补水量计算

补水量计算
补水量计算

黑龙江安瑞佳石油化工有限公司12000m3/h循环水场补水量计算

一、循环冷却水补充及损失水量计算

本工程循环冷却水用水总量为:

正常循环水量:Q=12000m3/h

供水温度:t2=42℃, 回水温度:t1=32℃;温差:Δt=10℃;

(1)冷却塔蒸发损失水量:(干球温度=26℃,K取0.146)

Q e=P e·Q/100

P e=K·△t

P e=0.146×10=1.46

式中:

P e——蒸发损失率(%);

Δt——冷却塔进水与出水温度差10℃;

K——系数(1/℃),按表5.6.1选用,中间值按内插法计算。

表5.6.1 系数K(%)

干球温度,℃-10 0 10 20 30 40 K,1/℃0.08 0.10 0.12 0.14 0.15 0.16

=1.46×12000/100 =175.2m3/h;

故:Q e

正常

(2)冷却塔的风吹损失水量按下式计算:

Q w=P w·Q/100

冷却塔的风吹损失水量:

Q w正常=0.005×12000/100 = 0.6m3/h;

式中:

P w——除水器的除水率,根据我公司收水器性能,取0.005%。

(3)排污损失水量根据循环水水质和浓缩倍数的要求计算确定,按下式计算:

Q b=P b·Q/100

1

)

1(---=

C C P P P w e b

式中:

P b ——排污百分率(%);

C ——浓缩倍数取1.6(水质恶劣;业主反映在1.3-2之间);

排污百分率: P b = [1.46—0.005(1.6-1)]/(1.6-1)=2.428 排污损失水量:Q b 正常=2.428×12000/100 =291.4m 3

/h ;

(4) 补充水量计算:

Q m =Q e +Q w +Q b

补充水量: Q m 正常=175.2+0.6+291.4=467.2m 3/h ;

计算施工现场用水量

本工程现场用水分为施工用水、施工机械用水、生活用水和消防用水三部分。 一、施工用水量 q1:以高峰期为最大日施工用水量,计算公式为: q1=K1∑Q1N1K2/8×3600 式中:K1未预计的施工用水系数,取1.15 K2用水不均衡系数,取1.5 Q1以砂浆搅拌机8小时内的生产量(每台以30m3计)、瓦工班8小时内的砌筑量(每班以20m3砖砌体计)、混凝土养护8小时内用水(自然养护, 以100m3计)。 N1每立方米砂浆搅拌耗水量取400L/m3计,每立方米砖砌体耗水量以 100L/m3计,每立方米混凝土养护耗水量以200 L/m3计。 q1=1.15×(5×30×400+4×20×100+100×200)×1.5/8×3600=5.27L/S 二、施工机械用水量计算 q2 =K1Q2∑N2K3/8×3600 式中:K1未预计的施工用水系数,取1.15 K3施工机械用水不均衡系数,取2.0 Q2以一台对焊机每天工作8小时计,一个木工房一个台班计,一台锅炉每天工作八小时计。N2每台对焊机耗水量300L/台.h,每个木工房耗水量20L/台班,每台锅炉耗水量1050L/t.h。q2=1.15×(300×8+20×1+1050×8)×1.5/8×3600 =0.65L 三、生活用水 q3:现场高峰人数以1500人计算,每人每天用水20L计算: q3=Q3N3K4/8×3600 =1500×20×1.5/8×3600=1.54L/S 四、消防用水量 q4:根据规定,现场面积在25公顷以内者同时发生火警2次,消防用水定额按10-15L/S 考虑。根据现场总占地面积,q4按10L/S考虑。 现场总用水量:根据规定,当q1+q2+ q3〈q4时,采用q4的原则,现场总用水 量为:q= q4=10L/S 供水管径,按下面公式计算: d=√4q/πV×1000=√4×10/3.14×2.0×1000=0.079m 计算结果,现场供水管径需不小于80mm方可满足现场施工需要。

管道水流量计算公式

管道水流量计算公式 A.已知管的内径12mm,外径14mm,公差直径13mm,求盘管的水流量。压力为城市供水的压力。 计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s) 计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14) 流量q,流速u,管径DN。开平方SQRT。 其实两个公式是一样的,只是表述不同而已。另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了。 备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。 这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。 因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。 1. 以公制(mm)为基准,称 DN (metric unit) 2. 以英制(inch)为基准,称NB(inch unit) 3. DN (nominal diameter) NB (nominal bore) OD (outside diameter) 4. 【例】 镀锌钢管DN50,sch 20 镀锌钢管NB2”,sch 20 5. 外径与DN,NB的关系如下: ------DN(mm)--------NB(inch)-------OD(mm) 15-------------- 1/2--------------21.3 20--------------3/4 --------------26.7 25-------------- 1 ----------------33.4 32-------------- 1 1/4 -----------42.2 40-------------- 1 1/2 -----------48.3 50-------------- 2 -----------60.3 65-------------- 2 1/2 -----------73.0 80-------------- 3 -----------88.9 100-------------- 4 ------------114.3 125-------------- 5 ------------139.8 B.常用给水管材如下:

注水水质标准

大庆油田油藏水驱注水水质指标及分析方法 Q/SY DQ0605-2006 1 范围 本标准规定了大庆油田油藏注水水质的基本要求、水质指标、分析方法及水质监测的要求。 本标准适用于大庆油田油藏不同渗透层对注水水质的要求和油藏注入水的水质分析。含聚合物注水和三元驱注水暂时参照执行该方法。 2 规范性引用文件 GB/T 13916 冲压件形状和位置未注公差 SY/T 5329-1994 碎屑岩油藏注水水质推荐指标及分析方法 SY/T 5523-2000 油气田水分析方法 3 术语和定义 3.1 悬浮固体suspended solid 悬浮固体通常是指在水中不溶解而又存在于水中不能通过过滤器的物质。在测定其含量时,由于所用的过滤器的孔径不同,对测定的结果影响很大。本标准规定的悬浮固体是指采用平均孔径为0.45um的纤维素脂微孔膜过滤,经汽油或石油醚溶剂洗去原油后,膜上不溶于油水的物质。 3.2 悬浮物颗粒直径中值mean value of diameter of suspended particles 颗粒直径中值是指水中颗粒的累积体积占颗粒总体积50%时的颗粒直径。 3.3 含油oil-bearing 含油是指在酸性条件下,水中可以被汽油或石油醚萃取出的石油类物质,称为水中含油。 3.4 铁细菌ferrobacteria 能从氧化二价铁中得到能量的一群细菌,形成的氢氧化铁可在细菌膜鞘的内部或外部储存。 3.5 腐生菌(TGB)saprophytic bacteria 腐生菌是指“异养”型的细菌,在一定条件下,他们从有机物中得到能量,产生粘性物质,与某些代谢产物累积沉淀可造成堵塞。 3.6 硫酸盐还原菌(SRB)sulfate reducing bacteria 硫酸盐还原菌是指在一定条件下能够将硫酸根离子还原成二价硫离子,进而形成副产物硫化氢,对金属釉很大腐蚀作用的一类细菌,腐蚀反应中产生硫化铁沉淀可造成堵塞。 4 油藏水驱注水水质 4.1 水质基本要求 a)水质稳定,与油层水相混不产生沉淀;

用水量计算

一、用水量计算 1.现场施工用水量,按下式计算: 式中q 1——施工用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 1——年(季)度工程量或日工程量(以实物计量单位表示); N 1——施工用水定额; T 1——年(季)度有效作业日(d ); t ——每天工作班数(班); K 2——用水不均衡系数(现场施工用水取1.5)。 2.施工机械用水量,按下式计算: 式中q 2——机械用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 2——同一种机械台数(台); N 2——施工机械台班用水定额; K 3——施工机械用水不均衡系数(施工机械、运输机械取2.00,动力设备取1.05~1.10)。 3.施工现场生活用水量,按下式计算: 式中q 3——施工现场生活用水量(L/s ); P 1——施工现场高峰昼夜人数(人); N 3——施工现场生活用水定额(一般为20~60L/人·班,主要视当地气候而定); K 4——施工现场用水不均衡系数(施工现场生活用水取1.30~1.50); t ——每天工作班数(班)。 4.生活区生活用水量,按下式计算: 式中q 4——生活区生活用水量(L/s ); P 2——生活区居民人数(人); N 4——生活区昼夜全部生活用水定额,每一居民每昼夜为100~120L ; K 5——生活区用水不均衡系数(生活区生活用水取2.00~2.50); 5.消防用水量(q 5)。最小10 L/s ;施工现场在25ha 以内时,不大于15 L/s 。 6.总用水量(Q )计算: (1)当(q 1+q 2+q 3+q 4)≤q 5时,则Q= q 5+2 1(q 1+q 2+q 3+q 4) (2)当(q 1+q 2+q 3+q 4)>q 5时,则Q= q 1+q 2+q 3+q 4 (3)当工地面积小于5ha 而且q 1+q 2+q 3+q 4)<q 5时,则Q= q 5最后计算出的总用水量,还应

