最优化方法 第四章(遗传算法)

浅谈最优控制

浅谈最优控制 发表时间:2008-12-10T10:25:09.263Z 来源:《黑龙江科技信息》供稿作者:李晶1 陈思2 [导读] 主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。 摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。通过以上知识的讲解使初学者能够快速掌握最优控制的问题。关键词:最优化;最优控制;极值 最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。所谓最优化方法为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。(1)最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法已使许多设计优化问题得到解决。一个新的发展动向是最优设计和计算机辅助设计相结合。电子线路的最优设计是另一个应用最优化方法的重要领域,它存在着巨大的开发潜力,尤其是对于学电工学的学生来说。配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展。(2)最优计划:现代国民经济或部门经济的计划,直至企业的发展规划和年度生产计划,尤其是农业规划、种植计划、能源规划和其他资源、环境和生态规划的制订,都已开始应用最优化方法。一个重要的发展趋势是帮助领导部门进行各种优化决策,使工作结构简单,工作效率最高化,节省了很多时间。(3)最优管理:一般在日常生产计划的制订、调度和运行中都可应用最优化方法。随着管理信息系统和决策支持系统的建立和使用,使最优管理得到迅速的发展。(4)最优控制:主要用于对各种控制系统的优化。下面着重来解释一下最优控制。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论——关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所著的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,即系统的数学模型,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。 1 古典变分法 研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。 2 极大值原理 极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。 3 动态规划 动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题和最优化算法的简化和实用性问题。大体上说,在最优化理论研究和应用方面应加强的课题主要有:(1)适合于解决工程上普遍问题的稳定性最优化方法的研究;(2)智能最优化方法、最优模糊控制器设计的研究;(3)简单实用的优化集成芯片及最优化控制器的开发和推广利用;(4)复杂系统、模糊动态模型的辩识与优化方法的研究;(5)最优化算法的改进。相信随着对这些问题的研究和探索的不断深入,最优控制技术将越来越成熟和实用,它也将给人们带来不可限量的影响。 参考文献 [1]胡寿松.最优控制理论与系统[M].(第二版)北京:科学出版社,2005. [2]阳明盛.最优化原理、方法及求解软件[M].北京:科学出版社,2006. [3]葛宝明.先进控制理论及其应用[M].北京:机械工业出版社,2007. [4]章卫国.先进控制理论与方法导论[M].西安:西北工业大学出版社,2000.

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

最优化方法与最优控制复习文件

最优化方法与最优控制复习文件 1. 非线性优化的基本概念,最优解的一阶和二阶条件,最速下降方法,拟牛顿法情况,BFGS 修正。 2. 变分问题的最优必要性条件推导,各种情况下的必要性条件,Hamilton 函数、拉格让日 函数。PPT 中讲到的最优控制实例,包括求解过程需要掌握。 3. 极大值原理搞清楚,以及PPT 中的计算实例。 4. 动态规划,原理和简单的求解技术。 5. LQR 问题也要看一下。 除此之外,还有几个作业题目大家做一下,如下所示: 1. 非线性优化中,从直观考虑最速下降法是一种最快速的迭代优化方法,实际过程中为什 么不理想?为什么采用二阶方法?二阶方法中的二阶导数矩阵怎么得到的?有什么要求? (15分) 2. 对于函数形式为 的优化问题,若采用最速下降法求解,请给出最优搜索方向p k 的表达式。变量初值为X0=[1,1,1]T ,请写出第一步迭代过程,以及得到的X1的关于搜索步长α0表达式,在这种情况下,使得))0()0((F 0p x α+最小的搜索步长α0应该等于多少?(15分) 3. 题目要求如下,采用动态规划方法寻求从A 点到B 点的最小时间路径(A 到B 仅能向前 走),(20分) 4. 对于以下简单的标量非线性系统,请通过求解相关HJB 方程得到其最优反馈控制策略。 提示,HJB 微分方程允许如此形式的解。

5.写出如下优化控制问题的Hamiltonian 函数、优化求解的必须性条件,并通过必要性条 件的求解计算出该优化控制和状态轨线。最小化目标函数 6.根据你对优化控制求解方法的了解,目前对于优化控制问题(或者成为动态优化问题, DAOPs问题)有哪些求解方法, 7.

