抗静电剂的研究

抗静电剂的研究
抗静电剂的研究

永久型抗静电剂的研究进展

摘要:介绍了高分子永久型抗静电剂的特点,作用机理和目前的应用概况。高分子永久型抗静电剂对空气的相对湿度依赖性小,抗静电效果持久,无诱导期,不受擦拭和洗涤等条件影响。高分子抗静电剂在基体树脂中形成网络结构,树脂中聚集的电荷通过形成的导电通路得以释放。

关键词:永久型;抗静电剂;渗滤网络

大多数高分子材料在生产和使用中易产生静电积累,从而造成静电吸尘、静电放电等不良现象。严重时可产生火花,引起火灾或爆炸。给工业生产和日常生活带来麻烦。据报道,美国仅1985年因静电引起的电子元件损失达5亿多美元。因此,对于具有抗静电功能的材料的研究已引起人们的重视。随着抗静电剂日益广泛的应用,对抗静电剂的性能也提出了越来越高的要求,如合成纤维用抗静电剂要求有良好的通用性、耐久性和低毒等特点。本文叙述了永久型抗静

电剂及其研究进展。

1永久型抗静电剂的特点

传统型抗静电剂是由小分子的表明活性剂组成,它含有亲水基团和亲油基团。由于它与树脂本身不完全相容,因此抗静电剂会从树脂内部迁移到树脂表面。传统型抗静电剂需要在一定的湿度条件下方可起作用,其亲水基团能促进塑料表面被水湿润,从而疏导静电荷,降低塑料的表面电阻率。只有当传统抗静电剂分子迁移到表面后才能起作用,塑料内部的抗静电剂分子不断地迁移至表面,直至完全消耗,因而其作用效果仅在一定时间范围内有效。高分子永久型抗静电剂只能通过混炼的方法加入到基料中。它不是靠迁移至塑料表面,而是靠在塑料内部形成一个具有导电能力的渗滤网络,以此为通路解掉表面及本体内静电荷,降低电阻率。与传统抗静电剂相比,其抗静电效果持久,无诱导期,不受擦拭和洗涤等条件影响;因为它的导电性能不是靠水层来达到的,因而对空气的相对湿度依赖性小;制品的机械性能和耐热性能不受其影响,但添加量较大(一般为5%~20%),价格偏高¨,2J。

2高分子永久型抗静电剂的作用机理

高分子永久型抗静电剂是近年来研究开发的一类新型抗静电剂,属亲水性聚合物。当其和高分子基体共混后,一方面由于其分子链的运动能力较强,分子间便于质子移动,通过离子导电来传导和释放产生的静电荷;另一方面,抗静电能力是通过其特殊的分散形态体现的。研究表明,高分子永久型抗静电剂主要是在制品表层呈微细的层状或筋状分布,构成导电性表层,而在中心部分几乎呈球状分布,形成所谓的“芯壳结构”,并以此为通路泄漏静电荷。因为高分子永久型抗静电剂是以降低材料体积电阻率来达到抗静电效果,不完全依赖表面吸水,所以受环境的湿度影响比较小[3,4|。

这些亲水聚合物可以像导电离子一样在聚合物内部自由迁移,它们最大的优点就是由于具有较大的摩尔质量,因而不能轻易迁移到基体树脂的表面。要获得抗静电效果良好的聚合物,在加工工程中必须采取一些特殊处理,在加工阶段,使高分子抗静电剂在基体树脂中形成网络结构,这样,树脂中聚集的电荷可以通过形成的导电通路得以释放。为了形成这种网络结构,加工时的温度应高于抗静电剂的熔点。从渗透理论可知,渗滤系统的形成主要依靠于填料的长径比。长径比越大渗透效果越差。与传统抗静电剂相比,这些亲水聚合物不仅能释放物体表面的电荷,还能释放物体内部的电荷,因此能同时降低物体的表面电阻

和体积电阻L5j。3高分子永久型抗静电剂的应用表1是常用高分子永久型抗静电剂的种类及适用范围[6|。

表l 常用高分子永久型抗静电剂的种类及适用范围

3。1聚醚型

金玉顺等[7]通过含金属盐的脂肪酸聚乙二醇酯(PM)与BHET的共缩聚反应,制备了大分子主链上含有金属盐的聚醚酯抗静电剂(既置M)。PEEM与常规PET切片共混纺丝制备的涤纶纤维具有优良的抗静电性能,且其抗静电性、耐洗涤性均优于添加不含金属盐的聚醚酯抗静电剂(PEE)的涤纶纤维,经沸水处理后仍能达到理想的抗静电效果。此种抗静电纤维在极端干燥(艘≤30%)条件下仍能具备优良的抗静电性能(如表2所示)。

表2PEE和PEEM在规定条件下的抗静电效果(冗日=25%,15℃)

田红艳等旧J选用聚醚酯(非离子)永久型抗静电剂MileaseT,通过后整理工艺赋予织物抗静电的功能,分别采用浸轧法和高温高压法对涤纶织物进行了整理试验,并对其耐久性以及在不同相对湿度条件下的抗静电效果及其规律进行了较为深入的研究(如表3所示)。聚醚酯(非离子)永久型抗静电剂,并非表面活性剂,而是聚对苯二甲酸乙二酯和聚醚的嵌段共聚物。由于其中含有聚对苯二甲酸乙二酯组分,与涤纶具有相同的结构,在高温定型处理过程中,与聚酯大

分子产生共晶作用,固着在涤纶纤维上,获得耐洗性效果。另一部分聚醚组分,属于亲水链段,可在涤纶纤维的表层形成亲水中心,由于吸水性大大增加,既可加速织物表面电荷的逸散速率,降低纤维表面电阻,又可以达到抗尘及易去污的作用。

表3规定条件下MdeaseT的抗静电效果(20℃,碰,=45%)

一般认为静电压小于500v,半衰期小于2—3s的为抗静电性能良好。从表3可看出,采用浸轧法和高温高压法整理织物均能获得良好的抗静电效果。相比较而言,高温高压法的抗静电效果要略优于浸轧法,但整理工艺相对复杂,对设备要求较高。浸轧法和高温高压法相比较,经高温高压法整理的织物其耐洗性在较大程度上优于浸轧法,20次水洗后,半衰期仍保持在3s以下,静电压小于500V,表明织物抗静电性能良好。从永久型抗静电整理要求出发,最好是采用高温高压法【8J。ciba精化推出的永久性抗静电剂——IRGAsTATP系列添加剂是基于聚醚一聚酰胺的共聚物。不同IRGAsTATP添加剂牌号含有不同的聚合物结构和共添加剂,汽巴共有4种不同类型的IRGAsTATP添加剂,所有的添加剂均为粒状,可和塑料经过造粒或生产直接加入。当IRGASTATP在聚合物中形成网络时制品才能达到最佳抗静电效能,通常要求添加5%~15%的浓度。由于相对较高的添加量和塑料中网络的形成,通常制品的机械性能会受到一定的影响,Ciba精化生产的4种不同的添加剂可降低对制品的机械性能的影响【9I。通过电子显微镜能观察到IrgastatP22在PP基体树脂中形成的渗滤网络结构,并测出其直径在0.2一15肚m(如图1所示)。选择合适的溶剂萃取,通过光学显微镜可以观察到残留的黑色滤网结构,由于网络结构非常纤细,所以很少量的助剂就可形成导电网络结构。目前,市场上的永久抗静电剂主要用于ABs、HIPS 和PMMA。聚烯烃用永久抗静电剂的质量分数一般要高于30%才能达到较好的导电效果,因此,烯烃类很少使用永久抗静电剂。

