设管道挖掘马路的问题。使用点对点的系统,在确定发收两点之间视线不受阻挡的通道之后,一般可在数小时之内安装完

自由空间光通信技术的发展现状与未来趋势

自由空间光通信技术的 发展现状与未来趋势 易成林 (华中科技大学武昌分校,湖北武汉430070) 摘 要:自由空间光通信(Free2Space Optical Columniation,简称FSO)是一种通过激光在大气信道中实现点对点、点对多点或多点对多点间语音、数据、图像信息的双向通信技术,介绍了自由空间光通信的国内外研究现状,分析了应用现状和未来发展趋势。 关键词:自由空间;光通信技术;现状;趋势 中图分类号:F623 文献标识码:A 文章编号:167223198(2007)0920263202 1 自由空间光通信的研究现状 1.1 基于光电探测器直接耦合的FSO系统 早在30多年前,自由空间光通信曾掀起了研究的热潮,但当时的器件技术、系统技术和大气信道光传输特性本身的不稳定性等诸多客观因素却阻碍了它的进一步发展。与此同时,随着光纤制作技术、半导体器件技术、光通信系统技术的不断完善和成熟,光纤通信在20世纪80年代掀起了热潮,自由空间光通信一度陷入低谷。然而,随着骨干网的基本建成以及最后一公里问题的出现,以及近年来大功率半导体激光器技术、自适应变焦技术、光学天线的设计制作及安装校准技术的发展和成熟,自由空间光通信的研究重新得到重视。 在国外,FSO系统主要在美英等经济和技术发达的国家生产和使用。到目前为止,FSO己被多家电信运营商应用于商业服务网络,比较典型的有Terabeam和Airfiber公司。在悉尼奥运会上,Terabeam公司成功地使用FSO设备进行图像传送,并在西雅图的四季饭店成功地实现了利用FSO设备向客户提供10OMb/s的数据连接。该公司还计划4年内在全美建设100个FSO城市网络。而Airfiber公司则在美国波士顿地区将FSO通信网与光纤网(SON ET)通过光节点连接在一起,完成了该地区整个光网络的建设。 目前商用的FSO系统(见图1)通常采用光源直接输出、光电探测器直接耦合的方式,这种系统有以下几点缺点: (l)半导体激光器出射光束在水平方向和垂直方向的发散角不同,且出射光斑较粗,因此我们需要先将出射光束整形为圆高斯光束再准直扩束后发射,这样发射端的光学系统就较为复杂,体积也会相应增大。 (2)在接收端,光斑经光学天线会聚之后直接送入PD 转化为电信号。通常,我们需要提供点到点的,双向的通信系统,这样,FSO系统的每个终端都包括了激光器,探测器,光学系统,电子元器件和其中有源器件所需要的电源。这种系统的体积通常比较大,重量大,成本也比较高。从FSO 系统终端的内部结构图中可以看出,完成一个简单的点到点的链路需要6个OE转换单元。随着人们对带宽的需求越来越高,PD的成本也越来越高,6个O E转换单元大大增加了成本闭。 (3 )FSO终端设备一般安装于楼顶,如果终端中含有大量的有源设备,会给我们的安装带来了很多不方便。 (4)系统的可扩展性很小。如果用户所需要的带宽增加,那么封装在一起的整个FSO系统终端都需要被新的终端取代,安装新设备的过程需要再次对准,整个升级过程所需要的时间很长,给人们带来巨大的损失。 图1 基于PD直接接受的FSO系统 1.2 基于光纤耦合技术的FSO系统 光纤输出、光纤输入的自由空间光通信系统(见图2 ),激光器输出的高斯光束耦合至光纤再经准直出射,传输一定距离后,光束通过合适的聚焦光学系统聚焦在光纤纤芯上,沿着光纤传输后经PD接收还原信号。这样我们通过在发射和接收端都采用光纤连接的方式,只需要在楼顶放置光学天线系统,而将其他的控制系统通过光纤放置于室内就可以实现点到点的连接,整个系统结构简单,易于安装。 图2 基于光纤的FSO系统 这种新型的FSO系统具有以下优点:①减少了不必要的E一O转换,一条链路现在只需要2个O E接口即可,大大降低了成本。②光学系统较为简单,光纤出射的光束一般为圆高斯光,不需要整形,简化了光学系统,减小了体积,易于安装。③易于升级及维护,当用户的带宽增加时,我们只需要对放置在室内的系统进行升级即可,免去了复杂繁琐的对准过程。④基于光纤耦合的空间光通信系统能够很 — 3 6 2 —