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

(完整word版)大口井出水量计算

大口井的出水量计算 大口井出水量计算有理论公式和经验公式等方法。经验公式与管井计算时相似。以下仅介绍应用理论公式计算大口井出水量的方法。 因大口井有井壁进水,井底进水或井壁井底同时进水等方式,所以大口井出水量计算不仅随水文地质条件而异,还与其进水方式有关。 1.从井壁进水的大口井 可按完整式管井出水量计算公式(7-2)和式(7-3)式进行 计算。 2.井底进水的大口井 对无压含水层的大口井,当井底至含水层底板距离大于或等于井 的半径(T ≥r )时,按巴布希金(Бабущкин.В.Д)公式计算(见图7-21) )4H R 185lg .11(T r 2r KS 2Q 0++=ππ (7-40) 式中Q ——井的出水量,m 3/d ; S 0——出水量为Q 时,井的水位降落值,m ; K ——渗透系数,m/d ; R ——影响半径,m ; H ——含水层厚度,m ; T ——含水层底板到井底的距离,m ; r ——井的半径,m 。 承压含水层的大口井也可应用上式计算,将公式中的T 、H 均替换成承压含水层厚度即可。 当含水层很厚(T ≥8r )时,可用福尔希海默(F O rchheimer ,P.)公式计算: Q=AKS 0r (7-41) 式中A ——系数,当井底为平底时,A=4;当井底为球形对,A =2π;其余符号与上 式同相。 3.井壁井底同时进水的大口井 可用出水量叠加方法进行计算。对于无压含水层 (图7-22),井的出水量等于无压含水层井壁进水的大口井的出水量和承压含水层中的井底进水的大口井出水量的总和: ])4H R 185lg .11(T r 22r r R 3lg .2S 2h [KS Q 00+++-=ππ (7-42) 式中符号如图7-22所示,其余与前同。 r T S 0 H R r T S 0 H R h 图7-21 无压含水层中井底进水的大口井计算简图 图7-22 无压含水层中井底井壁进水大口井计算简

1 用水量计算表说明书

第一节设计用水量计算表说明书 基本数据: 由原始资料该城市位于湖南,在设计年限内人口数12万,查《室外排水设计规范》可知该城市位于一分区,为中小城市。 城市的未预见水量和管网漏失水量按最高日用水量的20%计算;1.1.1 居民最高日生活用水量Q1 : Q1=qNf Q1―—城市最高综合生活用水,m3/d; q――城市最高综合用水量定额,L/(cap.d); N――城市设计年限内计划用水人口数; f――城市自来水普及率,采用f=100% 所以:Q1。1 =230×12×104×100%/1000 =27600 m3/d 1.1.2 铁路车站每天用水量Q1.2 = 2000 m3/d 。 得Q1= Q1。1 +Q1.2 = 29600 m3/d 。 1.2 工业区的用水量计算 由所给资料得知,工厂No.1企业总用水量为2400 m3/d, 工厂No.2的企业总用水量为3600m3/d。 总计,Q2 = 2400+3600 = 6000 m3/d。 1.3 浇洒道路用水量计算 按城市浇洒道路用水量标准q=1L/(㎡.次),每天两次, 用水量公式: Q=qNn/1000(n代表次数,N代表浇洒道路面积),3 =1*1434721.162*2/1000 =2870m3。 1.4 绿化用水量计算

按城市大面积绿化用水量定额q=1.5L/(㎡.次),每天两次,用水量公式 Q=q N n/1000(n代表次数,N代表绿化用水面积),4 =1.5*454356.5206*2/1000 =1360 m3。 1.5 未预见用水量的计算 按最高日用水量的20%算。而最高日的用水量包括居民的综合生活用水量;工业区用水量;浇洒道路和绿化用水量。相应的未预见用水总量。 1.6 最高日设计流量Q d: Q d=1.2×(Q1+Q2+Q3+Q4) =1.2×(29600+6000+2870+1360) =47796 m3/d 1.7 最高日最高时用水量Q h Q h=K h×Qd/86.4(时变化系数由原始资料知K h=1.46) =1.46 ×47796/86.4 =807.66 L/s 1.8 消防用水量: 城镇、居住区室外的消防用水量: 火灾次数:2 一次灭火用水量:45L/s 城镇消防用水量为90 L/s

用水量计算方法

1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1) 1 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数, 可按式(3.6.4-1)计算出最大用水时卫生器具给水当量平均出流概率: 式中: uo——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%);qo——最高用水日的用水定额,按本规范表3.1.9取用;