此外,基体树脂的机械性能也会受其影响而大大改变。IrgastatP22用量很少的情况下就能达到较好的抗静电效果,而且可以广泛应用于注射成型、.吹膜/平板挤出及纺丝过程。加工过程中必须使抗静电剂熔融,因此,加工温度必须高于抗静电剂的熔点,否则就无法形成网络结构。I职astatP22在相对湿度低于8%时也能达到抗静电效果,在这样的条件下,传统抗静电剂就失去了抗静电效果[5|。日本三洋化成公司应用聚醚与分散技术开发了半永久性防止塑料静电的高分子型抗静电剂代L又夕一)卜6321(商品名)。该抗静电剂是以基料的特殊嵌段聚合物,它与ABS、MMA、PA、PET及Pc/ABc合金的相溶性较好,通过它们的合金化可得到具有永久抗静电效果的塑料。心L,只夕一)卜6321是微黄色颗粒,熔点203℃,舰限为20g/10rnin,耐热性达285℃,表面固有电阻1×109Q,它的主要特点为:不降低塑料本身的机械特性和表面特性;热稳定性优良,不损害成型品耐热性;适用树脂多,对各种树脂的分散性均优;成型后立即发挥高效抗静电性能。在ABS树脂中添加10—15%弋L,只夕一)卜,其表面固有电阻为6.0×1013Q(PC为>1016n),水洗20次为5.5x1013Q(>1016Q),拉伸强度为57 MPa(58MPa),伸长率为130%(110%),弯曲弹性模量2160MPa(2200 MPa),载荷挠曲温度105℃(106℃)。可见,添加心L只夕一)卜后对树脂的机械特性和耐热性没有影响。旭化成工业公司开发成功ABs系与HIPs系永久性抗静电树脂,商品名分别为丁尹/f/f才yA(A.DION.A)和7尹/f/f才二/H(ADl0N—H)。它们是以PEG.PA为永久性抗静电剂,分别与ABs、HIPS合金化而得。它们在保持基料树脂的特性的同时,还具有永久抗静电性,表面固有电阻为lO¨~10”Q,既可排除成型品带电,还可防止在膜表面吸附尘土¨0|。

3.2季铵盐型

李明设计合成了聚丙烯酰胺季铵盐类的抗静电剂。在四口烧瓶中加入甲醛、二甲胺,恒温,再加入丙稀酰胺水溶液,反应生成胺甲化的丙稀酰胺,接着与硫酸二甲酯反应生成丙稀酰胺季铵盐单体。将季铵盐水溶液进行自由基聚合,制得阳离子高聚物水溶液。当共聚物的溶液浓度为1.44%,涤纶织物在25℃、咫=66%的半衰期为0s,静电压为0kV;15次水洗后半衰期为1.7s、静电压为0.35kV。研究结果表明,这种阳离子型高聚物具有优良的抗静电性和耐水洗性u1‘。李效玉等[12]以丙烯酸丁酯(BA)、苯乙烯(St)和甲基丙稀酰氧乙基一二甲基一丁基溴化铵盐(MB.DM)为共聚单体,N.甲基.N.十六烷基吗啉硫酸甲酯盐作乳化剂进行自由基型乳液聚合,研究了影响聚合速度、高聚物粘度和乳液稳定性的因素,合成了一系列稳定的阳离子共聚物乳液,所得乳液经稀释后对不同织物进行处理,处理后的织物具有良好的抗静电性和耐水洗性。以cMM 作为乳化剂合成P(St.BA.MB.DM)乳液,当乳化剂用量大于2%时,可获得好的乳化效果,乳液稳定性能好。用(St.BA.MBDM)胶乳处理的涤纶仿真丝、人造棉、腈纶都有很好的抗静电性能,但耐水洗性仅对人造棉有效。带有长链烷基的季铵盐是一类熟知的阳离子乳化剂。若组成季铵盐的烷基有一个带碳一碳双键的烯烃,它将转变为既有聚合能力又兼具乳化特性的功能单体。采用这类单体进行乳液均聚,不仅可为无皂乳液聚合创造有利条件,而且还可制得分子中带阳离子的聚合物。它的导电机理:一是靠季铵盐的极性导电,二是它能吸附环境中的水分来传导电荷,所以无论在干燥或湿润的环境中它都有良好的抗静电效果,这种聚合物的合成、性质和应用已成为功能材料研究的热点。刘金辉等u3’14J用不同碳链长度(C4,c8,C10,C12,C16)溴代正烷烃对甲基丙烯酸N,N’一二甲氨基乙酯(DMAEMA)进行季铵化,制得了相应的季铵盐(c。N+),

并用熔点和1H.st.C】6N+鉴定了它们的纯度;通过与丙烯酸丁酯(BA)、苯乙烯(St)的元皂乳液共聚,制得了BA.st.c16N+三元共聚物乳液;织物涂敷试验表明,稀释乳液是一种良好的永久性抗静电剂[13I。

3.3其它

纤维素树脂内部聚合吡咯可得高技术纤维。树脂的导电率与聚吡咯含量、氧化剂含量及纤维的结构有关。聚吡咯和纤维素复合材料内部发生无规聚合。通过订一IR和Dsc分析可以看出,由于聚合度和聚吡咯的引入纤维素的化学结构发生很大的变化,纤维素树脂的物理机械性能都没有明显的变化,而且还获得了较好的耐洗性和光稳定性usI。赵和英L16J采用聚乙二醇、问苯二甲酸双羟二乙酯磺酸钠、无机盐与对苯二甲酸双羟二乙酯共聚合的方法合成了一种新型抗静电聚对苯二甲酸乙二酯(PET)。该树脂的体积电阻率达到104Q·cm,静电半

衰期达到0.02s,且不受长时间水洗的影响,其抗静电性能明显优于用共混等其它方法获得的抗静电PET树脂。改性组分sIPE和PEG使抗静电PET树脂的结晶度降低,非晶区比例增大,超分子结构趋于疏松,提高了抗静电性能。在抗静电应用研究中最为广泛的是聚苯胺及其衍生物。聚苯胺不是通过氧化还原实现导电的,而是通过质子掺杂。这种方法获得的导电高分子一般难溶解不熔化,很难进一步加工处理。但是,当改变掺杂剂的结构时可以改变聚苯胺的溶解性能,获得的高分子能够溶解于水或者有机溶剂,例如聚对苯乙烯磺酸掺杂的聚苯胺。芬兰的Panipol公司已经成功解决导电聚苯胺的吨级生产、溶解与熔融加工难题,并率先进入工业化生产,其聚苯胺合成装置的产量居世界领先地位。除了P枷pol公司外,目前从事可溶/熔融导电聚苯胺研究的厂家还有日本的日东电工及德国的Oremecon公司[17l。

4展望

目前,国外永久型抗静电剂的研究已经成为热点,国内的研究还未成熟。未来的研究将向着开发新品种,降低成本,耐热,持久,适用性广泛,对产品性能影响较小,对环境无毒无污染,优化加工工艺等