激光无线通信技术

激光无线通信技术 激光通信是一种以光波作为“载波”,大气、海水或太空作为传输介质的通信方式,与利用电磁波作载波的通信原理一样,只是承载信号的载波是激光,其波长更短,频率更高。与传统无线通信和有线通信相对应的,激光通信也形成了无线通信及有线通信,军事通信所关注的主要是激光无线通信。 激光无线通信具有电磁兼容性好、抗电磁干扰能力强、重量轻、功耗和体积小、保密性好等特点。保密性好的原因在于,一:激光具有高度定向性,发射波束非常短,通常发散角小于1弧度,在毫弧度级,二:信道速率高,能在短时间内大量发送数据,从而减少通信持续时间。波束窄使得抗干扰抗截获能力强,通信时间短的特点使得抗侦测、防窃听的能力强。另外,及激光通信的传输带宽宽,比较适合侦察图像等的实时传输。

美国航天局(NASA )在2014年6月6日宣布,该机构5日利用激光束在3.5秒内把一段时长37秒的高清视频从国际空间站传送回地面,成功完成了一项“可能根本性改变未来太空通信的技术演示”,也预示着太空宽带时代的到来。这项实验的成功表明激光传输技术是可行的,完全可以作为下一步进行更高速率传输和实用性通信的技术基础。

应用及前景展望 1、用于提升星间通信速率 卫星微波通信的极限通信速率在2Gbps左右,近年来通信速率提升困难。而激光通信技术可以轻松实现10Gbps以上的通信速率,采用复用的手段甚至能获得Tbps 以上的通信速率。如此高的通信速率,使得太空通信如同从拨号上网时代升级到了宽带上网时代。 2、用于能源成本较高的空间通信 由于激光通信的光束发散角很小,大大降低了通信过程中信息被截取的可能性,目前还没有截获空间激光通信信息的可行手段,这使激光通信具有高度的保密性。而能量的高度集中,使得落在接收机望远镜天线上的功率密度高,发射机的发射功率可大大降低,功耗相对较低。这对应用于能源成本高昂的空间通信来说也是非常适用的。 3、用于水下通信 此外,激光在水下通信中也有很大的应用空间,电磁波在水中的衰减程度较大,传统的无线电波想要穿透海水,必须使用频率极低的波段,携带的信息量十分有限,传输时间长。然而,研究发现,激光中存在一个频段——光波波长为450~570nm 的蓝绿光,海水对其吸收损耗较小,它通过海水时,不仅穿透能力强,而且方向性极好。因此,激光通信也是深海中传输信息的重要方式之一,可以用于对潜通信、探潜探雷、测深等领域。 限制因素: 但空间激光通信中的激光是在自由空间中传播,因此存在巨大的传输损耗。空间激光通信,尤其是星地间的通信,最大的限制就是经过大气层时受到湍流,及其他天气、环境因素的影响。 其次,空间激光通信链路的距离从千公裡到数亿公里不等,并且链路之间不可能有中继放大,这与地面光纤通信千公裡的链路距离相比实现起来难度大得多。比如火星与地球之间的链路,由于距离太过遥远,激光的几何损耗极大,点对点的瞄准也更为困难。