注水名词解释

含水率 油井日产水量q w 与日产液量q L 之比叫含水率(f w),亦叫含水百分数,可用下式计算; f w=%100?L w q q 含水上升率 每采出1%的地质储量含水率的上升值叫含水上升率。它是评价油田开发效果的重要指标。含水上升率越小,油田开发效果越好。可按下式计算: I NW =%100???R f W 式中:I NW—含水上升率,%; ? fw—阶段末、初含水率之差; ?R —阶段末、初采出程度之差。 存水率 未采出的累积注水量与累积注水量之比叫存水率。它是衡量注入水利用率的指标,存水率越高,注入水的利用率越高。计算公式为: W f=%100?-Wi Wp Wi 式中:W f —存水率,%; Wi —累积注水量,m3; Wp —累积产水量,m 3。 注水开发油田的三大矛盾 非均质多油层油田注水开发时,由于油层性质存在层间、平面、层内三大差异,导致注入水在各油层各方向不均匀推进,使油水关系复杂化,影响油田开发效果,这就是所说的注水开发油田的三大矛盾——层间矛盾、平面矛盾及层内矛盾。解决三大矛盾的关键是认识油水运动的客观规律,因势利导,采取不均匀开采,接替稳产,以及不断进行调整挖潜等方法,使各类油层充分发挥作用。 层间矛盾 指非均质多油层油田,由于各油层岩性、物性和储层流体性质不同,造成各油层在吸水能力、水线推进速度、地层压力、出油状况、水淹程度等方面的差异,形成相互制约和干扰,影响各油层、尤其是中低渗透率油层发挥作用,这就是所说的层间矛盾。 层间矛盾是影响油田开发效果的主要矛盾。大庆油田在开发实践中创造的分层开采技术、油层压裂改造技术、层系及注采系统调整等,就是解决这个矛盾的有效方法。 平面矛盾 由于油层性质在平面上的差异,引起注水后同一油层的各井之间地层压力有高有低,见水时间有早有晚,含水上升速度有快有慢,因而相互制约和干扰,影响油井生产能力的发挥,这就是平面矛盾。 解决平面矛盾除采用分层开采工艺技术外,打加密调整井进行注采系统调整,采取堵水、压裂等措施都是行之有效的方法。 层内矛盾

注水相关指标计算公式及说明

1.注水井利用率计算公式: 以每月数据库、注水报表数据为准计算。 %100-?=待报废井(口)-(口)计划关井数(口)注水井总井数注水井开井数(口)注水井利用率 开井数是指当月内连续注水24h 以上,并有一定注水量的 注水井数之和。在间开制度下的间歇注水井,有一定的注水量,也算开井数。 计划关井必须在月度配注公报中注明,并说明原因。 式中:(1)计划关井:测试及措施作业占用井;钻井施工要求 停注的井;为开展研究实验及调整井网、层系而停住的井;周期注水井;因水资源保护区、城市规划区等安全环保原因的关井。 (2)因井网残缺、无效注水关井、井筒落物、套管变形、注不进、井下事故、地面等原因关闭的注水井或长关井,不属于计划关井。 (3)待报废井:指油田公司已初步审查同意,待正式批 复的注水井。 2.计划指标完成率计算公式: 以公司下达的各项计划工作量进行考核,完成数据以数据库 及报表数据为准。完成指标包括:注水井钻井、投注井、转注井、油水井测试及措施、注水专项。 %100计划完成量 指标实际完成量=计划指标完成率? 3.单井配注合格率计算公式:

以每月的配注公报及数据库、注水报表数据为准计算。 %100注水井开井数 注水井配注合格井数配注合格率(%)?= 说明: 水井月平均注水量不超过配注量的20%,不低于配注量的10%的注水井算合格井。 配注5方以下,±1方为合格;配注5-10方,±15%为合格。 月内调整配注的井,以生产时间较长的工作制度计算配注合格率,如果两种工作制度生产时间差不多,以最后一次工作制度计算配注合格率。 4.站点水质达标率 站单项水质达标率。反映站点实际单项水质指标达到标准水质指标的程度。 达标率=标准值/实际值×100%(当实际值小于标准直时,达标率取100%)。 站综合水质达标率。为站多个单项水质达标率的平均值。站综合水质达标率=∑站单项水质达标率/站水质指标检测项数。 5、油井生产时率=油井实际生产时间(小时)/油井计划生产时间(小时)*100% 油井计划生产时间,为间歇抽油应该生产的时间。 6、注水井注水时率=注水井实际生产时间(小时)/注水井配注时间(小时)*100% 或(注水井配注时间(小时)-误注时间)/注水井配注时间(小

用水量计算方法

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量;

3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。 3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1)

