卫星通信链路

链路传播特性

◆星际链路:只考虑自由空间传播损耗◆星-地链路:由自由空间传播损耗和近

地大气的各种影响所确定

卫星通信的电波要经过对流层(含云层和雨层)、平流层、电离层和外层空间,跨越距离大,影响电波传播的因素很多。热层(热电离层)(Thermosphere )

80 -500 km

中间层(Mesosphere )

50 -80 km

平流层(Stratosphere )

16 -50 km

对流层(Troposphere )

7-16 km

外逸层(Exosphere )

500 -64,374 km

卫星通信系统的传播问题

传播问题物理原因主要影响

衰减和天空噪声增加大气气体、云、雨大约10GHz以上频率信号去极化雨、冰结晶体C和Ku频段的双极化系统

折射和大气多径大气气体低仰角跟踪和通信

信号闪烁对流层和电离层折射扰动对流层:低仰角和10GHz

以上频率

电离层:10GHz以下频率反射多径和阻塞地球表面及表面上物体卫星移动业务传播延迟、变化对流层和电离层精确的定时、定位

1、6 卫星通信工作频段及电波传播特点

1.6.1 工作频段的选择

工作频段主要考虑电离层的反射、吸收;对流层的吸收、散射损耗等因数与频率的关系。

一般工作频段选择在1G~10G;最理想的频率在4~6G。

1.6.2 电波传播的特点

1、自由空间的传播损耗

卫星通信中电波的损耗主要有自由空间的传播损耗和大气损耗。由于卫星一般位于3~4万千米的太空,所以主要考虑自由空间传播的损耗。

在自由空间传播过程中,接收信号的功率为:

P T 为天线发射功率;

G T 为发射天线增益;

A R 为接收天线开口面积;G R 为接收天线增益。

自由空间传播损耗为:

以分贝为单位表示为:

式中d为地球站到静止卫星的距离,可以取d=40000km 电磁波在传播过程中除了与距离的平方呈反比衰减外,还要受大气因数(如水分、电离层等)的影响,而衰减。

各种因数的影响见下图:

下图为雨、雾、云引起的损耗:

卫星通信系统的主要技术参数

等效全向辐射功率(EIRP )

定义:地球站或卫星的天线发射功率P 与该天线增益G 的乘积。表明

了定向天线在最大辐射方向实际所辐射的功率。

EIRP=P·G ,或EIRP(dBW)= P(dBW)+G(dB)

噪声温度(T e )

定义:将噪声系数折合为电阻元件在相当于某温度下的热噪声,温度以绝对温度K 计。噪声温度(T e )与噪声系数(N F )的关系为:

N F =10lg(1+T e /290)dB

品质因素(G/T e )

定义:天线增益与噪声温度的比值。

G/T e =G(dB)-10lgT e (dB/K)

天线增益的计算公式

卫星移动通信系统中的天线增益可以按下式进行计算:

(2-3)式中,A 是天线口面的有效面积(m 2),λ是工作波长(m ),η为天线效率,A e 为接收天线有效面积。

其中λ=c/f ,c 为光速,取值为3*108(m/s)。(2-3)式作变换,则

2244 (2-3)

e A

G A ππηλλ==22244

A

f G A c

ππηηλ==

例一

计算频率为6GHz 时,口径3m 的抛物面天线的增益。(天线效率

为0.55)

解:根据

()()[]2

92

28461030.55231010lg 42.9 (dB)

G G G ππ????=?? ???

?==22244 A

f G A c

ππηηλ==

一、星-地链路传播特性

卫星通信的电波在传播中要受到损耗,其中最主要的是自由空间传播损耗,它占总损耗的大部分。其它损耗还有大气、雨、云、雪、雾等造成的吸收和散射损耗等。卫星移动通信系统还会因为受到某种阴影遮蔽(例如树木、建筑物的遮挡等)而增加额外的损耗,固定业务卫星通信系统则可通过适当选址避免这一额外的损耗。

自由空间传播损耗

自由空间电波传播是无线电波最基本、最简单的传播方式。自由空间是一个理想化的概念,为人们研究电波传播提供了一个简化的计算环境。

图2-1 以确定的天线面积在不同距离上接收辐射能量

2' (2-1)4t r P P d

π=

自由空间传播损耗计算公式

电波从点源全向天线发出后在自由空间传播,能量将扩散到一个球面上。如用定向天线,电波将向某一方向会聚,在此方向上获得增益,那么到达接收点的信号功率为:

其中:P T 为发射功率;G T 为发射天线增益;G R 为接收天线增益;L f 为自由空间传播损耗。

T T R R f

P G G P L =22

44 (2-5)f d df L c ππλ????== ? ?????d 为传播距离,λ为工作波长,C 为光速,f 为工作频率。L f 通常用分贝表示,当d 用km 、f 用GHz 表示时,又可以表示为

92.4420lg 20lg (dB) (2-8)

f L d f =++

例二

卫星和地面站之间的距离为42,000km 。计算6GHz 时的自由空间损耗。

解:根据公式(2-8),

L f =92.44+20lg42000+20lg6=200.46 (dB)

92.4420lg 20lg (dB) (2-8)

f L d f =++

功率密度的计算公式

功率密度(功率通量密度)是指发射功率经过空间传播到达接收点后,在单位

面积内的功率。可以表示为(2-1)式。

(2-2)式中,P T 为天线的发射功率(W ),G T 为发射天线的增益,d 为自由空间传播距离。

''

22 (W/m ) (2-2)4t t r

G P P d π=

例三

卫星的EIRP 值为49.4dBW ,计算卫星离地面距离为40000km 时,地面站的

功率密度。

解:根据式(2-1),

()4.94

''

22210 4.33 (pW/m )44 3.1416400001000T T r G P P d π===???''