自由空间光通信及可见光通信市场分析

自由空间光通信及可见光通信市场分析 什么是自由空间光通信? 无线通信经常面临带宽限制和低速数据传输等难题。但是,作为航空和国防领域有名的无线技术,自由空间光通信(FSO)则消除了传统无线通信系统所面临的诸多问题。该技术目前适用于卫星连接、深空探测器、偏远地区通信、无人机(UAVs)以及飞行器等。自由空间光通信适用于视线内的点对点通信。它使用不同的调制技术,如振幅与相位调制,用于将输入信息转化为数字信号,进而实现进一步传输。自由空间光通信的最新趋势受限于旨在改善通信传输数据流程和质量的先进编码方案的引入和发展。 自由空间光通信:市场推动力和限制因素 自由空间光通信由于其提供的诸多好处而越来越受欢迎,包括安装成本低、带宽利用率高、数据传输速度快、连接性提高等。此外,自由空间光学技术也适用于军事和商业应用,如电信。自由空间光通信的工作原理与光纤技术相同,只不过它使用空气作为传输信息的媒介,而不是光纤光缆。与此同时,自由空间光学通信的设置只需几个小时的安装。这些都是影响自由空间光通信市场发展的重要因素。然而,自由空间光学通信市场面临着一些挑战。例如,在两点之间部署自由空间光学通信设置之前,两者之间的视线内必须没有任何障碍物,如树木或建筑物等。此外,由于雾和大气湍流等因素,自由空间传播可能会受到干扰。由于光波的吸收、散射和反射,雾的存在会严重阻碍光波的传播特性。大气湍流可以引起闪烁,从而进一步增加比特误码率。这也是制约自由空间光通信市场发展的一些因素。 自由空间光通信:市场细分 自由空间光通信市场可以根据组件、数据类型、调制类型、应用、终端用户和区域进行细分。从组件方面来看,可以将市场细分为发射机、接收器、收发器、调制器、解调器等。发射器和接收器用于单向通信,而收发器则用于双向通信。使用自由空间光通信传输的不同类型的数据包括图像、声音以及视频等。从调制方面来看,自由空间光通信市场可以分割为振幅、频率、相位和偏振。此外,从应用方面来看,可以将市场细分为航空航天和国防、电信、医疗保健、灾害管理、存储区域网络(SAN) 等。从终端用户方面来看,可以将市场细分为企业和商业

自由空间光通信技术的发展现状与未来趋势

自由空间光通信技术的发展现状与未来趋势 自由空间光通信(Free-Space Optical Columniation,简称FSO)是一种通过激光在大气信道中实现点对点、点对多点或多点对多点间语音、数据、图像信息的双向通信技术,介绍了自由空间光通信的国内外研究现状,分析了应用现状和未来发展趋势。 标签:自由空间;光通信技术;现状;趋势 1 自由空间光通信的研究现状 1.1 基于光电探测器直接耦合的FSO系统 早在30多年前,自由空间光通信曾掀起了研究的热潮,但当时的器件技术、系统技术和大气信道光传输特性本身的不稳定性等诸多客观因素却阻碍了它的进一步发展。与此同时,随着光纤制作技术、半导体器件技术、光通信系统技术的不断完善和成熟,光纤通信在20世纪80年代掀起了热潮,自由空间光通信一度陷入低谷。然而,随着骨干网的基本建成以及最后一公里问题的出现,以及近年来大功率半导体激光器技术、自适应变焦技术、光学天线的设计制作及安装校准技术的发展和成熟,自由空间光通信的研究重新得到重视。 在国外,FSO系统主要在美英等经济和技术发达的国家生产和使用。到目前为止,FSO己被多家电信运营商应用于商业服务网络,比较典型的有Terabeam 和Airfiber公司。在悉尼奥运会上,Terabeam公司成功地使用FSO设备进行图像传送,并在西雅图的四季饭店成功地实现了利用FSO设备向客户提供10OMb/s 的数据连接。该公司还计划4年内在全美建设100个FSO城市网络。而Airfiber 公司则在美国波士顿地区将FSO通信网与光纤网(SONET)通过光节点连接在一起,完成了该地区整个光网络的建设。 目前商用的FSO系统(见图1)通常采用光源直接输出、光电探测器直接耦合的方式,这种系统有以下几点缺点: (l)半导体激光器出射光束在水平方向和垂直方向的发散角不同,且出射光斑较粗,因此我们需要先将出射光束整形为圆高斯光束再准直扩束后发射,这样发射端的光学系统就较为复杂,体积也会相应增大。 (2)在接收端,光斑经光学天线会聚之后直接送入PD转化为电信号。通常,我们需要提供点到点的,双向的通信系统,这样,FSO系统的每个终端都包括了激光器,探测器,光学系统,电子元器件和其中有源器件所需要的电源。这种系统的体积通常比较大,重量大,成本也比较高。从FSO系统终端的内部结构图中可以看出,完成一个简单的点到点的链路需要6个OE转换单元。随着人们对带宽的需求越来越高,PD的成本也越来越高,6个OE转换单元大大增加了成本闭。