方向发展。

参考文献

1谢鸽成.塑料助剂,2000,19(J):25

2黄良仙,安秋风,李临生.日用化学工业,2【)04,34(5):308

3张福强,王立新.塑料科技,1996,23(1):5

4 LEEBL.JApplSci,1993,47(4):587

5 Markus c.P1astAdditcompound,1999,(7):21

6邓如生.共混改性工程塑料.北京:化学工业出版社,2003.114

7金玉顺,高绪珊,刘光臻.高分子材料科学与工程,2001,17(4):1538

田红艳,沈淦清,刘学.北京纺织,2001,22(2):39

9张凌军,谢鸽成.塑料助剂,2005,24(2):35

10邹盛欧.化工新型材料,1996,(3):33

11李明.染料与染色,2003,40(4):232

12李效玉,陈国举,焦书科等.合成树脂及塑料,1995,12(1):15

13刘金辉,李效玉,潘文等.合成树脂及塑料,1995,12(2):20

14赵常礼,程远杰,李晶等.沈阳化工学院学报,1996,10(3):239

15 DaUAcqua L.SynthMet,2004,146:213

16赵和英.合成树脂及塑料,2003,20(2):1

17徐景坤,胡秀杰,蒲守智.感光科学与光化学,2005,23(3):233

轻质油品中的抗静电剂

轻质油品中的抗静电剂 前言: 汽油、柴油、航空煤油等燃料的主要成分是烃类化合物,电导率很低,在其生产、储存及运输过程中极易产生和积累静电,发生静电事故。随着人们对燃料质量要求的不断提高,燃料中的一些极性较强、导电性能较好但影响燃料质量的化合物(如含硫、含氮和羧酸等),在燃料精制中被脱除,使得燃料的导电性能更差,静电安全隐患增加。 静电是油品任储存和运输过程中的危险因素。任轻质油品中加入抗静电剂,能有效地提高油品电导率,控制静电。但不同油品对抗静电剂的感受性有差异,品质越高的油品对抗静电剂的感受性越好;在生产及储运过程中,搅拌对轻质油品电导率的衰减速度影响最大;而储仔温度越高,轻质油品电导率衰减越大。 所以抗静电剂的选择要综合考虑自身油品的特性,综合比较不同的抗静电剂对油品导电性的影响,要考虑不同的抗静电剂对导电性能衰减的影响,同时选择适宜油品贮存和运输的容器材料以及贮存温度。 轻质油品电导率衰减: 在轻质原油中添加抗静电剂可提高其电导率,但在实际的输送过程中,轻质油品电导率会衰减。电导率衰减有如下这些特性: 搅拌可加速轻质油品电导率的衰减。 轻质油品的电导率在储存过程中有衰减现象,特别是在开始的几天,其电导率衰减比较快,而随着时间的延长,衰减速度变慢。 轻质油品在不锈钢容器中的储存的电导率衰减比在塑料瓶中略快。 温度越高,轻质油品电导率的衰减速度越快。 加油抗静电剂的轻质油品的电导率随着温度的升高而增大,电导率测试应在一固定温度下进

行。 抗静电剂的作用机理: 静电的产生机理是基于偶电层理论。当油品与管道接触时,在接触面处形成电量相等,符号相反的2个电荷层,即偶电层。在接触形成的偶电层的主要原因是接触物质通过不同的方式(如摩擦等)产生正、负电子,集聚与接触面,形成正负相吸的电中性稳定态。当接触面上的正、负电子发生移动时,偶电层中的2层电荷将分离,电中性被破坏,接触物质会产生带电现象。 抗静电剂是通过离子化基团或极性基团的离子传导或吸湿作用,构成泄露电荷通道,从而有效消散静电荷的化学添加剂。在油品中加入微量抗静电剂,能大大增加油品的电导率,提高电荷的泄露速度,使油品中的集聚的电荷减少,电位降低,从而消除油品静电。 抗静电剂的种类: 抗静电添加剂分为有灰型和无灰型两种。有灰型的抗静电剂如ASA-3,T601,T1501存在毒性大,工艺条件恶劣,环境污染严重,油品易乳化及易导致水分离指数不合格等问题,所以在上世纪90年代末已停止生产和使用,中国从2003年开始陆续停止生产何用这种类型的抗静电剂。 目前喷气燃料中的无灰型添加剂主要有Stadis 450, Antis JF3等。无灰型添加剂以导电性高,水分离特性好、燃烧后不发生铬污染及可多次补加等优点。但是也存在一些严重的问题:一是不同的油品感受性差异很大,有些油品即使添加大量的抗静电剂,电导率仍达不到要求;二是电导率衰减迅速,某些油品出厂合格,但是通过船运和铁路槽车运输到客户手中后,电导率到不到要求,在这里Antis JF3的抗衰减性能比Stadis450较好。 目前主要的地面油用的抗静电剂为 Stadis 425, Antis DF3,由于缺少国产的抗静电剂,为此,石油化工科学研究院通过大量的合成实验和配方研究,研制出满足地面油用的抗静电添加剂。 目前,喷气燃料使用的无灰型STADIS450抗静电剂。主要由聚砜、聚胺等高分子化合物与溶剂复配而成, 使用中已发现它们对不同油品的感受性不同, 但国内外对油品抗静电剂的适应

油品抗静电剂综述

油品抗静电剂综述 石油石化行业是国民经济的基础工业,是我国的支柱性产业。随着国内经济的持续发展,机动车数量及种类不断增加,燃油的需求量也同步上升,我国从石油中提炼、加工的产品越来越多,石油化学制品随之也广泛应用到国民经济的各个行业中。近几年随环保要求的提高,燃油品质不断升级。燃油及石油制品的主要成分是烃类化合物,均是电的不良导体,特别是通过脱硫、脱氮等精加工后,使得燃油的导电性能更差。在生产、储存、装卸、运输使用的过程中,油品与储容器或输油管壁之间的摩擦极易产生十分危险的静电,积累至一定程度会产生静电火花,点燃爆炸性混合气引起爆炸和火灾等重大灾害。因此,提高燃油的使用安全性一直是备受关注的研究之一。石油静电的起电机理相当复杂,它受很多因素的影响,如何有效的减少或消除燃油在生产、运输中产生的静电,确保燃油及石油产品安全运输,减少静电事故,有重要的经济意义和社会意义。 在石油及石油制品储运过程中,如油库、油罐、输油管道、油轮及油槽等场所,特别是轻质油品,如煤油、汽油、航空煤油,因其电阻率较高,更易积聚电荷,发生静电灾害事故。美国石油企业平均每年发生静电灾害十余起,日本平均每年发生静电灾害二十余起。据壳牌石油集团的一项专题报告指出,装卸或运输石油及石油产品,因静电放电(ESD)引起的火灾、爆炸事故在全世界普遍存在,造成的经济损失十分巨大。国际航运协会(ICS )、国际石油公司海运论坛(OCIMF )和国际港口协会(IAPH )共同制订的国际法规ISGOTT 中指出:全世界每年平均有6~10次特大事故,是在装油、卸油时发生的。至于公路油罐车和铁路槽车因ESD 引起的一般事故或小型事故,时有发生。为了减少和预防因ESD引发的事故,一方面,国际组织及国际集团公司不断修订更严格的技术规程和技术标准,不断提高技术管理水平。另一方面,国际组织与国际集团公司投入人力物力开展技术研究与技术开发,寻求防治ESD的关键技术。 我国对静电放电造成的危害有很高的认识,但对消除油品静电的技术报道并不多。国内的专家从80年代起对日益增加的石油工业静电事故进行了大量的研究,并且翻译出版了大量的静电防治的出版物。由于我国对石油工业静电方面的防治起步比较晚,再加上石油工业静电机理复杂,干扰因素多的特点,因此,我