22 (W/m ) (2-1)4t t r

G P P d π=地面站的功率密度为

北斗卫星通信在水利行业中的应用(DOC)

北斗卫星通信在水利行业中的应用

目录 1.北斗卫星系统简介 (3) 2.水利行业应用需求 (4) 2.1.水利工程测量 (4) 2.2.水情监测 (5) 2.3.水利设备监控 (6) 3.短报文通信在水情监测数据传输中的应用 (6) 3.1.短报文通信介绍 (7) 3.1.1.通信方式 (7) 3.1.2.通信优点 (8) 3.1.3.通信缺点 (8) 3.2.应用方案 (9) 3.2.1.硬件配置 (9) 3.2.2.服务提供 (9) 3.2.3.通信保障 (9) 3.2.4.系统整体结构 (10) 3.3.实际应用项目介绍 (10)

1.北斗卫星系统简介 北斗卫星是一个提供全中国范围内的卫星定位系统。它是中国自主开发的用于地面定位的卫星系统,现在已发展成为可供民用定位和数据通信的系统。系统包括“北斗一代”和“北斗二代”,北斗一代空间部分由两颗静止轨道卫星和一颗备份星组成;北斗二代空间部分由5 颗静止轨道卫星、27 颗中地球轨道卫星和3 颗倾斜同步轨道卫星组成。 北斗卫星系统由三个主要部分组成:空间卫星,地面站(LES)及分理平台(河南北斗卫星导航平台)和用户终端。 图1 北斗卫星系统结构 (1)空间卫星:空间卫星部分由2~3颗地球同步卫星组成,负责执行地面中心站与用户终端之间的双向无线电信号中继任务。每颗卫星的主要载荷是变频转发器,以及覆盖定位通信区域点的全球波束或区域波束天线。每颗卫星都有2个波束,定位在太平洋、印度洋二个区域。两颗工作卫星的波束分别为1、2、3、4。一颗备用星的波束为5、6。两颗卫星都可以覆盖中国全境。覆盖范围:北纬5~55度,东经70~145度。系统组成如图1所示。 (2)地面站:终端与终端之间相互通信的中转站。其功能是完成与卫星之间上、下行数据的处理;对各类用户发送的业务请求进行响应处理,完成全部用户定位数据的处理工

卫星通信中的常见问题

问题: 5、降雨损耗及链路可用度 6、饱和通量密度 7、转发器的增益 8、连路计算 9、系统容量估算 5、降雨损耗及链路可用度: ①降雨对链路的影响:降雨会导致电磁波的散射并且会吸收无线电波的能量;降雨的衰减量随着频率的升高而增加,因此Ku波段的降雨衰减要比C波段严重;水平极化的降雨衰减要比垂直极化的降雨衰减要大;雨衰会产生噪声,衰减和噪声对卫星链路性能的影响在上、下行链路的雨衰余量中考虑。 降雨对天线罩的影响:对半球形的天线罩,降雨会产生一个厚度不均匀的水层,水层将导致吸收损耗和反射损耗(1mm厚的水层所产生的损耗是14dB)。 降雨会导致信号的去极化:雨滴通过大气层时略带椭圆形,主轴方向对电场分量的影响不同于次轴方向对电场分量的影响,其结果就是使电波变成了椭圆极化波;对圆极化波的影响大于线性极化波,为了弥补降雨引起的去极化,需要安装去极化装备。 ②链路可用度: 定义:在一年中% p的时间内,链路的误比特率不超过一个给定的门限值 p的概率,称为链路可用度。因此链路可用度表示含义是:一 b

年中经过该链路传输的误比特率性能优于门限b p 的时间百分比。为了使链路可用度达到要求,定义一个门限载噪比C/N []th 和余量[M],余量[M]包括雨衰余量、系统余量以及设备余量等,因此设计系统应该达到的载噪比为:[][M](dB)[]C C N N th =+。 6、饱和通量密度: 卫星转发器的行波管放大器(TWTA )存在输出功率饱和现象,由此定义:使TWTA 达到饱和时接收天线所要求的通量密度为饱和通量密度,用s ψ表示。卫星转发器的饱和通量密度也称为卫星转发器的灵敏度。 如果用[]EIRP S 表示能使卫星接收天线达到饱和通量密度所要求的地球站的有效全向辐射功率,则有: 2 4[][][]10lg( )s s s LOSS EIRP π ψλ =-+ 显然,2 4[][][]10lg( )s s s LOSS EIRP π ψλ =+-,这样,如果知道卫星接收系统 的设计参数s ψ以及系统的工作频率、各种传输损耗,就可以计算单一载波时地球站的[]EIRP S 。 7、转发器的增益: 卫星转发器的三个主要参数为[]G T 、S ψ与EIRP 。[]G T 和S ψ(饱和通量密度)反映卫星接收系统在其服务区内的性能,它们与卫星接收天线的增益分布线性相关。EIRP 反映转发器的下行功率,它与卫星发送天线的增益分布线性相关。

卫星链路计算软件Satmaster帮助(精)