无线激光通信调制方式性能分析

万方数据

无线激光通信调制方式性能分析 作者:赵婷, 陈宇, 宋宇, 闫志强, 张景萃, 齐雷 作者单位:长春理工大学电信学院,长春,130022 刊名: 科技资讯 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2011(16) 参考文献(4条) 1.何攀;李晓毅;侯倩基于LED的紫外光通信调制方式研究[期刊论文]-光通信技术 2010(4) 2.毛昕蓉;李荣无线光通信调制技术的性能分析[期刊论文]-通信技术 2009(42) 3.柯熙政;席晓莉无线激光通信概论 2004 4.David JT;David R Wisely lan Neild et OPtieal wlreless:the story so far 1998 本文读者也读过(5条) 1.柯熙政.陈锦妮.KE Xi-zheng.CHEN Jin-ni无线激光通信类脉冲位置调制性能比较[期刊论文]-激光技术2012,36(1) 2.赵丽丽.王挺峰.孙文涛.郭劲无线激光通信协议的设计[期刊论文]-中国光学2011,04(6) 3.卫斌.杨乾远.徐林.朱宏韬.WEI Bin.YANG Qian-yuan.XU Lin.ZHU Hong-tao一种用于大气激光通信透明传输的光端机[期刊论文]-光通信技术2010,34(7) 4.李国军.敬守钊.黄自力.唐湘成.LI Guo-un.JING Shou-zhao.HUANG Zi-li.TANG Xiang-cheng无线激光通信光发射模块的研究[期刊论文]-电子设计工程2011,19(5) 5.王鹏.邢柳.马永青.WANG Peng.XING Liu.MA Yong-qing无线激光通信APT系统设计[期刊论文]-光通信技术2011,35(3) 本文链接:https://www.360docs.net/doc/513744726.html,/Periodical_kjzx201116019.aspx

激光通信技术简介

激光通信技术简介 日前,由美国国家航空航天局研发的“激光通信中继演示”系统即将进入开发整合与测试阶段。空间激光通信是指利用激光束作为载波,在空间直接进行语音、数据和图像等信息双向传送的技术。不仅传输速率高、抗干扰能力强,还具有设备体积小、重量轻、能耗低等特点,将为人类走向太空和空天军事技术应用带来革命性变化。 未来,空间激光通信有望成为星地间数据传输的关键技术,并实现与地面光纤网络的互补,从而建立起包含卫星和大气层内外的立体交叉激光通信网,彻底颠覆现有的全球通信系统,成为满足大数据时代信息传输需求的大带宽高速通信网络。 “你好,世界!”这句看似普通的话,或将开启人类探索太空的新时代。这句话来自美国国家航空航天局录制的一段37秒的高清视频,跨越太空和大气层回传到地面用时3.5秒。虽然在如今的“4G时代”这个速率有些不值一提,但若不是采用了激光通信技术,传统的无线电传输则至少需要10分钟。 从烽火狼烟到太空WiFi 传统的无线电通信技术有着自身不可避免的缺陷,不仅由于各种通信波段之间相互干扰会影响通信质量,想要在“寸土寸金”的航天器上增加天线面积和数量来提升通信效果也真的比“登天”还难。更为重要的是,随着空间通信数据形式的不断丰富,单纯的无线电通信已经难以满足急剧增长的通信带宽需求,易受干扰的无线电波也加剧了太空军事应用的风险。 曾几何时,人们就曾利用“烽火狼烟”接力通信,将千里之外的边关战事信息第一时间传递至内地。从上个世纪60年代激光发明之后,利用激光进行无线光通信就成为研究的热点。说起激光通信,可能还有点陌生,但如果一提到光纤通信,我想大家都耳熟能详。其实,光纤通信只是激光通信的一个具体应用,是指激光在光纤介质中的传输。空间激光通信主要利用激光作为载体,将信息加载到激光上发送,并在外太空等自由空间内进行信息传输,到了接收端经过一系列光电变换就可实现信息的传输和通信。