用单位出水量计算渗透系数

第一章 用单位出水量计算渗透系数的可行性研究概况 在铁路建设中,为了提高预测生产井出水量的精度,同时不使用观测孔,又节省勘探费用和缩短勘探周期。本文在搜集国内外关于单孔抽水试验计算渗透系数的理论公式和经验公式,重点分析裘布依公式的基本假定和适用范围,找出影响传统计算方法精度的主要因素,结合铁路一般供水站用水量较小的特点,寻求单孔抽水试验计算水文地质参数简单可行的新方法。 该方法主要根据勘探孔的抽水试验资料,建立Q —S 抛物线方程,用数值方法求算S=1m 时的单位出水量q 值,然后求算渗透系数K 值,再代入裘布依公式中求算引用补给半径R 值。在计算过程当中,使用了数理统计方法。此外,还使用了基姆公式,以便解决只做一次水位降深时求算S=1m 时的近似单位出水量q 值。从而用小口径(≤146mm )勘探试验孔的水文地质参数K ,R 值,预测大口径(>146mm )生产井(大口井、管井、结合井、干扰井、渗渠即水平集水管)等的出水量。 第二章 渗透系数和影响半径传统计算公式与存在问题 第一节 裘布依公式的假设条件和使用范围 自1863年法国水力学家裘布依提出潜水井和承压水井公式以来历经百余年, 至今仍然被广泛使用着。实践证明,该公式诞生以来,在指导人类开发地下水资源方面起到了举足轻重的作用,促进了社会进步并获得了经济效益。但是长期以来在使该公式时,由于种种原因,常常忽视了该公式的适用范围和条件,因而造成系列误差,影响了渗透系数和引用补给半径的计算成果。 一?裘布依公式 1,承压水完整孔 r R MS Q K ln 2π= (2-1) 2,潜水完整孔 r R h H Q K ln )2 2-= (π (2-2) 式中 K —含水层渗透系数(m/d ); Q —钻孔出水量 (m 3/d); S —水位降深(m ); M —承压含水层厚度(m ); H —天然情况下潜水含水层厚度 (m ); h —潜水含水层在抽水试验时的孔内剩余厚度(m ); R —含水层半径,即应用补给半径(m ); r —过滤管半径(m )。

水表流量计算方法

水表流量计算方法水表的流速与水表两端的压力差有关,不能仅仅凭供水压力决定。相关的计算公式比较复杂,与压差、水 温( 水的粘稠度) ,管道内壁摩擦系数等因素相关,具体计算公式请参阅流体力学相关知识。 尽管GB/T778.1-2007 已经于2009年5月1日正式执行,但目前市面销售的表还是按照GB/T778.1-1996 的标准执行,对流量的相关规定如下: 4分(15mm)表有N0.6,N1,N1.5 三种流量,常见的是N1.5 常用流量为1.5 方/小时,最大流量为3方/小时 6分(20mm)表水表代号为N2.5常用流量为2.5方/小时,最大流量为5方/小时 1寸(25mm)表N3.5常用流量3.5,最大流量7 1.5寸(40mm) N10常用流量10最大流量20 2寸(50mm) N15 常用15最大30 对于短管道:(局部阻力和流速水头不能忽略不计) 流量Q=[( n /4)d A2 V(1+ 入L/d+ Z )] V(2gH)

式中:Q 流量,(m A3/s); n ------------------------ 圆周率;d 管内径(m), L 管道长度(m); g 重力加 速度(m/sA2); H 管道两端水头差(m),;入 ------------ 管道的沿程阻力系数(无单位);Z ---------------- 管道的局部阻力系数(无单位,有多个的要累加)。 使中部的截面积变为原来的一半,其他条件都不变,这就相当于增加了一个局部阻力系数Z ',流量变为:Q =[(n /4)dA2 V(1+入L/d+ Z +Z ' )]V(2gH)。流量比原来小了。流量减小的程度要看增加的Z '与原来沿程阻力和局部阻力的相对大小。当管很长(L很大),管径很小,原来管道局部阻力很大时,流量变化 就小。相反当管很短(L很小),管径很大,原来管道局部阻力很小时,流量变化就大。定量变化必须通过定量计算确定。