上下行部分 Site Name / Location Enter the literal name of the site where the earth station is located up to a maximum of 40 characters (18 for country data files Example input for country data files (18 characters maximum "Liverpool" Example input for all other forms (40 characters maximum "Liverpool, Merseyside, England." 基站名称 输入基站所处位置的名称,最多 40个字母。 国家数据文件名举例(最多 18个字母 :liverpool 其他格式输入举例:"Liverpool, Merseyside, England." Site Latitude Enter the latitude of the site where the earth station is located. This must be entered in decimal degrees with the suffix N for north and S for South. No spaces are allowed. Examples 53.33N or 27.89S Important Note: When entering data into country data files latitudes are required in degrees and minutes format as obtained from maps and atlases. In this case the fractional part represents the number of minutes and cannot exceed 59. In all other cases input in decimal degrees are assumed. A conversion facility is provided under the calculate menu.

铱(北斗)卫星通信终端使用说明_透传功能_

CT2013-0822-V1.0 铱卫星数据通讯终端使用说明 version1.0 2013-8-22 <图1>

声明 Copyright ? 2013 <>版权所有,保留所有权利未经北京xxxx通讯设备有限公司明确书面许可,任何单位或个人不得擅自仿制、复制、誊抄或转译本书部分或全部内容。不得以任何形式或任何方式(电子、机械、影印、录制或其他可能的方式)进行商品传播或用于任何商业、赢利目的。 本手册所提到的产品规格和资讯仅供参考,如有内容更新,恕不另行通知。除非有特殊约定,本手册仅作为使用指导,本手册中的所有陈述、信息等均不构成任何形式的担保。

目录 1产品概述 (4) 1.1产品简介 (4) 1.2产品特征 (4) 2硬件描述 (4) 2.1设备尺寸及重量 (4) 2.2正面面板 (4) 2.3右侧面板 (4) 2.3.1电源 (5) 2.3.2铱卫星天线 (5) 2.3.3GPS天线 (5) 2.4左侧面板 (5) 2.4.1用户串口 (6) 2.4.2LED指示灯 (6) 3快速使用指南 (7) 3.1GPS定位功能 (7) 3.1.1GPS定位功能信息详解 (7) 3.1.2GPS定位功能设置指令详解 (7) 3.2数据透明传输功能 (9) 3.2.1用户透传数据格式详解 (9) 4系统管理员指令 (11)

1产品概述 1.1产品简介 本产品是基于铱卫星系统的数据传输模块9602集成开发的一款卫星数据传输设备,可实现远程位置信息定时传输、短数据透明传输。支持远程更改发送时间间隔指令,支持无发送时休眠、自存储功能。 可应用于海洋环境下的浮标定位、短数据传输,无人区气象监测参数的数据传输,高空探测飞艇(气球)环境监测参数的数据传输,无人驾驶汽车的GPS定位监控,偏远地区特种车辆的GPS定位监控和指令互通等等。 我司也可根据客户具体需求集成定制设备(核心模块有9602、9603、9522B、9523等)。 1.2产品特征 宽电源输入:DC 9V-30V 采用卡口式电源连接方式,使用便捷,锁紧可靠 内部采用防电源反接电路,有效防止内部元器件的损坏 LED状态指示 上电待GPS信号可用后即发送一条定位信息,表明设备工作状态良好 提供了一个用户串口,通过串口,用户可轻松掌握设备运行状态以及进行数据透传 回传位置信息的时间间隔可根据需求设置 铱卫星信号强度实时检测功能 可以根据铱卫星信号强度的不同,决定信息是否发送,确保信息发送成功 在铱卫星信号强度不好的情况下,系统可自动存储100条用户信息,待铱卫星信号强度达到要求时依次发送 具有GPS秒连续检测功能,有效防止系统误动作 2硬件描述 2.1设备尺寸及重量 尺寸:100mm*50mm*23mm 重量:90g 2.2正面面板 <图2> 2.3右侧面板 <图3>

完整word版,1、卫星链路通信系统与SIMULINK仿真(上行链路)

卫星链路通信系统与SIMULINK仿真<上行链路) 一、实验内容 题目1 题目内容:理解信源编码在数字通信系统中的作用,研究SCPC系统中PCM编码方式。利用MATLAB/SIMULINK通信模块库提供的基本模块搭建、编写PCM信源编码/译码模块,完成语音信号的编码/译码过程。通过参数设置,完成基本的运行调试,得到相关的运行结果,验证仿真过程的正确性。 1.实现框图 图1PCM信源编码 2.实验结果与分析

图2接收端PCM 译码与发送端结果显示 从图2我们可以看出,PCM 解调得到的信号和发送端信号是相同的频率,验证了PCM 调制的有效性和可靠性,但是解调得到的信号和原有信号相比出现了时延的情况,这也说明在通信过程中此类情况无避免。题目2 题目内容:了解SCPC 系统中信号调制/解调的实现机制。利用MATLAB/SIMULINK 通信模块库提供的基本模块搭建、编写BPSK(QPSK>调制/解调模块,完成信号的调制/解调的过程,并输出调制/解调前后的星座图和频谱图。1. 实现框图 图3信号调制/解调过程 2. 实验结果与分析 Transmit Filter1Transmit Filter Modulator Baseband Demodulator Baseband Generator Channel