(整理)抗静电剂产品知识简况

抗静电剂知识简介 一.静电: 静电(Electrostatic)就是物体表面过剩或不足的静止电荷。静电是一种电能,它留存于物体表面:静电是正电荷和负电荷在局部范围内失去平衡的结果:静电是通过电子或离子的转移而形成的。 静电现象已为人们所熟悉,当天气干燥时用塑料梳子梳头时会产生放电声;用毛皮磨擦后的钢笔杆可吸引小纸屑(当电荷密度达到106C/m2);脱下合成纤维衣服时产生的劈啪声;夜间还可以看到火花(空气的击穿场强为30KV/cm);日光灯、电视机屏幕、录音机磁头等易附着灰尘现象,这都是日常生活中经常体验到静电现象。 静电现象是电荷的产生和消失过程中产生的电现象的总称.静电具有以下特点: 1.从防静电危害的角度考虑,当材料的体积电阻率超过 1010Ω.m时,材料耗散静电的能力明显减弱。从消除静电角度考虑,材料的体积电阻率不应高于1010Ω.m; 2、在一般工业生产中,静电具有高电位、低电量、小电流和作用时间短的特点,设备数万伏以至数十万伏;在正常操作条件下也常达数百伏至数千伏;这要比市用低电压220V,380V高得多,但积累的静电量却很低,通常为毫微库仑(nC,10-9C)级;静电电流多为微安(μA,10-6A)级,作用时间多为微秒(μS,

10-6S)级。 3、静电较之流电,受环境条件特别是湿度的影响比较大,静电测量时复现性差,瞬态现象多。静电同世上任何事物一样具有双重性:即既能为人类造福,如静电复印、静电喷漆、静电除尘等应用技术;也会带来许多危害,如石化、电子及电工等领域。就电子元器件的生产及电子设备的装联、调试作业而言,因接触、磨擦起电、人体电荷与接地问题就能造成很大损失。磨擦起电和人体静电乃是电子、微电子工业中之两大危害源。随着电子工业的迅速发展,静电危害正在日益表露出来并逐渐受到人们的重视。 二.抗静电剂组成和分类: 塑料具有很高的体积电阻和表面电阻率。这种高电阻性能,使其在应用过程中会携带大量来自其他介质的静电荷,从而干扰加工过程的进行,或因放电影响产品的美观和卫生,或损坏产品的性能甚至造成严重的事故。或人体上的静电位最高可达添加抗静电剂可降低聚合物材料的带电能力,解决上述静电给塑料制品带来的问题。抗静电剂具有吸湿性,它迁移至塑料表面,吸收大气中的水分而形成一层很薄的导电薄膜,使静电迅速消除。 抗静电剂一般都具有表面活性剂的特征,结构上极性基团和非极性基团兼而有之。常用的极性基团(即亲水基)有:羧酸、磺酸、硫酸、磷酸的阴离子,胺盐、季铵盐的阳

(完整版)抗静电剂的研究现状及发展化

抗静电剂的研究现状及发展 1.静电的危害 静电是一种处于静止状态的电荷。一般来说,静电会在正当两个物体的解出与分离、摩擦、变形以及离子附着等情况下产生。静电的危害有很多,但大致可以分为两种。 1.1 静电的第一类危害 静电的第一类危害来源于带电体的相互作用。飞机机体与空气、灰尘、水蒸气等微粒摩擦时会使飞机带电。若不及时采取措施,飞机的无线电设备将会失灵。在印刷厂静电会使纸张粘合,极难分开,给印刷带来麻烦。静电也很容易吸附灰尘和油污造成产品污染。 1.2 静电的第二类危害 第二类危害是指由于静电火花点燃易燃物发生爆炸。平时静电产生的火花对人体基 本无害,可是在空气中充满易燃气体和粉尘时,电火花引发威力巨大的爆炸。例如,手 术台上,麻醉剂主要成分为乙醚,静电火花会引起麻醉剂的爆炸,伤害医生和病 人;在煤矿,则会引起瓦斯爆炸,会导致工人死伤,矿井报废。 2 抗静电剂的定义 抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消散静电荷产生的化学添加剂。抗静电剂自身没有自由活动的电子,属于表面活性剂范畴,它通过离子化基团或极性基团传导或吸湿作用,构成泄露电荷通道,达到抗静电的目的。[1] 3 抗静电剂的作用机理 常用的抗静电的方法有两种,第一种是增加产品的润滑性,防止静电荷产生,第二种是加快静电荷的泄露。因此抗静电剂的使用方法也有两种,一种是涂刷、喷洒在产品表面,另一种是添加到生产材料的内部。这两种使用方法都可以提高材料的电导率,并且对应着两种作用机理。 3.1 外部抗静电剂的作用机理 通过键与空气中的水分子结合,抗静电剂的亲水基在塑料表面形成一个单分子导电膜,能够降低表面电阻,加快电荷的泄露。摩擦间隙中的介电常数高于空气中的介电常数,使电场变弱,从而导致产生的电荷减少。 3.2 内部抗静电剂的作用机理 在树脂中添加足够量的抗静电剂时,树脂表面会形成一层稠密的排列,亲水基向着空气一侧形成导电层,表面浓度高于内部。加工时,由于外界的作用可以使树脂表面的抗静

抗静电剂在塑料中的应用

抗静电剂在塑料中的应用 在现代工业生产及日常生活中,静电危害往往造成重大损失和灾难。防止聚合物表面产生静电的方法主要有空气离子化法、加湿法、金属接触放电法、辐射线法、导电物质导入法、表面形成吸湿膜法、化学处理变性法及应用抗静电剂等。 其中,主要应用于塑料制品使用过程中的是掺入导电物质和添加抗静电剂。 加入的导电物质一般为金属粉或金属短纤维、导电炭黑、导电聚合物短纤维等,能使制品具有良好的导电性(表面电阻率<106Ω)或抗静电性(表面电阻率在106~108Ω之间)。金属化合物的抗静电效果较好,但是价格较高,普通制品承受不了。 目前应用最多的抗静电方式是添加抗静电剂。抗静电剂是一种能防止产生静电荷,或能有效地消散静电荷的以表面活性剂为主体的化学添加剂。使用抗静电剂的方式是在制品表面涂覆或内添加。 从抗静电性能的检测和评价指标表面电阻率可用于区分抗静电材料和导电材料的区别,如表1所示: 表1 导电材料和抗静电材料的表面电阻率/Ω(23℃,RH50%) 导电材料静电消散材料抗静电材料绝缘材料<106106~108108~1012>1012 <106106~109109~1012>1012 <106106~108108~1013>1013 目前就导电、抗静电材料的分界线说法不一,导电材料与静电消散材料之间的界限为105或106Ω,静电消散材料与抗静电材料之间的界限为108或109Ω,抗静电材料与绝缘材料之间的界限为1012或1013Ω。 美国是抗静电剂最大生产和消费国,主要采用羟乙基化脂肪胺、季铵盐化合物、脂肪酸酯类抗静电剂,用于聚烯烃、聚氯乙烯、聚苯乙烯、ABS、聚碳酸酯等。欧盟也是生产和消费抗静电剂的主要地区,所用抗静电剂中50%为羟乙基化脂肪胺,25%为脂肪烃磺酸盐,25%为季铵盐和脂肪酸多元醇酯。日本多用非离子型和阳离子型抗静电剂,其中20%用于PVC,30%用于PP。 我国抗静电剂发展较快,主要是塑料工业用高效无毒抗静电剂、合成纤维工业用高效多功能抗静电剂及表面处理剂。 一、影响抗静电效果的因素 1.分子结构和特征基团性质及添加量 抗静电剂的效果首先取决于它作为表面活性剂的基本特性――表面活性。表面活性与分