优化理论和最优控制

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:2013-2014第二学期 课程名称:优化理论和最优控制 学生姓名: 学号: 提交时间:2014年4月26日

《优化理论和最优控制》结课总结 摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。 关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率 Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value. Keywords: The Optimal Control Theroy, The Modern Control Theroy, The

最优化方法与最优控制5

根据对偶问题的定义知道,原问题与对偶问题是互为对偶的。在给出原问题的对偶问题过程中应注意的几点关系: (1) 原问题各约束条件中的限制符号,必须统一是“≤”或统一为“≥”,不必考虑向量b 的元素是否是正值; (2) 如原问题有等式约束,则将该条件用等价的两个不等式约束条件替换,即“k f =)x (”可改写成两个不等式条件“k f ≤)x (,k f -≤-)x (”; (3) 对偶前后都要求变量是非负的; (4) 对偶关系是,“极大”对“极小”;“≤”对“≥”;向量c 与向量b 对调位置;矩阵A 转置。 例3-14 给出以下线性规划问题的对偶问题 212max x x z += 12321≤+x x ; 521=+x x ; 16421≤+x x ; 21≥x ;02≥x 。 解:原问题的规范形式及对偶形式写在表3-17中。 表3-17 线性规划对偶问题 原问题 对偶问题 min 543212551612w w w w w s --++= max 212x x z += 1354321≥--++w w w w w 12321≤+x x ; 244321≥-++w w w w 16421≤+x x ; 0≥i w ,51≤≤i 。 521≤+x x ; 对偶问题的线性规划标准形式 521-≤--x x ; max 543212551612w w w w w s ++---= 21-≤-x ; 13654321=---++w w w w w w 01≥x ,02≥x 。 2474321=--++w w w w w 0≥i w ,71≤≤i 。 下面介绍线性规划对偶问题的一些性质。 定理3-4 在式(3-23)定义的对偶问题中,若x 和w 分别是原问题和对偶问题的任意可 行解,则一定有 w b x c T T ≤。 (3-24) 证 因为是可行解,必然满足各自的全部约束条件,即 b A ≤x ,0x ≥; c w T ≥A ,0w ≥。 由此导出, b w x w T T ≤A ; c x w x T T T ≥A 。 标量的转置就是标量本身,即

《最优化与最优控制》教学大纲 - 北京科技大学自动化学院

《最优化与最优控制》教学大纲 课程编号:4050141 开课院系:自动化学院控制科学与工程系课程类别:专业选修 适用专业:自动化 课内总学时:32 学分:2 实验学时:0 设计学时:0 上机学时:0 先修课程:数学分析、线性代数、常微分方程、自动控制原理 执笔:邵立珍 审阅:董洁 一、课程教学目的 最优化与最优控制在工程技术,经济,管理等领域有广泛的应用。通过本课程的学习,使学生学会最优化的基本理论和算法,学会最优控制基本概念和理论。 二、课程教学基本要求 1.课程重点: 要求学生掌握典型的最优化算法,了解最优化的基本理论,掌握最优控制基本概念,掌握极大值原理,动态规划法了解典型最优控制问题。 2.课程难点: 极大值原理,动态规划法。 3.能力培养要求: 能够解决一些典型的最优控制问题,首先能够将实际问题,描述为最优控制问题,然后根据问题的条件,选择合适的求解工具并得到正确的答案。 三、课程教学内容与学时 课堂教学(32学时) 1.最优化概论(2学时) 最优化问题的数学模型 最优化方法及其结构 线性搜索 2.无约束最优化方法(4学时) 局部极小的条件 牛顿法 拟牛顿法 共轭梯度法 方向集法 3.约束优化的理论与方法(8学时) 约束问题和Lagrange乘子法 一阶最优条件 二阶最优条件 罚函数与障碍函数 乘子法 4.二次规划(6学时) 等式约束法 Lagrange方法 有效集法 5.最优控制概论(2学时) 经典控制与现代控制理论简介 最优控制问题的产生 最优控制问题的一般提法 最优控制问题分类 6.变分法与最优控制(4学时) 变分法 用变分法解最优控制 7.极大值原理(4学时) 末端自由的极大值原理 末端受约束的极大值原理 时变系统,复合型性能指标问题 8.动态规划法(2学时) 多步决策与动态规划 离散系统动态规划法 连续系统动态规划法 实验(上机、设计)教学(0学时) 四、教材与参考书 教材 1. 王晓陵,陆军编,《最优化方法与最优控制》,哈尔滨工程大学出版社,2008年,第1版 参考书 1. 吴受章编,《最优控制理论与应用》,机械工业出版社,2008年,第1版 2.李国勇编,《最优控制理论与应用》,国防工业出版社,2008年,第1版 3. 赫孝良等编,《最优化与最优控制》,西安交通大学出版社,1992年,第1版

天津大学最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=? ∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为 最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(* x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称* x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈* . 则对D x ∈?,有 ).()()()(* **-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

最优控制

最优控制 学院 专业 班级 姓名 学号

1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所着的《工程控制论》直接促进了最优控制理论的发展和形成。 最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。 从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。 例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。 最优控制理论-主要方法 解决最优控制问题的主要方法 解决最优控制问题,必须建立描述受控运动过程的运动方程 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。