图4发送地球站端QPSK调制后的星座图 图5接收解调信号星座图 从图4和图5中可以看出,信号经过调制解调并叠加噪声之后,接收信号的星座图出现了明显的抖动,出现了不同程度的相位模糊,在不同信噪比情况下,信噪比的值越大,星座图点的分布越集中,与发送端信号相比,误码率也越低,相反,信噪比越小,星座图点的分布越分散,误码率也越低。 题目3

卫星通信信道链路参数计算与模拟

综合课程设计 卫星通信信道链路参数计算与模拟 姓名: 学号: 一、课程设计内容及基本参数

1、 设计目的 近年来互联网和移动通信飞速发展,使得网络终端用户数量不断扩大、新业务不断增加,这对通信技术的发展提出了新的挑战。卫星通信系统以其全球覆盖性、固定的广播能力、按需灵活分配带宽以及支持移动终端等优点,逐渐成为一种向全球用户提供互联网络和移动通信网络服务的补充方案。 本学期我们学习了《微波与卫星通信技术》这门课程,对于卫星通信技术有了基本的了解。本课程设计基于已学的的基本理论,对卫星通信信道链路参数进行计算和模拟,从而掌握卫星通信信道链路参数计算的基本方法,了解影响卫星通信信道性能的因素。同时熟悉Matlab 编程仿真过程,利于今后的学习和研究。 2、 基本参数列表 表1 根据学号得到的系统参数3、 涉及公式 1) ITU 法计算雨衰值: ),()(βα p p R L R K A =(dB) (1) 其中,p R 为降雨率,单位为mm/h ,β为仰角,可以通过以下经验公式获得 0779.041.1-?=f α (255.0≤≤f ) (2) 42 .251021.4f K ??=- (549.0≤≤f ) (3)

上式中频率f 的计算单位为GHz 。 雨衰距离: 14766.03]sin )108.1232.0(1041.7[),(---?-+?=ββp p p R R R L (km) (4) 2)ITU 法计算氧、水蒸气分子吸收损耗值: 氧分子损耗率,对于57GHZ 以下的频段,可以按下式近似计算 3230226.09 4.81[7.1910]100.227(57) 1.50 f f f γ--=?++??+-+(dB/km) (5) 对流层氧气的等效高度0h 和水蒸气的等效高度可分别按如下公式确定: 06(57)h km f GHz =< 因此,对于氧分子的吸收损耗为: 002h R O γ= (dB) (6) 水蒸气分子损耗率与频率和水蒸气密度 )/(3m g p w 有关,对于350GHz 以下频段,都可以用下式计算(dB/km): 242223.610.68.9[0.050.0021]10(22.7)8.5(183.3)9.0(325.4)26.3 w w w p f p f f f γ-=++++???-+-+-+ (7) 对流层水蒸气等效高度w h 可按如下公式确定: ]4 )4.325(5.26)3.183(0.55)2.22(0.31[2220+-++-++-+=f f f h h w w (km) (350f GHz <) (8) 其中,0w h 取2.1km 。 同样,对于水蒸气分子的吸收损耗为: w w O H h R γ=2 (dB) (9) 3)给出经纬度,计算卫星于地面距离及仰角β; 同步卫星的经度s θ,地心角θ定义为从地心点看卫星与卫星终端之间的夹角,卫星终端所在地的经度和纬度(L L φθ,),卫星距地球中心的距离近似为42164.2r km =,地球的平均赤道半径为6378.155e R km =。 )cos(cos cos S L L θθφθ-= (10) θcos 222r R r R d e e -+= (11) 如图1所示,A 为卫星,B 为地心,C 为地球站,仰角为地球站与卫星连线与水平 C

卫星通信链路计算过程

卫星通信链路计算过程 星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比CrT或者载波与噪声功率比C/N、以及载波与干扰功率比CzI ,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。 上下行C/T 上行和下行C/T 的计算公式分别为 CZT u= EIRP E - LOSS U + G/T Sat C/T D = EIRP S - Loss D + GZT E/S 式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。上式中的数据均为对数形式。 C/N 与C/T 的关系 C/N 与C/T 的关系式为 C/N = C/T - k - BW N = CZT + 228.6 - BW N 式中的k 为波兹曼常数, BW N 为载波噪声带宽。式中的数据均为对数形式。 C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^n C/I XP_D、以及上行和下行邻星干扰C/I ASJU和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。 C/N 与C/I 的合成 由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为 (C/N Total ) -1 = (C/N U ) -1 + (C/N D ) T (C/I Total ) -1 = (C/I XPJU) -1 + (C/I ASJU) -1 + (C∕IM) -1 + (C/I XPJD)-I + (C/I ASJD)-I -1 -1 - 1 (C/(N+I)) -1 = (C/N Total ) -1 + (C/I Total ) 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为