7.永久抗静电剂的种类及特色

永久抗静电剂的种类及特色 摘要:永久性抗静电剂多为亲水性聚合物,它可以赋予疏水聚合物永久性抗静电性能,而基本不影响其他性质。本文主要介绍了永久抗静电剂的种类及永久抗静电剂的特点、应用机理和其一些相关应用情况及前景展望。 关键词:聚合物共混物永久抗静电剂分类特色 The classification and antistatic mechanism of polymer antistatic agents Abstract:Permanent antistatic agents are mostly hydrophilic polymers, it can give hydrophobic polymers the properties of permanent antistatic, and basically does not affect other properties. This paper mainly describes the classification and antistatic mechanism of polymer antistatic agents, the application mechanism and some of its related applications and prospects. Keyword: polymer blends permanent antistatic agents classification antistatic mechanism 1.前言 高分子材料依其优美的外观、低廉的价格、出色的电绝缘性能、良好的加工性能和耐化学性能而获得广泛应用。但在摩擦时容易积聚静电, 导致表面吸尘、薄膜闭合、电子器件击穿、电击和爆炸等许多灾害。为消除静电灾害,工业上一般将材料的表面电阻率限制在1012Ω以下。在聚合物基材中添加低分子量抗静电剂是最常用的抗静电措施,由于这种改性材料主要是利用抗静电剂在材料表面吸附水分降低表面电阻率,因此,耐久性差,不耐擦洗,对环境湿度的依赖性大,而且材料的耐热温度和表面特性都有不同程度下降。经炭黑、金属填料改性的聚合物,虽获得了比较好的永久性抗静电性能,但也存在价格高、不易着色、填料易脱落或氧化以及物性下降等缺点。 80年代以来, 国外先后开发了一系列亲水性聚合物, 与ABS树脂、HIPS和PMMA等疏水性聚合物共混后,得到了永久性抗静电聚合物合金。永久抗静电合金不仅较好地保持了母体聚合物的基本性能,而且在机械摩擦和比较宽的湿度范围内表现出良好且稳定的抗静电能力。因此, 将这类亲水性聚合物称为永久性抗静电。[1] 2.永久抗静电剂的分类 含-COONa、-SO3Na、-OCH2CH3、-PO[N(OH3)2]2、-CONH2、-SO3H、-COOH、-N(OH3)2等官能团的乙烯基聚合物亲水性好,可以作为导电性结构单元构成共聚型PAA。从已商品化和专利申请情况看,目前PAA大多以聚环氧乙烷(PEO)为导电结构单元,这可能与同普通聚合物相容性较好有关。 B.F.Goodrich公司开发的永久性抗静电母料STAT-RITE C-2100是由HIPS/PAA共混物经注射加工制成的,PAA含量约10-20%(重量)。当母料添加量为20-30%时, 材料的体积电阻可降至1012Ω·cm。即使在极苛刻的条件下, 母料用量为25%的材料就有充分的耐久性。最近, 该公司又推出了新一代母料STAT-RITE C-2300,热稳定性好,价格低廉,是一种通用的抗静电母料。[2]

抗静电剂的应用

抗静电剂在塑料中的应用 陈宇王朝晖 广东华南精细化工研究院,江门,529141 在现代工业生产及日常生活中,静电危害往往造成重大损失和灾难。 (1)在加工具有较大表面积的塑料制品如薄膜、纤维或粉料时,静电力严重干扰加工过程,阻碍薄膜或纤维的正常缠绕。在薄膜加工过程中,薄膜间会发生粘连,同时薄膜的可印刷性也会被静电削弱。粉状物料在运输过程中,会发生结团或架桥现象。 (2)大多数制品在使用过程中因静电吸附灰尘,极大的影响了商品的外观、卫生性和功能性。如农膜表面因静电吸附灰尘会影响薄膜的透光性,从而影响棚内作物的生长。 (3)在电子产品的塑料薄膜包装中,放电过程有可能损坏产品:如电子芯片的封装和拆卸。 防止聚合物表面产生静电的方法主要有空气离子化法、加湿法、金属接触放电法、辐射线法、导电物质导入法、表面形成吸湿膜法、化学处理变性法及应用抗静电剂等。 其中,主要应用于塑料制品使用过程中的是掺入导电物质和添加抗静电剂。 加入的导电物质一般为金属粉或金属短纤维、导电炭黑、导电聚合物短纤维等,能使制品具有良好的导电性(表面电阻率<106Ω)或抗静电性(表面电阻率在106~108Ω之间)。金属化合物的抗静电效果较好,但是价格较高,普通制品承受不了。 目前应用最多的抗静电方式是添加抗静电剂。抗静电剂是一种能防止产生静电荷,或能有效地消散静电荷的以表面活性剂为主体的化学添加剂。使用抗静电剂的方式是在制品表面涂敷或内添加。 从抗静电性能的检测和评价指标表面电阻率可用于区分抗静电材料和导电材料的区别,如表1所示: 表1 导电材料和抗静电材料的表面电阻率/Ω(23℃,RH50%)导电材料静电消散材料抗静电材料绝缘材料 <106106~108108~1012>1012 <106106~109109~1012>1012 <106106~108108~1013>1013目前就导电、抗静电材料的分界线说法不一,导电材料与静电消散材料之间的界限为105或106Ω,静电消散材料与抗静电材料之间的界限为108或109Ω,抗静电材料与绝缘材料之间的界限为1012或1013Ω。 美国是抗静电剂最大生产和消费国,主要采用羟乙基化脂肪胺、季铵盐化合物、脂肪酸酯类抗静电剂,用于聚烯烃、聚氯乙烯、聚苯乙烯、ABS、聚碳酸酯等。欧盟也是生产和消费抗静电剂的主要地区,所用抗静电剂中50%为羟乙基化脂肪胺,25%为脂肪烃磺酸盐,25%为季铵盐和脂肪酸多元醇酯。日本多用非离子型和阳离子型抗静电剂,其中20%用于PVC,30%用于PP。 我国抗静电剂发展较快,主要是塑料工业用高效无毒抗静电剂、合成纤维工业用高效多功能抗静电剂及表面处理剂。 一、抗静电剂的作用机理 电荷载流子的产生、转移导致了高分子材料的起电。在高分子材料的接触、摩擦过程中,电荷不断产生又不断泄漏,因此其电荷量是一个动态平衡值。影响最后残留电荷量的主要因素为各种材料对正或负电荷的相对亲和力(与材料化学基团的性质、取向等有关)、材料的

抗静电剂的种类及在各种纺织面料的应用和选择

抗静电剂的种类及在各种纺织面料的应用和选择 摘要基于消费者对纺织面料保健舒适程度的要求越来越高,目前抗静电纺织品已引起世界各国的重视。本文着重阐述了抗静电剂的种类、基本结构及性质,分析了抗静电剂对纺织面料各方面的影响,并对抗静电剂的发展趋势做了展望,为纺织面料的抗静电整理提供参考。 关键词抗静电剂;种类;织物;抗静电整理 随着生活水平的提高,消费者对舒适保健意识的增强,纺织面料正由经济实用化向结构轻薄化、风格潮流化、使用功能化、原料多元化,健康环保化发展[1],于是为了适应社会化发展和人们的需求,市场上掀起了发展各种多功能面料的浪潮。 静电作为一种自然现象在人们日常生活中无处不在,不仅在工业和微电子业造成一定的生产损失,而且对人体造成多方面、多角度、多层次的损害,尤其对老弱病孕人群危害最大。因此,抗静电织物的开发非常有必要。目前制造抗静电的纺织品已引起了世界各国的重视。 1 抗静电剂的简介 1.1 抗静电剂的起源、概念 随着高分子材料研究领域的不断开辟和生产应用,静电问题就显得越来越突出,在许多行业,静电甚至成了阻碍进一步提高生产的主要矛盾。起初人们想到的是消除静电,但共同的特点都是在静电产生之后再去消除它,由于带电体固有的高电阻性质没有改变,在大规模生产工艺中,往往一条生产链需安装几个,十几个甚至几十个静电消除器,给生产带来诸多不变。那么对那些连续的非分散的体系来说一劳永逸的办法就是设法降低物料的绝缘性质,即降低它们的体电阻和表面电阻,于是在五六十年代,各种各样的化学防静电剂运用而生。 所谓抗静电剂就是指涂敷于材料表面或掺和在材料内部,以减少静电积累的化学助剂。 1.2 抗静电剂的种类、基本结构及性质 按照抗静电的耐久性,抗静电剂分为暂时性抗静电剂和耐久性抗静电剂;按照抗静电剂的结构特征其可分为:无机盐类、表面活性剂、无机半导体、电解质高分子成膜物类和有机半导体高聚物等。下面重点介绍表面活性剂抗静电剂。 表面活性剂抗静电剂按分子中的亲水基能否电离,以及离子化特征又可分为阴离子型、阳离子型、两性型和非离子型。