分层注水指标的计算方法

关于分层注水指标的计算方法 为了统一分层注水指标计算方法,加强分层注水工作管理与考核,有关分注指标计算方法统一规定如下: 1、总分注率 %100) ()()()(?-+=口长关井数口注水井总数口注单层井数口封隔器分注井数总分注率 式中: (1) 注水井总数:注水井总数之和(不包含报废井,以下数据均同)。 (2) 封隔器分注井数:指根据地质分注方案,采用封隔器进行分层注水的井(封隔器下在油层以上用于封堵套漏和保护套管的井不算分注井)。 (3) 注单层井数:指只对一个自然层或2~3个自然层且隔层不具备分注条件的注水井。 (4) 长关井数:指关井时间在一个季度以上的注水井。 2、方案分注率 %100) ()()()(?++=口注单层井数口方案设计分注井数口注单层井数口封隔器分注井数方案分注率 式中: (1) 方案设计分注井数:指根据地质分注方案要求需要分注的井。方案设计分注井数=注水井总数—不能和不需分注井数。 (2) 不能和不需分注井数:指因井况和地层吸水能力差等原因不能分注的井。 3、分注层段合格率 式中: (1) ∑合格层段数:指当季按日历天数计算,注水时间≥70%、资料合格天数≥70%、经分层测试调配或季度分层检查测试达到方案要求标准范围的层段数之和。测试分注井的停注层段数算合格层段数。 (2) ∑分注井测试层段数:指所测试的分注井的层段数之和。 注: (1) 合格层段数包括:①当季度新分注井经分层测试调配合格的层段数。②动态调层、调水层段中,经分层测试调配合格的层段数。③原已测试调配合格并转入分层注水超过三个月的%100?=∑∑分注井测试层段数合格层段数 分注层段合格率

水量计算问题

河南理工大学2011年数学建模竞赛论文答卷编号(竞赛组委会填写): 题目编号:( A、B、C、D、E之一) 论文题目: 水量计算问题 参赛队员信息(必填):

封二 答卷编号(竞赛组委会填写): 评阅情况(学校评阅专家填写):评阅1. 评阅2. 评阅3.

摘要 本文通过设计构造辐射井的地下水降落曲线的数学公式,来建立辐射井水量的计算模型。 针对问题一: 根据辐射管在水平布置上的对称性,可将问题简化为对一扇形域的水流运动的研究。又结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,得到辐射管汇集水量的大小与降落曲线高度近似呈正比例关系。分析实测的辐射井降落曲线资料得出地下水降落曲线高度x T 与距离x 之间近似呈自然对数的函数关系,构建地下水降落曲线的函数关系式,并将观测井取得的相关数据代入进行验证,证明了函数的可行性。 针对问题二: 结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,将沿辐射井横剖面上的地下水降落曲线近似为高度的平均直线;可知集水井井壁、辐射管端点外侧流进水量占总水量的很小比例,可只计算沿垂直方向流入辐射管的水量。按照降落曲线的函数式,采用积分法得到沿辐射管全程的平均高度,再结合平均高度T 对应的水平距R 、剖面矩形宽度b 、局部 阻抗系数φ以及集水管的汇流强度公式 x p x x T H k q φ-=,即可得到辐射井出水量。 针对问题三: 根据问题一二中建立的模型进行数据处理。在问题一种利用附件一中所给的数据,得出参数α、0T ,然后将其代入公式中,得出相应的结果,再与实际测量的数据进行比较,判断误差大小,进行评价;问题二中计算出相应的参数变量 T b 、 T d 、 T ?T ,然后通过计算公式得出?的值,再代入求出对应时间的n Q ,比较实际 测量数并分析。 关键字: 汇流强度 局部阻抗系数 降落曲线弯曲率 单管流量

施工用水量计算方法

施工用水量计算方法 一、施工用水设计 根据本工程量、所需劳动人数、施工机械及招标文件等情况,对施工用水作如下设计:1、施工用水量计算 (1)施工用水 按每小时浇筑30m3砼计 其中:q1——施工用水量 Q1——每小时浇筑砼量 N1——施工用水额 K1——未预计的施工用水系数 K2——用水不均衡系数 (2)机械用水 q2=K1 =0.04L/S 其中:q2——机械用水量 Q2——同一种机械台数 N2——施工机械台班用水定额N2=300 K1——用水修正系数K1=1.1 K3——施工机械不均衡系数K3=2.0 (3)现场生活用水 q3= =0.8L/S 其中:q1——施工现场生活用水量 P1——施工现场高峰昼夜人数300人 N3——施工现场生活用水定额N3=60 K4——施工现场用水不均衡系数 K2——用水不均衡系数 b——每天工作班数 (4)消防用水量 Q消=10L/S (5)总用水量 Q=q1+q2+q3=24.9+0.04+0.8=25.74L/S>Q消,故Q总取25.74L/S (6)水源管径计算 D= =0.11 其中:d——配水管直径 Q总——总用水量 V——管内水流速度 2、现场临时给水管布置