链路预算公式与说明

表示10Log X 斜体 表示10X/10 c=2.998e8 光速 地球赤道半径 h=35793km 卫星离地面高度 K=1.38×10-23J/K 波尔兹曼常数 为单位面积理想天线增益G 0 Noise(K)=290×[Noise(dB)-1] D =()()f cos 222e e e e R h R h R R +-++ 天线与卫星的距离 Free space loss =32.4+20Log(D ×f ) 自由空间传输损耗(注:D 单位km ;f 单位MHz ) Symbol rate =Date rate /(M ×FEC code rate ) 符号率(MBaud) 占用带宽(MHz) Spread factor=1.2 噪声带宽(dB.Hz) Allocated transponder bandwidth = (Symbol rate ×Carrier spacing factor )+ Bandwidth allocation step size 转发器分配带宽(MHz) 上行链路功放功率与天线选择: EIRP US = Free space loss U + Atmospheric absorption U + Tropospheric scintillation fading U +Mispoint loss U + SFD 上行饱和等效全向辐射功率dBW EIPR U = EIRP US -IBO 载波在卫星天线口面上的通量密度dBW(PFD) Total HPA power required = EIRP U - Antenna gain - (Coupling loss)U 所需功放功率W (也可以固定功率来确定天线尺寸) (C/N 0)U =EIRP U -( Free space loss U + Atmospheric absorption U + Tropospheric scintillation fading U +Mispoint loss U (G/T) S (C/N)U = (C/N =SFD IBO (G/T)S - Noise bandwidth Antenna efficiency =Antenna gain ×c 2/(πRf)2 天线增益效率(注:c 单位m ;f 单位Hz ;R 单位m )

卫星链路计算公式

星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。 上下行C/T 上行和下行C/T 的计算公式分别为 C/T U=EIRP E - Loss U + G/T sat C/T D = EIRP s —Loss D + G/T E/S 式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。上式中的数据均为对数形式。 C/N 与C/T 的关系 C/N 与C/T 的关系式为 C/N = C/T - k - BW N = C/T + 228.6 - BW N 式中的k 为波兹曼常数,BW N 为载波噪声带宽。式中的数据均为对数形式。 C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^n C/I XP_D、以及上行和下行邻星干扰C/I AS_U和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。 C/N 与C/I 的合成 由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为 (C/N Total ) -1 = (C/N U ) -1 + (C/N D ) -1 - 1 -1 -1 -1 -1 -1 (C/I Total ) = (C/I XP_U) + (C/I AS_U) + (C/IM) + (C/I XP_D) + (C/I AS_D) (C/(N+I)) -1 = (C/N Total ) -1 + (C/I Total ) 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为 (C/(N+I) u ) -1 = (C/N u ) -1 + (C/I XP_u) -1 + (C/I As_u) -1

北斗卫星定位车载终端技术方案

北斗卫星定位车载终端技术方案

北斗卫星定位车载终端技术方案 三、技术原理 北斗卫星导航系统是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。北斗卫星导航系统为用户提供高质量的定位、导航和授时服务,其建设与发展则遵循开放性、自主性、兼容性、渐进性。北斗卫星定位车载终端采用了多模块化、组合式优化设计,内置高性能芯片,各模块之间的接口采用标准接口,充分利用系统平台、移动通讯网络、因特网络,将汽车行驶记录仪、卫星定位、卫星导航、油耗检测功能集于一体,经过无线数据通讯接口(GSM、GPRS、CDMA)和GPS接口,能与监控中心系统进行数据通信和移动位置的定位,能够满足用户的多种需求。 除具有传统行驶记录仪的功能外增加了定位导航、监控跟踪、数据实时传送、油耗检测等功能,而且能够实现对车辆实时监管、调度,遇险报警远程网络监控,彻底改变了现有汽车行驶记录仪只能实地监管、事后监督的弊端;GPS/北斗2双模卫星定位模块,能够灵活配置信号处理通道工作于单GPS模式,或单北斗2模式,或GPS/北斗2混合模式;兼容当前现有的GPS单模定位,且能实现双模捕获、双模跟踪更加智能化、集成化。因此,基于以上原理设计的卫星车载终端监控系统,大大超出了传统行驶记录仪的功能,具有极为光明的发展前景。

四、设计方案 (一)设计原则 1、先进性和适用性相结合 系统采用成熟的高新科技,以当前较为先进的方法实现需要的功能,保证系统具有深厚的发展潜力,在相当长的时间内具有领先水平。 2、通用性和安全性相结合 在系统设计过程中,均留有相应的通信接口,系统的各个模块构成一个有机的整体。系统数据库中的各种数据在交换和共享的过程中,充分考虑到了系统的安全性。对每一个用户的权限有严格的认证(司机卡身份识别)体制,对每一个用户的权限进行分级控制和限定。 3、安全可靠性 在经济条件允许范围内,从系统结构、设计方案(考虑到非法用户及病毒入侵,数据采用纠错冗余技术)、技术保障等方面综合考虑;系统尽可能地采用成熟的技术、商品化的软硬件产品,保证系统可靠稳定运行。 4、实用性 整个系统的操作以方使、简捷、高效为目标,多操作平台整体设计,统一操作,既充分体现快速反应的特点,又能便于工作人员进行业务处理和综合管理,便于运输交通管理层及时了解各项统