自由空间激光通信技术概述

自由空间激光通信技术概述 06061118 刘晓彪 摘要:本文对自由空间激光通信技术经行了大体上的介绍,具体分析了其中的关键技术和研究重点,并对这一前沿技术的未来发展趋势经行了展望。 关键词:激光通信 自由传输 大气信道 空间激光通信系统是指以激光光波作为载波,大气作为传输介质的光通信系统。自由空间激光通信结合了光纤通信与微波通信的优点,既具有大通信容量、高速传输的优点,又不需要铺设光纤,因此各技术强国在空间激光通信领域投入大量人力物力,并取得了很大进展。 一、传输原理 大气传输激光通信系统是由两台激光通信机构成的通信系统,它们相互向对方发射被调制的激光脉冲信号(声音或数据),接收并解调来自对方的激光脉冲信号,实现双工通信。受调制的信号通过功率驱动电路使激光器发光,从而使载有语音信号的激光通过光学天线发射出去。另一端的激光通信机通过光学天线将收集到的光信号聚到光电探测器上,然后将这一光信号转换成电信号,再将信号放大,用阈值探测方法检出有用信号,再经过解调电路滤去基频分量和高频分量,还原出语音信号,最后通过功放经耳机接收,完成语音通信。当开关K掷向下时,可传递数据,进行计算机间通信,这相当于一个数字通信系统。它由计算机、接口电路、调制解调器、大气传输信道等几部分组成。接口电路将计算机与调制解调器连接起来,使两者能同步、协调工作;调制器把二进制脉冲变换成或调制成适宜在信道上传输的波形,其目的是在不改变传输结果的条件下,尽量减少激光器的发射总功率;解调是调制的逆过程,把接收到的已调制信号进行反变换,恢复出原数字信号将其送到接口电路;同步系统是数字通信系统中的重要组成部分之一,其作用是使通信系统的收、发端有统一的时间标准,步调一致。 二、关键技术分析 一)高功率激光器的选择 激光器用于产生激光信号,并形成光束射向空间。激光器的好坏直接影响通信质量及通信距离,对系统整体性能影响很大,因而对它的选择十分重要。空间光通信具有传输距离长,空间损耗大的特点,因此要求光发射系统中的激光器输出功率大,调制速率高。一般用于空间通信的激光器有三类:二氧化碳激光器。输出功率最大(>10kw),输出波长有10.6m和9.6m,但体积较大,寿命较短,比较适合于卫星与地面间的光通信。 Nd:YAG激光器。波长为1064nm,能提供几瓦的连续输出,但要求高功率的调制器并保证波形质量,因此比较难于实现,是未来空间通信的发展方向之一。采用半导体泵浦的固体激光器,若使半导体发射谱线与Nd:YAG激光器吸收谱线一致,可减少热效应,改善激光光束质量,提高激光源综合性能。这种激光器适合用于星际光通信。 二极管激光器(LD)。LD具有高效率、结构简单、体积小、重量轻等优点,并且可以直接调制,所以现在的许多空间光通信系统都采用LD作为光源。例如波长为800~860nm的ALGaAs LD和波长为970~1010nm的InGaAs LD。由于ALGaAs LD具有简单、高效的特点,并且与探测、跟踪用CCD阵列具有波长兼容性,在空间光通信中成为一个较好的选择。 二)快速、精确的捕获、跟踪和瞄准(ATP)技术 这是保证实现空间远距离光通信的必要核心技术。系统通常由以下两部分组成: 1、捕获(粗跟踪)系统。它是在较大视场范围内捕获目标,捕获范围可达±1°~±20°或更大。通常采用CCD阵列来实现,并与带通光滤波器、信号实时处理的伺服执行机构共同完成粗跟踪,即目标的捕获。粗跟踪的视场角为几mrad,灵敏度约为10pW,跟踪精度为几十mrad; 2、跟踪、瞄准(精跟踪)系统。该系统是在完成目标捕获后,对目标进行瞄准和实时跟踪。通常采用四象限红外探测器(QD)或Q-APD高灵敏度位置传感器来实现,并配以相应伺服控制系统。精跟踪