从业主提供的水源中,接出一根DN100的水管作为施工现场临时供水主管,即可满足现场的施工及生活和消防用水。楼层给水从结构柱边往上设DN50水管,每层再接出DN25分水管。其余支管均为DN25。 现场临时消防栓设3个,具体位置详附后施工给、排水平面图布置图。 二、现场排污管布置设计 楼上的施工废水用Φ100PVC管从管道井内或从楼梯间有组织地排入地面水沟内,并每隔两层设一根与楼层上临时厕所等污水点相连的污水支管,所有施工废水都经两级沉淀后,才能经排水沟,排至场外的污水井内,地下水和雨水有组织的排入城市雨水井内。

用水量计算

用水量计算
3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、 用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表 3.6.1 中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4 条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施应按本规范第 3.6.5 条和第 3.6.6 条的规定计算节点流量; 表 3.6.1 居住小区室外给水管道设计流量计算人数 每户 Ng 3 4 5 6 7 8 9 10
qokh 350 400 450 500 550 600 650 700
10200 9100 8200 7400 6700 6100 5600 5200
9600 8700 7900 7200 6700 6100 5700 5300
8900 8100 7500 6900 6400 6000 5600 5200
8200 7600 7100 6600 6200 5800 5400 5100
7600 7100 6650 6250 5900 5550 5250 4950
— 6650 6250 5900 5600 5300 5000 4800
— — 5900 5600 5350 5050 4800 4600
— — — 5350 5100 4850 4650 4450
注:1 当居住小区内含多种住宅类别及户内 Ng 不同时,可采用加权平均法计 算; 2 表内数据可用内插法。 2 服务人数大于表 3.6.1 中数值的给水干管,住宅应按本规范第 3.1.9 条的规定 计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施的生活给水设计流量,应按本规范第 3.1.10 条计算最大时用水量为节点 流量; 3 居住小区内配套的文教、 医疗保健、 社区管理等设施, 以及绿化和景观用水、 道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。

需水量计算

丰台花乡羊坊村2016年雨洪利用工程 ——需水量预测与水量分配方案1.景观水系总体布置 结合公园景观水系设计方案,为了便于水量平衡分析,现将公园水系进行分区。 表1 羊坊村雨洪利用工程景观水系总体布置

项目用水主要为公园水系的蒸发渗漏,以及绿化带内绿化灌溉用水。 2.景观水系蒸发水量 项目区内无蒸发实测资料,本次采用多年平均蒸发量对项目蒸发量进行计算。 丰台区多年平均蒸发量为1127mm。蒸发量夏季大,冬季小,最大蒸发量发生在6月。6月总蒸发量为200mm,可计算得6月平均日蒸发量为6.6mm。 本次以年内最大月的日平均蒸发量估算河湖的水面蒸发量。结果见下表2。 表2 项目区水系蒸发量计算表

3. 渗漏 入渗补给量是一个较为复杂的变量,从总体看渗透分为垂直入渗和侧向入渗。 因地表覆盖厚度变化各异,覆盖层土质也各不相同,因此选用的入渗系数也不相同。 据地勘报告按粘质粉土,项目区地下为卵石层,下卧细中砂透水层,渗透性较好,为维持项目区景观水面,本项目景观水系设计底高程至正常蓄水位之间采取减渗措施,减渗材料采用膨润土防水毯,其渗透系数为5×10-11m/s ;正常蓄水位至最大蓄水位之间不设减渗,按地勘报告粘质粉土渗透系数0.3m/d 计算。 根据《节水灌溉工程实用手册》渗量计算采用下式计算: )m 1h 2(0116.0S 21++=γb K

其中:S—渠道每公里长渗透流量,m3/(s.km); k—渗透系数,m/d; b、h—渠道底宽和水深,m; m—渠道边坡系数; —考虑渠坡侧向毛管渗吸的修正系数,其值为1.1~1.4,毛细管作用 1 强烈时取大值。 各分区渗漏损失计算成果详见下表。 表3 渗透量计算成果表

注水相关指标计算公式及说明

注水考核相关计算公式及说明 1.注水井利用率计算公式: 以每月数据库、注水报表数据为准计算。 %100-?=待报废井(口)-(口)计划关井数(口)注水井总井数注水井开井数(口)注水井利用率 开井数是指当月内连续注水24h 以上,并有一定注水量的注水井数之和。在间开制度下的间歇注水井,有一定的注水量,也算开井数。 计划关井必须在月度配注公报中注明,并说明原因。 式中:(1)计划关井:测试及措施作业占用井;钻井施工要求停注的井;为开展研究实验及调整井网、层系而停住的井;周期注水井;因水资源保护区、城市规划区等安全环保原因的关井。 (2)因井网残缺、无效注水关井、井筒落物、套管变形、注不进、井下事故、地面等原因关闭的注水井或长关井,不属于计划关井。 (3)待报废井:指油田公司已初步审查同意,待正式批复的注水井。 2.计划指标完成率计算公式: 以公司下达的各项计划工作量进行考核,完成数据以数据库及报表数据为准。完成指标包括:注水井钻井、投注井、转注井、油水井测试及措施、注水专项。