最优化方法与最优控制1

第一章 最优化方法的一般概念 人们在处理日常生活、生产过程、经营管理、社会发展等实际问题时,都希望获得最佳的处理结果。在有多种方案及各种具体措施可供选择时,处理结果与所选取方案和具体措施密切相关。获取最佳处理结果的问题称为最优化问题。针对最优化问题,如何选取满足要求的方案和具体措施,使所得结果最佳的方法称为最优化方法。 1-1 目标函数、约束条件和求解方法 目标函数就是用数学方法描述处理问题所能够达到结果的函数,该函数的自变量是表示可供选择的方案及具体措施的一些参数或函数,最佳结果表现为目标函数取极值。在处理实际问题时,通常会受到经济效率、物理条件、政策界限等许多方面的限制,这些限制的数学描述称为最优化问题的约束条件。求解方法是获得最佳结果的必要手段,该方法使目标函数取极值,所得结果称为最优解。针对各种类型的最优化问题,找出可靠、快捷的处理方法是最优化方法(理论)的研究范畴。 目标函数、约束条件和求解方法是最优化问题的三个基本要素。无约束条件的最优化问题称为理想最优化问题,所得结果称为理想最优解。下面用三个简单的例子,说明最优化问题的目标函数和约束条件。 例1-1 有一块薄的塑料板,宽为a ,对称地把两边折起,做成槽(如图1-1)。欲使槽的横截面积S 最大, 1x 、2x 和θ的最优值是多少? 该问题要找出最优参数1x 、2x 和θ,使槽的横截面积S 最大,所以,目标函数为 θθsin )cos (max 221x x x S ?+=; (1-1) 由于底边与两个斜边的总长度应等于塑料板宽度a ,即约束条件为 a x x =+212。 (1-2) 有许多最优化问题可以方便地将等式约束条件代入目标函数中,使原问题转换为无约束条件的最优化问题,便于求解。例1-1为无约束条件的最优化问题时,目标函数如下 θθsin )cos 2(max 222x x x a S ?+-=。 (1-3) 例1-2 仓库里存有20米长的钢管,现场施工需要100根6米长和80根8米长的钢管,问最少需要领取多少根20米长的钢管? 用一根20米长的钢管,截出8米管或6米长管的方法只有三种,设:1x —1根长管截 成2根8米管的根数;2x —1根长管截成1根8米管和2根6米管的根数;3x —1根长管 截成3根6米管的根数。该问题的目标函数为 321min x x x n ++=, (1-4) 现场施工需要80根8米长和100根6米长的钢管,即约束条件为 ???≥+≥+,10032,80232 21x x x x 3,2,10=≥i x i (1-5) a 图1-1 横截面积与参数关系图

最优化 马昌凤 第四章作业

最优化方法及其Matlab程序设计习题作业暨实验报告 学院:数学与信息科学学院 班级:12级信计一班 姓名:李明 学号:1201214049

第四章 共轭梯度法 一、上机问题与求解过程 1、用共轭梯度法求2212 22112444)(x x x x x x f --+=取初始点为 T x )1,5.0(0-=。 解: 仿照书上编写共轭梯度法程序如下: function [x,val,k]=frcg(fun,gfun,x0) %功能:用FR 共轭梯度法求解无约束化问题:min f(x) %输入:x0是初始点,fun,gfun 分别是目标函数和梯度 %输出:x,val 分别是近似最优点和最优值,k 迭代次数 maxk=5000;%最大迭代次数 rho=0.6;sigma=0.4; k=0;epsilon=1e-4; n=length(x0); while (k=0.0) d=-g; end end if (norm(g)

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

最优控制问题求解方法综述

最优控制问题求解方法综述 学院:信息科学与工程学院 专业班级: 学号: 姓名: 指导老师: 2013年4月27日

最优控制问题求解方法综述 摘要:最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。本文阐述了最优控制问题的基本概念,解决最优控制问题的主要方法有古典变分法、极小值原理和动态规划法。本文着重讲解各种方法的特点,适用范围,可求解问题的种类以及各方法之间的联系等。 关键字:最优控制;变分法;极小值原理;动态规划 1、最优控制问题基本介绍 最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。随着社会科技的不断进步,最优控制理论的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。 所谓最优控制,就是寻找一个最优控制方案或最优控制律,使所研究的对象(或系统)能最优地达到预期的目标。最优控制研究的主要问题就是根据建立的被控对象的数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使给定的某一性能指标达到极小值(或极大值)。在现实动态系统中,动态最优问题的目标函数是一个泛函,求解动态最优问题常用的方法有经典变分法,极小值原理,动态规划和线性二次型最优控制法等。 对于动态系统,当控制无约束时,采用经典微分法或经典变分法;当控制有约束是,采用极值原理或者动态规划;如果是线性的,性能指标是二次型形式的,则可采用线性二次型最优控制问题求解。 2、最优控制的求解方法 2.1变分法 变分法是求解泛函极值的一种经典方法,也是解决最优控制问题的本质方法,是研究最优控制问题的一种重要工具。掌握变分法的基本原理,还有助于理解以最小值原理和动态规划等最优控制理论的思想和内容。 对于没有对泛函的极值函数附加任何条件的求解方法,即无约束条件下的求解方法,我们可以利用欧拉方程求解,在一般性情况下,我们可以利用一下步骤求解:

无约束最优化直接方法和间接方

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最

第九章经典最优化方法

第九章经典最优化方法 9.1 最优化的基本概念 最优化方法是一门古老而又年青的学科。这门学科的源头可以追溯到17世纪法国数学家拉格朗日关于一个函数在一组等式约束条件下的极值问题(求解多元函数极值的Lagrange乘数法)。19世纪柯西引入了最速下降法求解非线性规划问题。直到20世纪三、四十年代最优化理论的研究才出现了重大进展,1939年前苏联的康托洛维奇提出了解决产品下料和运输问题的线性规划方法;1947年美国的丹奇格提出了求解线性规划的单纯形法,极大地推动了线性规划理论的发展。非线性规划理论的开创性工作是在1951年由库恩和塔克完成的,他们给出了非线性规划的最优性条件。随着计算机技术的发展,各种最优化算法应运而生。比较著名的有DFP和BFGS无约束变尺度法、HP广义乘子法和WHP约束变尺度法。 最优化问题本质是一个求极值问题,几乎所有类型的优化问题都可概括为如下模型:给定一个集合(可行集)和该集合上的一个函数(目标函数),要计算此函数在集合上的极值。通常,人们按照可行集的性质对优化问题分类:如果可行集中的元素是有限的,则归结为“组合优化”或“网络规划”,如图论中最短路、最小费用最大流等;如果可行集是有限维空间中的一个连续子集,则归结为“线性或非线性规划”;如果可行集中的元素是依赖时间的决策序列,则归结为“动态规划”;如果可行集是无穷维空间中的连续子集,则归结为“最优控制”。 线性规划与非线性规划是最优化方法中最基本、最重要的两类问题。 一般来说,各优化分支有其相应的应用领域。线性规划、网络规划、动态规划通常用于管理与决策科学;最优控制常用于控制工程;非线性规划更多地用于工程优化设计。 前面提到的算法是最优化的基本方法,它们简单易行,对于性态优良的一般函数,优化效果较好。但这些经典的方法是以传统微积分为基础的,不可避免地

天津大学-研究生-最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。

最优控制

①最优控制理论的应用领域与实例 最优控制理论现在广泛应用于生产领域,军事领域以及经济领域等人类有目的的活动中。最优控制问题可以用于解决最少时间控制问题,最少燃料控制问题,导弹跟踪问题,线性调节器等。 ②最优控制理论的最新发展 1.在线优化方法 基于对象数学模型的静态优化方法,是理想化的方法。因为尽管工业过程被设计得按一定的正常工况连续运行,但由于存在外部环境变动等各种干扰因素,原来的设计就未必是最优的。鉴于这种情况在线优化方法得到了发展,其中常见的方法有: ⑴局部参数最优化和整体最优化设计方法 局部参数最优化方法的基本思想是按照参考模型和被控过程输出之差来调整控制器可调参数,使输出误差平方的积分达到最小。这样可使被控过程和参考模型尽快保持精确一致。此外,静态最优与动态最优相结合可将局部最优变为整体最优。 ⑵预测控制中的滚动优化算法 预测控制,又称基于模型的控制(Model-basedControl),是70年代后期兴起的一种新型优化控制算法。但它与通常的离散最优控制算法不同,不是采用一个不变的全局优化目标,而是采用滚动式的有限时域优化策略。这意味着优化过程不是一次离线进行,而是反复在线进行的。这种有限化目标的局部性使其在理想情况下只能得到全局的次优解,但其滚动实施,却能顾及由于模型失配、时变、干扰等引起的不确定性,及时进行弥补,始终把新的优化建立在实际的基础之上,使控制保持实际上的最优。这种启发式的滚动优化策略,兼顾了对未来充分长时间内的理想优化和实际存在的不确定性的影响。在复杂的工业环境中,这比建立在理想条件下的最优控制更加实际有效。 预测控制的优化模式具有鲜明的特点:它的离散形式的有限优化目标及滚动推进的实施过程,使得在控制的全过程中实现动态优化,而在控制的每一步实现静态参数优化。用这种思路,可以处理更复杂的情况,例如有约束、多目标、非线性乃至非参数等。吸取规划中的分层思想,还可把目标按其重要性及类型分层,

相关文档
最新文档