激光通信技术1解析

激光通信经历了大气通信和光波导(光纤)通信两个重要的发展阶段。早期的激光大气通信曾掀起了世界性的研究热潮,许多经济和技术力量雄厚的发达国家在这个阶段投入了大量的人力、财力和物力,对激光大气通信进行了广泛的研究开发。早期的激光大气通信所用光源多数为二氧化碳气体激光器、YAG固体激光器、He-Ne气体激光器等。二氧化碳气体激光器输出激光波长为10.6μm,此波长正好处在大气信道传输的低损耗窗口,是较为理想的通信用光源。与激光大气通信技术研究基本同步展开的还有光纤波导通信,从而在技术上形成了激光通信中与传统通信相对应的激光无线通信(激光空间通信)和激光有线通信(激光光纤通信)。 1975年,世界上第一条光纤通信实验应用线路在美国芝加哥开通,揭开了光纤通信应用的序幕。此后,随着光纤制作技术、半导体器件技术、光通信系统技术的不断完善和成熟,光纤通信从80年代起在全世界掀起了应用的热潮,并迅速被确认为是地面有线通信最有发展潜力的重要的通信手段,以致得到了一日千里的发展和推广应用。与此同时,激光大气通信技术由于器件技术、系统技术和大气信道光传输特性本身的不稳定性等诸多客观因素一时得不到很好的解决和弥补,便在轰轰烈烈的光纤通信热潮中,隐退得几乎无影无踪。 1.存在的主要问题 一段时间以来,激光大气通信技术之所以难以得到应有的发展和推广应用,存在的主要技术问题是: 对大气信道衰减大及误减随机变化量大的补偿技术问题;大气湍流的影响,使信道折射率发生不均匀的随机变化,其结果使接收光斑发生所谓的闪烁现象和漂移现象。要削弱大气湍流的影响,有许多技术工作要做;

驱动功率小、转换效率高、激光输出功率大、调制带宽及伺服系统简单的激光发射器件的制作;灵敏度高、噪声特性好,适合于常温环境下工作的接收器件的制作;体积小、重量轻、光学特性好、便于安装、调校的光学收发天线的制作;背景噪声的滤除技术问题;如果采用窄带光滤波技术,又是存在激光器的频率稳定技术;在机动性要求高和工作平台方位稳定性差的场合应用,自动跟瞄技术也很关键。上述可归纳为:解决全天候、高机动性和高灵活性稳定可靠工作问题。 2.悄然复兴的激光大气通信技术 激光问世后,将激光应用于通信的想法就随之产生了。在国际上,美国、英国、日本、前苏联等国家,广泛开展了对激光大气通信的深入研究。 然而,进入80年代中后期,国际国内大部分从事激光大气通信技术研究的单位相继停止了进一步研究。有的国家甚至还宣布了走激光大气通信研究的路是一条“死胡同”,“走不通”。尽管如此,国内外仍有单位和人员始终在坚持不懈、孜孜探求解决激光大气通信技术问题之路。 1998年,巴西AVIBRAS宇航公司公布了该公司研制的一种便携式半导体激光大气通信系统。这种通过激光器联通线路的军用红外通信装置,其外形如同一架双筒望远镜,在上面安装了激光二极管和麦克风。使用时,一方将双筒镜对准另一方即可实现通信,通信距离为1km,如果将光学天线固定下来,通信距离可达15km。1989年美国FARANT1仪器公司成功地研制出一种短距离、隐蔽式的大气激光通信系统。1990年,美国试验了适用于特种战争和低强度战争需要的紫外光波通信,这种通信系统完全符合战术任务的要求,通信距离为5~2km。如果对光束进行适当处理后,通信距离可达5~10km。