卫星链路预算解读

DIGITAL TV & IP MULTIMEDIA 链路预算有关具体注意事项  在链路预算中用户应重点关心如下结果: 收、发站天线大小及天线指向 功放大小及余量 载波分配带宽 接收系统余量 分配带宽占整个转发器带宽及占卫星有效全向辐射功率的百分比(%) 1、收、发站天线大小 如收、发站天线尺寸较大,安装位置不允许,链路预算应重新提交应综合考虑天线尺寸及所配置功放大小的成本。一般发射站天线配的大,功放就配的小;相反,天线配的小(在卫星公司允许情况下),则功放必须配的大些。在可能的情况下,考虑到今后扩容,应尽量选择天线大些。 如附表中,在发射站总的EIRP固定为58.53dBW的前提下,建议配置为 4.5米天线+17W功放。其实配置3.7米 +27W功放也可,6.2米+9W也可。显然 6.2米天线太大,3.7米和4.5米都可以, 但本着上述原则,还是选择4.5米更好 些。 如接收天线尺寸由于安装或其它原 因受限,只能选用小于链路预算中建议 的天线尺寸,则: 1、 改变调制方式、降低门限。由 于改变了调制方式,在信息速率不变的 情况下,会增加租用带宽,且会增加上 行功率; 2、 改变转发器的衰减档,使其更 加不灵敏,以此提高上行功率。但一般 卫星公司较少同意,除非用户租用整个 转发器。且即使改变衰减档,一般对下 行接收改善也有限,天线尺寸也小不了 多少。 3、 采用高增益天线,如偏馈天线+ 高质量低噪声放大器(LNB或LNA)+低 损耗电缆,此法一般改善也较小。 以上3法可行的还是第一种方法,具 有可操作性。 2、天线指向 用户应根据链路预算提供的天线方 位、俯仰角确定实际位置安装天线是否 有遮挡。如遮挡且又无其它合适位置, 则此星不可用,链路预算的其余部分已 不需再看。 如不遮挡,但如天线仰角≤5°,由 于此时地面热噪声将大量进入天线,且 载波受降雨及地面干扰的影响将会大大 增加,一般情况下也不建议使用。 3、功放大小及余量 功放大小决定了价格,应和天线综 合考虑成本。例如Ku-Band 4W BUC 和 根据用户需求,卫星公司或设备集成商会提供给用户一份链路预算表,类似于本文后面的附表。以下将对链路预算表的有关具体注意事项进行介绍,并对一些项进行解读。 由于链路预算表项目较多,专业术语较多,可能使人一时不知所措、如何下手。其实只要把握如下几个重点项就能将此表解读,其它项虽然还有很多,但已无关痛痒。 卫星链路预算解读 ◎ 亚太卫星公司 刘军 6 https://www.360docs.net/doc/52982087.html, | https://www.360docs.net/doc/52982087.html,/wscmbj

北斗卫星通信概述及应用领域

目录 一、北斗卫星通信概述 (2) 二、北斗卫星通信应用领域 (2) 2.1北斗卫星通信在水利行业中的应用 (2) 2.2北斗卫星通信在水情监测数据传输中的应用 (3) 三、北斗卫星通信方式 (4) 3.1点对点双向通信 (4) 3.2多点对一点通信 (4) 四、北斗卫星通信的优缺点 (5) 4.1北斗卫星通信的优点 (5) 4.2北斗卫星通信的缺点 (5)

北斗卫星通信概述应用及优缺点 一、北斗卫星通信概述 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 二、北斗卫星通信应用领域 2.1北斗卫星通信在水利行业中的应用 在水利工程勘测和设计中,经常会遇到山岭、江河、峡谷等自然环境的阻隔,传统测量仪器很难找到合适的测量点,工作量也比较大,影响测量的精确度和工程进度。 北斗是完全由我国自行研制的定位系统,目前已经广泛运用到各项我国基础工程各项测量和定位中,基于北斗定位的RTK(实时动态差分)测量相比较传统观的水利工程测量而言,

卫星通信链路计算过程

卫星通信链路计算过程 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

卫星通信链路计算过程 星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。 上下行C/T 上行和下行C/T的计算公式分别为 C/T U = EIRP E – Loss U + G/T Sat C/T D = EIRP S – Loss D + G/T E/S 式中的EIRP E 和EIRP S 分别为载波的上行和下行EIRP,Loss U 和Loss D 分别为总的上行和下行 传输衰耗,G/T Sat 和G/T E/S 分别为卫星转发器和地球站的接收系统品质因数。上式中的数据 均为对数形式。 C/N与C/T 的关系 C/N与C/T的关系式为 C/N = C/T – k – BW N = C/T + – BW N 式中的k为波兹曼常数,BW N 为载波噪声带宽。式中的数据均为对数形式。C/I与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U 和C/I XP_D 、以及 上行和下行邻星干扰C/I AS_U 和C/I AS_D 。此外,还需考虑转发器在多载波工作条件下的交调干 扰 C/IM 。 C/N与C/I的合成 由多项 C/N和C/I求取总的C/N、C/I、以及C/(N+I)的算式为 (C/N Total )-1 = (C/N U )-1 + (C/N D )–1 (C/I Total )-1 = (C/I XP_U )-1 + (C/I AS_U )–1 + (C/IM)-1 + (C/I XP_D )-1 + (C/I AS_D )-1 (C/(N+I))-1 = (C/N Total )-1 + (C/I Total )–1 上述三个算式中的数据均为真数形式。 由多项C/N和C/I求取总的C/(N+I)的步骤也可为