塑料薄膜抗静电剂

为什么需要添加抗静电剂 薄膜本身产生与携带的静电,对薄膜施用有机负面的影响,如印刷会产生高压火华,有使油墨燃烧的危险,静电会使印刷图案中的油墨分子飞溅而影响印刷质量,纸张腹膜表面会吸引灰尘. 如何消除静电? 薄膜必须添加半永久性抗静电剂,随着抗静电剂箱薄膜表面的迁移,在薄膜表面形成亲水层使静电短路而消除. 聚丙烯抗静电剂的原理 阶段一:在挤压过程期间,抗静电剂均匀分布. 阶段二:挤压过后,抗静电剂开始迁移至表面. 阶段三:数小时后或数天后,抗静电剂将表面覆盖. 阶段四:从周围的空气中吸收水分 内用抗静电添加剂 在如下期间添加至聚合物;---成产合成或加工 有限的兼容性-----水分子的迁移吸收 半持久保护耐磨损 抗静电剂的分类 1. 乙氧基胺: 最终产品中的乙氧基胺的含量须达到1-3,可是产品达到优良的抗静电特性.贝斯特公司所采用的均为著名品牌进口乙氧基胺,因此所生产的母料均达优秀指标. 优点:极佳的抗静电特性 极佳的产品物理特性,如对光学及力学指标无影响 缺点:迁移时间慢,当达到最佳抗静电效果时需要10-20天 成本高:4-4.5万元/吨(化学品原料) 最终薄膜产品:化学品成本40-120元/吨 2. 单干脂(甘油-硬脂酸脂): 单干脂是一种快速的抗静电剂,但仅提供暂时性的抗静电效果,单脂含量是抗静电有效成分,用于抗静电级的单脂含量为96%以上,但单组份的单甘脂(GMS)静电半衰期在3000ppm时也只能做到10(14)-10(15),根本不能满足优质产品的抗静电要求,并且只有短期效果. 优点:快速迁移1-2天 缺点:(1)大剂量使用可薄膜变白化,雾度由初下机时的1%左右上升至3-4%(10-20天),光泽度由94%下降到88%. (2)因产品含有大量的油脂,在高温中蒸发引起油污如模头滴油.TDO烘箱内滴油污染产品而影响薄膜质量.

basf抗静电剂

Characterization Irgastat P are polymeric systems based on polyamide/polyether block amides Applications Irgastat P is recommended,where a permanent antistatic effect is sought,in applications such as electronic and industrial packaging,housings and parts of business machines.Products can be used in thermoplastic poly-mers,transparent film,fiber or molded applications.Outdoor applications require testing to determine the suitability of Irgastat P under UV-exposure conditions. Irgastat P products are polymeric materials incorporated as melt additive.Electric resistivity is reduced by formation of a conductive percolating net-work.Irgastat P 18FCA and P 22is forming a more distinct fiber network as opposed to Irgastat P 16and P20thus requiring lower addition levels. Irgastat P 16and P 20can generally be added at higher levels thus providing a larger processing window: High shear forces or post orientation of the polymer might inhibit develop-ment or damage the conductive network and therefore negatively impact performance. ?=registered Trademark of Ciba Holding Inc. Irgastat ? P Irgastat P 16,Irgastat P 18FCA,Irgastat P 20,Irgastat P 22 Permanent Antistatic Additives Host matrix Irgastat P 16/20Irgastat P 18FCA/22

抗静电剂的发展概况及前景

抗静电剂的发展概况及前景 王凯 (四川理工学院材料与化学工程学院四川自贡643000) 内容提要 抗静电剂是添加在树脂中或涂附在塑料制品、合成纤维表面的用以防止高分子材料静电危害的一列化学添加剂。由于聚合物的体积电阻率一般高达1010~1020Ω·cm,易积蓄静电而发生危险,抗静电剂多系表面活性剂,可使塑料表面亲合水分,离子型表面活性剂还有导电作用。可将体积电阻高的高分子材料表面层电阻率降低到1010 Ω以下,从而减轻高分子材料在加工和使用过程中的静电积累。以免有静电积累引发火灾和爆炸事故。抗静电剂可以分为内部抗静电剂和外部抗静电剂。本文介绍了几种抗静电剂,阐述抗了静电剂的作用机理,并对抗静电剂的发展趋势作了进一步的猜想 关键词 抗静电剂;抗静电剂;聚乙二醇己二酸磷酸酯; Antistatic Agent and Prospects of the general Situation of the Study Wang kai (Sichuan University of science and Engineering ,Zigong,Sichuan,643000) Antistatic agent is added to the resin coated or attached to the plastic products, synthetic fiber surface to prevent high polymer material electrostatic hazard a list of chemical additive. Due to polymer volume resistivity generally up to 1010 ~ 1020 Ω· cm, easy savings electrostatic and dangerous, antistatic agent many system surface active agent, can make the plastic surface affinity moisture, ionic surfactant and conductive role. Can the volume resistance

高分子型抗静电剂的发展状况

龙源期刊网 https://www.360docs.net/doc/5217981987.html, 高分子型抗静电剂的发展状况 作者:高军等 来源:《科技创新与应用》2015年第02期 摘要:介绍了高分子型抗静电的特性与类别,阐述了其作用机理及影响其抗静电性能的 因素,分析了国内外高分子型抗静电剂的研究现状、发展趋势。 关键词:抗静电剂;高分子;永久型 抗静电剂是一类具有减少或抑制高分子材料静电荷产生作用的化学添加剂。它是通过增加制品润滑性或加速静电荷泄漏,来达到抗静电的目的。抗静电剂作为塑料、橡胶的常用改性剂,其研究技术日益成熟,目前研究主要趋向于高性能、持久性方面。高分子型抗静电剂由于具有永久抗静电性,是近年来研究开发的热点。 1 高分子型抗静电剂 1.1 高分子型抗静电剂的特性与类别 高分子型抗静电剂又叫永久抗静电剂,是指抗静电剂本身也是聚合物,一类亲水或导电单元的聚合物。主要类别有:季铵盐型(季铵盐与甲基丙烯酸酯缩聚物的共聚物、季铵盐与马来酰亚胺缩聚物的共聚物),聚醚型(聚环氧乙烷、聚醚酰胺、聚醚酰胺亚胺、聚环氧乙烷-环氧氯丙烷共聚物),内铵盐型(羧基内铵盐接枝共聚体),磺酸型(聚苯乙烯磺酸钠),其它类型(高分子电荷移动结合体)[1]。高分子型抗静电剂具有优异的抗静电性、耐热性和抗冲 击性,不受擦拭和洗涤等条件影响,对环境湿度依赖性小,且不影响制品力学和耐热性能,但添加量较大(一般为5%~20%),价格偏高,而且只能通过混炼的方法加入到树脂中。可作为塑料、合成纤维外部用永久性抗静电剂。 1.2 高分子型抗静电剂的作用机理 高分子型抗静电剂主要在母体中形成“芯壳结构”,并以此为通路泄漏电荷。高分子型抗静电剂作为一类内添加型抗静电剂,改善高分子材料的表面抗静电性能的方式是采用与高分子基体共混;比起外抗静电剂,高分子抗静电剂与树脂具有更好的相容性,在制品表层呈微细的层状或筋状分布,在中心部分呈球状分布,即“芯壳结构”,有助于释放静电荷,提高制品抗静电性能。因此其技术关键是提高高分子型抗静电剂在树脂中的分散程度和状态。 卢霜[2]选用了反应型水溶性聚氨酯高分子永久型抗静电剂DM-3723,通过浸轧法对聚对苯二甲酸乙二醇酯纤维和聚酰胺纤维织物进行抗静电改性。研究发现,DM-3723可赋予涤纶 和锦纶织物优异的抗静电性,并且手感富有弹性,丰满度好,洗涤后仍能牢固吸附在织物表面。已有报道,在聚对苯二甲酸乙二醇酯纤维中添加3%-5%的高分子永久型抗静电剂,其表 面电阻率就能降到1010Ω以下,且半衰期小于10s[3-4]。