激光技术及其在现代通讯技术中的应用

激光技术及其在现代通讯技术中的应用 姓名:杨春有学号:20141060138 学院:信息学院专业:通信工程(国防) 摘要20世纪以来,激光是继原子能、计算机、半导体之后的又一重大科技发明。在有充分的理论准备和生产实践需要的背景下,激光技术应运而生。它一问世就获得了异乎寻常的快速发展。激光在现代通信领域有着广泛的应用。它在扩大通信容量,缓和通信频段拥挤,提高安全等方面都发挥着极为重要的作用。 关键词:激光通信技术现代通讯激光通信光子晶体能量衰减 引言 事实上,1916 年激光的原理被著名的物理学家爱因斯坦发现之后一直没有研制成功,原因在于科学实验所需要的器材没有现在发达,一直到1958 年激光才被首次成功制造。激光是计入20世纪,继原子能、计算机、半导体之后,人类的又一重大发明,它的亮度非常之高,大约为太阳光的100亿倍。因此激光一问世,就获得了异乎寻常的飞快发展,也正是因为这个原因,历史悠久的光学科学和光学技术体会了新生的快乐,更重要的是导致整个一门新兴产业——激光产业——的诞生。 一激光通信的发展阶段 激光通信经历了大气通信和光波导(光纤)通信两个重要的发展阶段。CO2气体激光器是比较符合要求的早期通信用光源,其输出激光波长为10.6μm,在大气通行当中,信道传输的低损耗窗口要求的标准波长是10.6μm。早期的激光大气通信所用光源还包括YAG固体激光器、He-Ne气体激光器等等。其中的早期激光大气通信曾经掀起了全球性的研究浪潮,大量的人力、财力和物力在这个阶段投入了进去,对激光大气通信进行了广泛的研究开发。但是这项研究只有少数的经济和技术力量雄厚的发达国家才能够承担得起。光纤波导通信技术大约与激光大气通信技术的研究工作同步展开,从而在技术上形成了激光无线通信和激光有线通信两种通信方式,这两种通信技术与传统通信技术大不相同。 腔面发射激光器(VCSEL)列阵光接受发射模块的处理能力不仅速度高而且容量特别大。微电子电路的多功能的逻辑控制、具有高强度并行操作功能的电子集成器件的优越性、光本身的高速传输能力、超高规模集成技术的优越性在垂直腔面发射激光器(VCSEL)列阵光接受发射模块当中得到了完美的体现。现代通信技术研究中,在激光通信领域,最引人瞩目的就要属垂直腔面发射激光器(VCSEL)了。包括制造成本很低、易与光纤耦合、阈值电流低、调制频率高、单模工作时温度和电流范围宽、易于集成等在内的特点都是垂直腔面发射激光器(VCSEL)的优点,这也是它一出世便被世人瞩目的重要原因。垂直腔面发射激光器(VCSEL)在激光通信当中最主要的用途就是作为信号光源,除了作为信号光源之外,它的应用非常广泛,例如在高速光开关、各种固体激光器的泵浦源、高密度光盘读写光源、图像处理与模式识别以及计算机芯片光互连和多值逻辑电路中都可以见到垂直腔面发射激光器(VCSEL)的靓丽身影。但是当前实际的研究情况表明,只有850nm的较短波长的垂直腔面发射激光器(VCSEL)在接入网中取得了比较广的实际应用效果,虽然现在市场上应经有了1310nm和1550nm长波长垂直腔面发射激光器(VCSEL)的产品推向市场,但是1310nm和1550nm长波长垂直腔面发射激光器(VCSEL)要想取得更好的发展必须完善自己的技术并逐渐走向成熟。在国际上,有许多国家和大公司均对垂直腔面发射激光器(VCSEL)的研究非常感兴趣;在国内,我国中科院半导体所、北京大学、吉林大学等单位在面发射激光器上都有非常深入的研究,也取得了累累硕果。 二光技术的发展机遇

自由空间光通信FSO

自由空间光通信(FSO) 摘要:无线光通信又称自由空间光通信(FSO),是一种以激光为载波(MHz), 在真空或大气中传递信息的通信技术。随着“最后一公里”对高带宽、低成本接入技术的迫切需求,F S O 在视距传输、宽带接入中逐渐得到了的应用。本文简单介绍了自由空间无线光通信技术的发展现状,其基本原理、系统组成和相关的关键技术,简要分析影响自由空间光通信的几个重要因素及可能解决的方法,最后从应用的角度,分析自由空间的发展的方向和趋势。 关键词:自由空间光通信(FSO),系统组成,问题,趋势 一、背景 自由空间光通信FSO( Free space optics)或称无线光通信技术,在20 世纪80 年代就开始用于军方,随着掺饵光纤放大器EDFA、波分复用WDMA、自适应光学Adaptive Optics 等技术不断发展, 无线光通信在传输距离、可靠性、传输容量等方面有了较大改善, 适用面也越来越宽。90年代 FSO 系统的厂商围绕着技术的经济性来开发他们的产品, 因为安装屋顶到屋顶的FSO 链路比挖掘城市街道、安装光纤线路快捷便宜得多。由于无线通信所赖以生存的射频频谱正在变得十分拥挤, 很难再支撑高速宽带大容量无线通信应用。于是, 人们又将目光转向了无线光通信。 虽然无线光通信技术还有待成熟,但它却有显著的优点: (1) 频带宽,速率高:理论上,无线光通信的传输带宽与光纤通信的传输带宽相同。目前国外无线光通信系统一般使用1550n m波长,传输速率可达10Gbit/s,可完成12万个话路,其传输距离可达5k m。国内一般使用850n m波长技术,速率为10M b i t/s~155Mbit/s,传输距离可达4km。 (2) 频谱资源丰富:FSO设备多采用红外光传输方式,无需申请频率执照和交纳频率占用费,也不会和微波等无线通信系统产生相互干扰。升级容易,接口开放。 (3) 适用多种通信协议:无线光通信产品作为一种物理层的传输设备,可以用在S D H、A T M、以太网、快速以太网等常见的通信网络中,并可支持2.5 G bit/s的传输速率,适用于传输数据、声音和影像等信息。 (4)部署链路快捷:FSO设备可以直接架设在楼顶,甚至可在水域上部署,能完成地对空、空对空等多种光纤通信无法完成的通信任务,其施工周期较短,可以在数小时内建立起通信链路,