北斗卫星一代短报文通信技术原理和关键技术

北斗卫星一代短报文通信技术原理和关键技术【文章摘要】 介绍北斗卫星一代短报文通信技术原理和关键技术以及应用 【关键词】 北斗卫星一代;短报文;通信技术;应用 0 前言 北斗卫星的短报文通信功能是美国GPS 和俄罗斯GLONASS 都不具备的特殊功能,是全球首个在定位、授时之外具备报文通信为一体的卫星导航系统。 北斗卫星短报文通信具有用户机与用户机、用户机与地面控制中心间双向数字报文通信功能,一般的用户机可一次可传输36 个汉字,申请核准的可以达到传送120 个汉字或240 个代码。短报文不仅可点对点双向通信,而且其提供的指挥端机可进行一点对多点的广播传输,为各种平台应用提供了极大便利。 指挥端机收到用户机发来的短报文,通过串口与服务器连接并且以JAVA 或其它语言编写的通信服务解析数据,通过短信网关转发至普通手机,以及通过通信服务可实现普通手机往用户机发送短报文功能。 1 短报文通信特点 北斗报文通信相比较其它的卫星通信方式具有以下特点: (1)北斗通信申请的信道的分析 通信申请的用户机端通过“北斗”卫星与其他的用户机建立通信申请的链接,类似互联网通信的链路层,只不过北斗通信是通过卫星无线互连。“卫星TCP/IP 传输技术”中定义的链路层不仅仅指整个系统的通信链接,而是在其的基础上高了一个层次。“北斗”卫星通信的实际链路中并没有实现链路控制功能,类似与互联网的物理层。可以类比,数据丢失率类似链路的差错率,通信频度类似于传播延迟,信息往返同样也存在信道的不对称性。 (2)通信频度和通信量的限制 根据北斗卡的不同级别,北斗卡可以支持的报文通信可分为两个级别,普通用户通信频率为120 汉字/ 次;三级北斗卡发送短报文时间频率为1 分钟一次。 (3)数据格式的种类 根据需要,可以选择北斗通信申请的短报文两种数据类型,一种是通常汉字通信采用的ASCII 码的方式,另一种为BCD 码方式。

北斗卫星通信原理

简介 北斗卫星定位系统是由我国建立的区域导航定位系统。 该系统由三颗(两颗工作卫星、一颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。 北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。 美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。 北斗一号导航定位卫星由中国空间技术研究院研究制造。 三颗导航定位卫星的发射时间分别为:2000年10月31日;2000年12月21日;2003年5月25日,第三颗是备用卫星。 北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。 北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。

北斗一号系统的基本功能包括:定位、通信(短消息)[glow=255,red,2][/glow]和授时。 北斗二代系统的功能与GPS相同,即定位与授时。 系统工作原理: 北斗一号”卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。 另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。 从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。 “北斗一号”的覆盖范围是北纬5°一55°,东经70°一140°之间的心脏地区,上大下小,最宽处在北纬35°左右。其定位精度为水平精度100米(1σ), 设立标校站之后为20米 (类似差分状态)。 工作频率:2491.75MHz。系统能容纳的用户数为每小时540000户。

“动中通”卫星通信链路分析及优化研究汇总

“动中通”卫星通信链路分析研究 摘要:本文针对通信卫星“动中通”系统为研究对象,从其结构的组成,发展现状和影响卫星链路的因素等为对象进行介绍和分析,详细的从结构、功能等方面探讨。“动中通”卫星主要是由天线、馈源、反射面和转轴这几部分组成的。为了能更好评估卫星信号的好坏,需要长时间的监视观测,通过观测数据研究卫星链路传输的性能;通信卫星“动中通”在链路的传输上,实现了Ku频段的链路传输特性,通过自动检测系统代替了以往人工测量的方式,通过自动检测系统的精确测量,和以往人工测量相比,大大减小了数据误差,提高了测量的精确度并提高了工作效率,节省了人力资源。 关键词:Ku频段;卫星通信;链路 Analysis of Satellite Communication Link in the "Satcom on the Move" Abstract: In this paper regarded the satellite communication system as the research object. Discussion from the structure, function and other aspects in detailed, analysis the composition of the structure, development status and influence of the satellite link factors as the object of introduction. "Move through" satellite is mainly by the antenna and feed, the reflecting surface and the shaft which are composed, the parabolic cylinder antenna box to receive data of role, the data processing. Through the feed antenna and the reflector will data in the transmission to the original user, to work through the coordination of the internal rotating shaft and other parts. In order to better evaluate the satellite signal is good or bad and need to long time observation, for surveillance, through the observation data of satellite transmission link performance; communication satellite mobile communication in the transmission link, the realization of the Ku band link transmission characteristic. In order to improve the precision of the measurement, the work efficiency and saving human resources, the automatic detection system instead of the previous manual measurement, comparison to the accurate measurement of the automatic detection system, and in the past manual measurement, greatly reducing the error data. Keywords: Ku band; satellite communication; link 引言 自1960年到现在,卫星的发展取得了翻天覆地的变化,各种类型和功能的卫星被研发出来并应用起来,而卫星通信作为其中最为重要的一个分支,在通信领域起到了重大的作用。卫星通信不但具有保密性,还具有低成本的优势;在进行通信时,不但可以传输数据、图像等功能,还可以实现视频通话。至此,对于一些山区、农村、海洋等无法实现通信的地段,都能在卫星作用下实现,鉴于车辆、船舶在卫星通信时的重要作用,被称为“动中通”。 “动中通”卫星通信系统已经广泛应用于军事行动、物流管理、长途交通运输、新闻采访等领域。其功能也逐渐完善,在给高速运动中的车辆提供的卫星通信链路中,不仅可实现话音、视频传输业务,还可进行高速Internet网接入,拥有良好的发展前景。 和传统的VSAT卫星相比,USAT卫星通信口径的大小都是在0.6m以下的,并且设备具有小型化,质量轻等多种特点,完全能满足“动中通”的要求。对于“动中通”的通信频段来说,现在还是以USAT为主的,Ka频段相对现在来说还不能大规模的应用,可能在未来的通信中会逐渐慢慢的向Ka频段转型。