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 AAS 阴离子 酰胺基及其盐N-。AAS氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子由α-用途:香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电;皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性;口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂;含药化妆品:去屑香波、治疗粉刺膏霜等。香皂和添加剂等…安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐 一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。

安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。 用途:香波的主要表面活性剂,也用于皮肤清洁和沐浴制品,较少用作乳化剂。一般与其它AAS(阴、两性、非离子)复配。 安全性:与AS相近,但刺激性略低于AS。 磺酸盐 用途:去污力太强,因此在化妆品中应用不广泛,主要用于洗衣粉。 安全性:对皮肤中等刺激,容易脱脂而变得干燥粗糙,用三乙醇胺盐复配可降低刺激性。 用途:成本低,稳定性好,刺激性地,去污能力好,很有前途的AAS。 安全性:对皮肤无致敏作用。 阳离子AAS 烷基咪唑啉盐 用途:用于香波、护发素和一些护肤品中,用作调理剂、乳化剂、抗静电剂和抗菌剂等。 安全性:pH值较高,对皮肤和眼睛有较大刺激性。制成盐后刺激性大大降低。 乙氧基化胺类 氨基上的氢被乙氧基取代。 用途:乳化剂和调理剂 安全性:浓液对眼睛和皮肤有刺激,但作为调理剂加入到化妆品中是安全的。 季铵盐 是应用最广的阳离子AAS。取代基可以是亲水基或亲油基,因此其润湿、发泡、乳化作用差别很大。季铵盐碱性较强,在酸碱中都稳定,热稳定性也好。 突出特性:对有负电荷的固体表面的吸附和杀菌消毒作用。 复配时禁配阴离子AAS、氧化物、柠檬酸钠蛋白质或一些高分子化合物等。 其化学结构(一个带正电的N原子围绕着一个或多个烷基团)使得它易于亲和头发,因此用作调理剂,而且很安全、稳定。 阳离子纤维素聚合物 又叫聚纤维素醚季铵盐,是由纤维素季铵化后的产物,属于聚季铵盐类。 聚季铵盐-10:对头发和皮肤都有很好的护理调节作用,皮肤如丝一般平滑,富弹性,对头发末梢分叉具有修补作用,与阴、两性、非离子AAS都有良好的配伍性和相容性,无刺激。代表产品有JR-400、JR125等。聚季铵盐-4:CelquatH-100、CelquatL-200等,水溶性,超强的配伍性。很好的成膜性,光亮、坚韧,广泛用于发用品和护肤膏霜中。 还有聚季铵盐-11、聚季铵盐-6、聚季铵盐-7、聚季铵盐-22、聚季铵盐-39等。 瓜尔胶羟基丙基三甲基氯化铵 白色或黄色粉末,加水时略变浑浊。对头发有明显的亲合力,有调理性,抗静电。几乎能和所有化妆品表面活性剂配伍。 用途:洗发和护发的多功能添加剂,可作为调理剂、后处理剂、抗静电剂、增稠剂、稳定剂。改善湿发梳理性,意味着干发手感更光滑、柔软、自然飘散。发品中适用量为%。 两性离子AAS 甜菜碱类 基本结构是由季铵盐型阳离子和羧酸型阴离子(或硫酸酯、磺酸酯)组成。它不表现阴离子的性质:在中性和碱性环境下呈两性,在酸性环境下成阳离子性质。除非pH值很低会与阴离子AAS产生沉淀外,可与

抗静电剂的合成及应用

专业实验VI 实验报告 实验题目:抗静电剂的合成与应用实践 系别: 班级: 指导教师:学生姓名:同组同学: 实验日期:实验成绩: 实验四抗静电剂的合成及应用实验 实验目的 掌握烷基磷酸酯盐的合成工艺,并能够合成烷基磷酸酯盐产品,测试其抗静电性能用于腈纶等化纤类物的抗静电处理。 文献综述 1.抗静电剂的分类 用抗静电剂对纤维及其织物表面处理,降低纤维的比电阻,从而提高涤纶的抗静电性,以消除静电。抗静电剂大多数为表面活性剂,它具有极性基团,可以吸湿,使聚合体的表面电阻减小,加快静电荷的散逸。目前,抗静电剂品种很多,按离子型分类法,主要有阴离子型、阳离子型、两性及非离子型四种抗静电剂。 2.其优缺点如下: 阴离子抗静电剂应用最广泛,但如何针对不同种类的纤维确定烷基数及中和剂等工作十分复杂。 阳离子抗静电剂对纤维的吸附性最强,因此,显示出最好的抗静电效果,尤其作为纤维制品的抗静电剂,不仅抗静电性好,而且使纺织产品手感得到明显地改善。 两性抗静电剂,其效果可与阳离子抗静电剂媲美,但价格昂贵,故目前使用范围不大。非离子型抗静电剂,在一般湿度下抗静电效果一般,但在低湿度情况下却显露出明显的抗静电效果。 3阳离子表面活性剂的抗静电原理 阳离子表面活性剂带有正电荷,而大多数纤维表面带有负电荷,由于相反电荷中和,抗静电效果比阴离子型和非离子型好,此外,它还能在纤维表面形成憎水性油膜,降低纤维的摩擦系数,显示出柔软平滑效果。以季胺盐为例,它是由亲水基团和疏水基团所组成的。其疏水基结构与阴离子表面活性剂相似,疏水基和亲水基的连接方式也很类同,即除亲水基直接连在疏水链上外,往往还通过酯、醚、酰胺等形式来连接,但溶于水时,其亲水基呈现正电荷(其亲水基团主要为碱性氮原子,也有磷、硫、碘等)。由于其极强的吸附能力,容易在基体表面上形成亲油性膜及产生阳电性,故广泛用作纺织品的柔软剂及抗静电剂等(前者是由于亲油性膜的形成而使纺织品有憎水的作用以及能显著地降低纤维表面的静摩擦系数,从而使纤维具有良好的平滑性,而后者则是阳电性作用的表现)。对于通常带有负电荷的纺织品来讲,它的吸附能力比阴离子和非离子强。正是这种特殊性质决定了阳离子表面活性剂在抗静电领域的特殊价值。 实验原理 任何物体都带有本身的静电荷,这种电荷可以是负电荷也可以是正电荷,静电荷的聚集使到生活或者工业生产受到影响甚至危害,将聚集的有害电荷导引/消除使其不对生产/生活造成不便或危害的化学品称为抗静电剂(ASA)。 外用ASA 一般以水、醇或其它有机溶剂作为溶剂或分散剂,进行涂覆疏水基团附着于材料