激光通信技术

Modeling of Fine Tracking Sensor for Free Space Laser Communication Systems Hu Zhen,Song Zhengxun Tong Shoufeng, Zhao Xin, Song Hongfei, Jiang Huilin School of Electronics and Information Engineering Space Institute of Photo-Electronic Technology Changchun University of Science and Technology No. 7089, Weixing Road, Changchun, P. R. China, 130022 zhu@https://www.360docs.net/doc/513744726.html, Abstract—The optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal, however, some challenges need to be overcome. One of challenges involves the difficulty of acquisition, tracking, and pointing (ATP) a concentrated beam of light arriving from another platform across the far reach of space. To meet the pointing accuracy requirement, the basic method of tracking between the terminals of optical communication systems includes the use of a beacon laser and tracking system with a quadrant detector sensor on each terminal. In some future optical communication networks, it is plausible to assume that tracking system and communication receiv ers will use the same sensor. In this paper, the architecture of the fine tracking assembly of the designing optical communication terminal (OCT) is described, and the fine tracking assembly sensor is modeled based on the correlation coefficient. The simulation and experiment results of the sensor show that the detecting accuracy satisfies the design demand for our developing OCT. Keywords-modeling; quadrant detector; fine tracking sensor; optical communication networks I.I NTRODUCTION Communication from one place to another on Earth is an attractive goal. To achieve this aim, the communication net-works that cover the globe are established. Future optical communication network is pictured in Figure 1. Figure 1. Future optical communication network [1]. The optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal, however, some challenges need to be overcome. Laser-based communication links between a satellite and another satellite or a high flying aircraft have been investigated for free-space communication systems They include European Space Agency’s (ESA) Artemis, Japan Aerospace Exploration Agency’s (JAXA) OICETS and the Department of Defense’s (DoD) TSAT [2]. Laser communication systems offer greater capabilities than RF systems, such as smaller size and weight of the terminals, less transmitter power, higher immunity to interference, and larger data rate, but present greater challenges in implementation. One of challenges involves the difficulty of acquisition, tracking, and pointing (ATP) a concentrated beam of laser arriving from another platform across the far reach of space [3]. To meet the pointing accuracy requirement the optical communication terminals (OCT) mounted on satellite or other platforms use the Ephemeredes data (the position of the satellite according to the orbit equation) or navigation system for rough pointing, and a tracking system for fine pointing to another OCT. The basic method of tracking between OCT includes the use of a beacon laser and tracking system with a quadrant detector sensor on each OCT. In some future optical communication networks, it is plausible to assume that tracking system and communication receivers will use the same sensor. The reason is the possibility to design simple OCT at a reduced cost, mass, and volume in order to implement very compact, lightweight and low-power consumption precision beam-steering technologies. In view of this, a 4-quadrant detector (4QD) will be adapted in our developing OCT. Having a good mathematical description of the sensor is crucial for successful implementation of the tracking system, as it allows testing various control techniques prior to building a hardware prototype. This paper described the architecture of the fine tracking assembly of the designing OCT, proposed an approach to mathematical modeling of the fine tracking assembly sensor, and performed a number of experiments to validate the derived models. The remainder of this paper is organized as follows. Section II described the ATP subsystem architecture, the fine tracking assembly components briefly. The operating principle of 4QD, the operation of the position detecting sensor, the transfer characteristics for the different spot in sizes, and mathematical model of the sensor are presented in Section III. Section IV gives the simulation and experiment results of the sensor. Finally, our work is summarized in Section V. Supported by High-Tech Research and Development Plan of China (863). 978-1-4244-4412-0/09/$25.00 ?2009 IEEE

相关文档
最新文档