北斗卫星船舶定位及信息通信应用

海上船舶监控管理系统 一、用户需求 通过舰艇中的北斗终端机实时传输经纬度坐标,依托电子海图实时展现出舰艇所在方位,历史航迹等信息。 硬件要求 ?总计20艘舰艇,每艘舰艇根据实际情况安装北斗终端机; ?对每艘舰艇进行实际调研,制定改装方案。 ?定位模块、设备需要高可靠性,北斗长时间自动裕兴,无需人 为干预,能够应对海上恶劣环境; 软件要求 ?基础电子海图; ?海图分层,显示部队舰艇、地方船只; ?在海图中实时显示出舰艇所在位置; ?在海图中显示出舰艇历史航迹; 二、系统设计 2.1 系统结构

2.2 系统组成 图 主机外观 用户终端 北斗卫星/GPS 卫星 船载终端 船载终端 用户终端 数据库服务器 应用服务器 北斗指挥机 图1 船舶监控管理系统结构示意图

图天线外观 主要功能 代码指挥。为部集团用户、指挥车辆及人员提供代码指挥与管控功能; 标绘能力。提供自动、手动标绘能力; 位置监控。能够监收部队所辖北斗用户终端位置和短报文信息; 态势显示。提供基于电子地图的下属位置和状态等态势显示; 应急通信。为作战部队提供基于北斗短报文的基本应急通信保障手段; 具有初始化及自检能力; 能够通过软件进行故障检测,出现故障硬件能够进行报警; 具有对服务器授时能力,并能够提供时间同步服务。 主要技术指标 RDSS技术参数 1.接收链路主要技术参数

接收频点:2491.75MHz±4.08MHz; 接收通道:10; 接收灵敏度:-160.6dBW(误码率小于1×10E-5,前端低噪放噪声系数小于1.2dB)。 2.发射链路主要技术参数 发射频点:1615.68MHz±4.08MHz; 发射功率(EIRP):6dBW~19dBW(仰角10°~ 90°); 载波抑制:优于-30dB; BPSK调制相位误差:<±3°。 3.其它技术参数 双向零值:1ms±10ns,方差≤10ns(1σ); 定位成功率:99%(有线测试); 通信成功率:99%(有线测试); 最高发射频度:1秒(取决于RDSS_IC卡或RDSS_IC芯片)。RNSS技术参数 1.接收通道数: BD2 B1:12; BD2 B3:8。 2.接收灵敏度:-130dBm(前端低噪放噪声系数小于1.5dB)。 3.开机定位时间: 冷启动首次定位时间:≤45s; 热启动平均首次定位时间:≤20s。

卫星链路计算公式

卫星链路计算公式 天线的增益与波束宽度 有效全向辐射功率 自由空间传输损耗 转发器的工作点 噪声与损耗 1. 天线增益:G=收点收到的功率 无方向天线辐射时,接点收到的最大功率定向天线辐射时,接收 微波天线增益:G= ηλπ24A 半功率角:)(7021 度D λθ≈ 【半功率角是指主叶瓣上场强为主射方向场强的1/ 2= 0.707时(即 功率下降1/2时),两个方向间的夹角。】 2. 接收点的功率密度(单位面积上的功率)为:)/(422m W d G P W T T E π= 接收天线收到的功率: 22)4(4d G G P d A G P A W P R T T T T E R πλπηη==?=① f R T T R L G G P P = ② 【式②一般性地描述通信线路中信号的传输,称之为“通信距离方程”】 3.自由空间传输损耗: 2)4(c df L f π=时,式②与式①相等。此即自由空间传输损耗。 【物理解释 物理解释:由于电磁波在自由空间无方向性地辐射,使得只有少部分信号被接收点收到,而其他大部分无法被收到的能量即视为损耗。】 4.有效全向辐射功率:T T G P EIRP =

若考虑馈线损耗,则 F T T L G P EIRP = 【物理解释:在接收点进行测量时,将T P 功率送入增益为T G 、最大辐射方向指向接收点的发射天线时所测得的结果与将T P T G 功率送入无方向性发射天线时所测得的结果是相同的。】 4. 转发器的工作参数: 工作点: 输入补偿 输出补偿 多载波与单载波工作时的输出功率 1) 44ππ?=?===f ES f T T f R T T R L EIRP L G P A L G G P A P W 即 )/)(4lg(10][[EIRP][W]22ES m dBW L f λπ+-= 【为使卫星转发器单载波饱和工作,在其接收天线的单位有效面积上应输入的功率,一般以W 或SFD 表示】 2)G/T 值:接收天线增益与接收系统总的等效噪声温度的比值称为地球站的G/T 值,也称性能因数或品质因数。 5. 噪声与损耗 噪声与损耗 噪声、干扰 热噪声 互调噪声 共信道干扰 交叉极化噪声 邻星、邻站干扰 邻道干扰 1) 热噪声功率谱密度:)/(0Hz W KT n = 【k 为玻耳兹曼常数,1.38054× 10-23J/K ;T 为电阻R 的绝对温度】 总的输出噪声功率:n p n B KTG B f H KT df f H KT N ===?∞|)(||)(|020 等效噪声带宽:p n G df f H f H df f H B 202020|)(||)(||)(|??∞∞==

相关文档
最新文档