抗静电织物的开发与应用

抗静电织物的开发与应用 内容摘要:纺织品在生产加工和使用过程中,因相互摩擦或与其他材料摩擦时会产生静电。静电不仅导致纺织加工困难,如:加工时纤维缠绕机件、纱线发毛不能集束、 织造时经纱开口不清,而且在纺织品的使用过程中容易吸尘沾污,服装纠缠人体产 生粘附不适感;并对人体有害,如使血液pH值升高,血液中钙含量下降,尿夜中钙含 量增加,血糖升高,维生素C含量下降。静电严重者还可能引起火灾、爆炸等灾害。 因此,抗静电织物的开发是十分重要的课题。本文阐述了多种抗静电纤维及抗静电 织物的加工方法和性能特点,重点介绍了导电纤维和抗静电整理织物产品的开发及 应用。 关键词语:抗静电织物导电纤维应用抗静电整理 正文内容: 第一章、静电产生的原理与危害 1.1、纺织品静电现象及产生原理 产生静电的机理有多种解释,纺织材料静电主要是由于表面间的相互摩擦产生的。纺织材料是电的不良导体,具有很高的比电阻。纤维及其制品在生产加工和使用过程中,由于受摩擦、牵伸、压缩、剥离及电场感应和热风干燥等因素的作用而易于产生静电。特别是随着合成纤维在纺织上生产和应用的来越多,这些高分子聚合物所固有的高绝缘性和憎水性,使之极易产生、积累静电。1.2、静电的危害 与常规的电能量相比,静电的能量虽然小,但是却具有高电位、强电场的特点,所以导致纺织品在使用的过程中影响服用性能甚至产生危害。 1.2.1、静电的力学效应所造成的危害: 由于静电吸附力或排斥力(取决于两个物体带电荷的性质)的作用,会造成生产困难,如在化纤纺丝过程中,易造成丝的飘动、黏结、纠缠;在纺纱过程中,造成纤维堵缠设备机件、成型不良、飞花增多;在织造过程中,静电引起毛羽的

抗静电剂TM

抗静电剂TM 主要成分:三乙醇胺 国标编号: CAS: 102-71-6 中文名称: 三乙醇胺 英文名称: triethanolamine 别名: 分子式: C6H15NO3分子量: 149.19 熔点: 20 密度: 1.12 蒸汽压: 185 溶解性: 易溶于水。 稳定性: 外观与性 状: 无色油状液体或白色固体, 稍有氨的气味。 危险标记: 用途: 用作增塑剂、中和剂、润滑剂的添加剂或防腐蚀剂以及纺织品、化妆品的增湿剂和染料、树脂等的分散剂。 第一部分:化学品名称 化学品中文名称:三乙醇胺 化学品英文名称:triethanolamine 中文名称2: 英文名称2: 技术说明书编码:1596 CAS No.:102-71-6 分子式:C6H15NO3 分子量:149.19 第二部分:成分/组成信息 有害物成分含量CAS No. 三乙醇胺102-71-6 第三部分:危险性概述 危险性类别:

侵入途径: 健康危害:本品对局部有刺激作用。皮肤接触可致皮炎和湿疹,与过敏有关。本品蒸气压低,工业接触中吸入中毒的可能性不大。 环境危害: 燃爆危险:本品可燃,具刺激性,具致敏性。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:脱离现场至空气新鲜处。就医。 食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:遇明火、高热可燃。 有害燃烧产物:一氧化碳、二氧化碳、氮氧化物。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若 已变色或从安全泄压装置中产生声音,必须马上撤离。用水喷射逸出液体,使 其稀释成不燃性混合物,并用雾状水保护消防人员。灭火剂:水、雾状水、抗 溶性泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。 建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。若是 液体,防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其 它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏: 构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理 场所处置。若是固体,用洁净的铲子收集于干燥、洁净、有盖的容器中。若大 量泄漏,收集回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作 服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系 统和设备。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损 坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残 留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、酸类分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合

抗静电剂种类及作用机理

摩擦生电是众所周知的自然现象,静电在某些方面是有益的,如静电植绒等,而在某些方面又是有害的。其在纺织染整加工中的危害主要表现在:由于静电的作用,造成纤维间抱合性差、易卷绕罗拉、绕皮辊粘卷及断头等质量问题,影响纺纱的顺利进行。 织造过程中静电会影响顺利开车;染整加工中,织物烘干后易吸附在金属体上,造成织物卷缠在滚筒上。落布时,因织物带相同静电而互斥,造成落布不整齐,折叠歪斜。印花时如有带静电粉末则会堵塞筛网而使印花无法进行,衣服穿用过程中产生的静电易沾灰尘,缠贴身体及穿着不舒适等。可见,静电现象在纺、织、染加工中必须采取有效办法加以解决。 抗静电的方法,一方面是控制其起电,另一方面是把产生的电荷迅速泄漏掉。泄漏电荷主要采取提高环境湿度和增加纤维材料的导电率2种办法。而增加纤维导电率中最重要也是最有效的办法就是使用抗静电剂,即利用其在纤维表面形成具有电导性的离子层。 ★抗静电剂的作用机理 抗静电剂的作用机理主要有2种。其一认为抗静电剂能够形成电导性的连续膜,即能赋予纤维表面具有定吸湿性与离子性的薄膜,进而使电导度得到提高,以达到抗静电的目的。 其二对表面活性剂而言,认为表面活性剂的吸附性和定向性是决定其具有抗

静电效果的重要因素,吸湿性并不起支配作用。因表面活性剂大多是由长碳链的疏水基和离子性的亲水基组成,在处理纤维时疏水基和纤维的表面相结合,亲水基则处于纤维表面的最外层,所以导电性能良好。 一、抗静电剂种类 抗静电剂有多种。按作用的耐久性分,包括暂时性抗静电剂和耐久性抗静电剂。一般用于合成纤维的纺丝、纺纱、织造用的抗静电剂多为外部用、暂时性抗静电剂,而作为织物成品后整理用的多为耐久性抗静电剂。 1、暂时性抗静电剂 广义来说,具有吸湿性及离子性的化合物均可用作暂时性抗静电剂。多元醇类有机物能赋予纤维一定的吸湿性,但是其导电性不是很好;而具有吸湿性和离子性的电解质虽吸湿导电性好,但易使机件生锈并刺激皮肤.--般不用作抗静电剂。作为暂时性抗静电剂的主要为表面活性剂。 ①阴离子型表面活性剂 阴离子型表面活性剂如烷基磺酸钠、烷基苯磺酸钠、烷基硫酸酯、烷基苯酚聚氯乙烯醚硫酸酯及烷基磷酸酯都有抗静电作用,其中后两者的抗静电效果最好。 磷酸酯类多为正磷酸单酯或双酯的钠盐及钾盐。此类表面活性剂的优点是水中溶解性好,起泡性小,柔软性及抗静电性好,缺点是耐硬水性较差。烷基磷酸酯常用于合成纤维纺丝油剂,具有良好的抗静电性和柔软平滑性及良好的耐热性,并能增加油膜强度,减少摩擦损耗和纺纱工序的白粉,防止和抑制烷基硫酸酯和

相关文档
最新文档