%100计划完成量 指标实际完成量=计划指标完成率? 3.单井配注合格率计算公式: 以每月的配注公报及数据库、注水报表数据为准计算。 %100注水井开井数 注水井配注合格井数配注合格率(%)?= 说明: 水井月平均注水量不超过配注量的20%,不低于配注量的10%的注水井算合格井。 配注5方以下,±1方为合格;配注5-10方,±15%为合格。 月内调整配注的井,以生产时间较长的工作制度计算配注合格率,如果两种工作制度生产时间差不多,以最后一次工作制度计算配注合格率。 4.站点水质达标率 站单项水质达标率。反映站点实际单项水质指标达到标准水质指标的程度。 达标率=标准值/实际值×100%(当实际值小于标准直时,达标率取100%)。 站综合水质达标率。为站多个单项水质达标率的平均值。站综合水质达标率=∑站单项水质达标率/站水质指标检测项数。 5、油井生产时率=油井实际生产时间(小时)/油井计划生产时间(小时)*100% 油井计划生产时间,为间歇抽油应该生产的时间。

需水系数法计算作物需水量及灌溉定额计算方法

需水系数法计算作物需水量及灌溉制度 1、以水面蒸发为参数的需水系数法(简称“α值法”或蒸发皿法) 大量的灌溉试验资料表明,气象因素是影响作物需水量的主要因素,而当地的水面蒸发又是各种气象因素综合影响的结果。因腾发量与水面蒸发都是水汽扩散,因此可以用水面蒸发这一参数估算作物需水量,其计算公式为: 0E ET α= (式2-1) 或 b E ET +=0α (式2-2) 式中: ET ——某时段内的作物需水量,以水层深度计,mm ; 0E ——与ET 同时段的水面蒸发量,以水层深度计,mm ;0E 一般采用80cm 口径蒸发皿的蒸发值,若用20cm 口径蒸发皿,则20808.0E E =; α——各时段的需水系数,即同时期需水量与水面蒸发量之比值,一般由试验确定,水稻α=0.9~1.3,旱作物α=0.3~0.7; b ——经验常数。 由于“α值法”只需要水面蒸发量资料,所以该法在我国水稻地区曾被广泛采用。在水稻地区,气象条件对ET 及0E 的影响相同,故应用“α值法”较为接近实际,也较为稳定。对于水稻及土壤水分充足的旱作物,用此式计算,其误差一般小于20%~30%;对土壤含水率较低的旱作物和实施湿润灌溉的水稻,因其腾发量还与土壤水分有密切关系,所以此法不太适宜。 根据资料提供的20cm 口径逐日蒸发量,可求得80cm 口径逐日蒸发量,并求出生育期内蒸发量的总和,即:

利用需水系数值α根据(式2-1)可求得生育期的作物需水量总和,根据地区生育期各生育阶段的需水量分配比,可得各生育阶段的作物需水量。根据生育阶段天数的不同,将各生育阶段的作物需水量平均到每天,即逐日耗水量,则求得各生育阶段的逐日耗水量。 2、水量平衡方程 ET M K P W W W T t -+++=-00, 式中:W t 、W 0 :时段初和任一时间t 时的土壤计划湿润层内的储水量。 W T :由于计划湿润层增加而增加的水量。 P 0 :降雨入渗量,即有效降雨量。本灌区的降雨入渗量可根据降雨量与次降雨有效利用系数求得。即以连续降雨日期中降雨最大的日期为降雨日期,降雨量为该阶段的降雨量之和P ,用该降雨阶段雨量之和乘以次降雨有效利用系数σ,即P 0 = σP ,σ选取原则如下:次降雨量P (mm )< 5, σ=0 , P=5~50 , σ= 1.0, P=50~100 , σ= 0.9, P=100~150 ,σ= 0.75 , P>150,σ=0.70。 K :时段t 内的地下水补给量,用所占玉米生育期需水量的百分数表示,这里忽略不计。 M :时段t 内的灌溉水量。 ET :时段t 内的作物田间需水量,已由第一步计算求得。 3、灌溉定额即允许储水深度上、下限的计算 式中:m —灌水定额,m 3/亩; H —时段内土壤计划湿润层的深度,m ; γ—计划湿润层内土壤的干容重,t/m 3; —时段内允许的土壤最大含水率和最小含水率,

相关文档
最新文档