热电偶温度传感器的特点、种类及结构形成

热电偶温度传感器的特点、种类及结构形成

热电偶温度传感器的特点、种类及结构形成

热电偶- 特点

◆装配简单,更换方便

◆压簧式感温元件,抗震性能好

◆测量范围大

◆机械强度高,耐压性能好

◆耐高温可达2400 度

热电偶- 种类及结构形成

(1)热电偶的种类

常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988 年1 月1 日起,热电偶和热电阻全部按IEC 国际标准生产,并指定S、B、E、K、R、J、T 七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

①组成热电偶的两个热电极的焊接必须牢固;

②两个热电极彼此之间应很好地绝缘,以防短路;

③补偿导线与热电偶自由端的连接要方便可靠;

④保护套管应能保证热电极与有害介质充分隔离。

常用热电偶材料

铠装热电偶的种类及结构形成

铠装热电偶的种类及结构形成 铠装热电偶是工业上常用的温度检测元件之一,其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1100℃均可边续测量,某些特殊热电偶可测到-269℃(如金铁镍铬)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 铠装热电偶测温基本原理: 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 铠装热电偶的种类及结构形成: (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准热电偶按IEC国际标准生产,并指定S、R、B、K、N、E、J、T八种标准热电偶为统一设计型热电偶。 (2)热电偶的结构形式,为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

热电偶使用方法

文档说明:MAXIM6675是MAXIM公司推出的具有冷端补偿的单片K型热电偶数字转换器。本文主要介绍了MAX6675的特性和工作原理, 详细阐述了该芯片在铝水平温度测量仪中的应用,给出了与89C51单片机的接口电路和程序设计。 K型热电偶是工业生产中最常用的温度传感器,具有结构简单、制造容易、使用方便、测温范围宽等特点。目前,在以K型热电偶为测温元件的工业测温系统中,热电偶输出的热电势信号必须经过中间转换环节,才能输入基于单片机的嵌入式系统。中间转换环节包括信号放大、冷端补偿、线性化及数字化等几个部分,实际应用中,由于中间环节较多,调试较为困难,系统的抗干扰性能往往也不理想。在铝水平温度测量仪的研制中,我们采用了MAXIM公司新近推出的MAX6675,它是一个集成了热电偶放大器、冷端补偿、A/D转换器及SPI串口的热电偶放大器与数字转换器,可以直接与单片机接口,大大简化系统的设计,保证了温度测量的快速、准确。 1 MAX6675特性 1.1 特性 MAX6675是具有冷端补偿和A/D转换功能的单片集成K型热电偶变换器,测温范围0℃~1024℃,主要功能特点如下: ·直接将热电偶信号转换为数字信号 ·具有冷端补偿功能 ·简单的SPI串行接口与单片机通讯 ·12位A/D转换器、0.25℃分辨率 ·单一+5V的电源电压 ·热电偶断线检测 ·工作温度范围-20℃~+85℃ 1.2 引脚功能 MAX6675采用SO-8封装形式,有8个引脚,脚1(GND)接地,脚2(T-)接热电偶负极,脚3(T+)接热电偶正极,脚4(VCC)电源端,脚5(SCK)串行时钟输入端,脚6(CS)片选端,使能启动串行数据通讯,脚7(SO)串行数据输出端,脚8(NC)未用。在VCC和GND之间接0.1μF电容。 MAX6675的引脚如图1所示。 1.3 工作原理 MAX6675是一复杂的单片热电偶数字转换器,其内部结构如图2所示。主要包括:低噪声电压放大器A1、电压跟随器A2、冷端温度补偿二极管、基准电压源、12位AD 转换器、SPI串行接口、模拟开关及数字控制器。 其工作原理如下:K型热电偶产生的热电势,经过低噪声电压放大器A1和电压跟随器A2放大、缓冲后,得到热电势信号U1,再经过S4送至ADC。。对于K型热电偶,电压变化率为(41μV/℃),电压可由如下公式来近似热电偶的特性。 U1=(41μV/℃)×(T-T0) 上式中,U1为热电偶输出电压(mV),T是测量点温度;T0是周围温度。 在将温度电压值转换为相应的温度值之前,对热电偶的冷端温度进行补偿,冷端温度即是MAX6675周围温度与0℃实际参考值之间的差值。通过冷端温度补偿二极管,产生补偿电压U2经S4输入ADC转换器。 U2=(41μV/℃)×T0 在数字控制器的控制下,ADC首先将U1、U2转换成数字量,即获得输出电压U0的数据,该数据就代表测量点的实际温度值T。这就是MAX6675进行冷端温度补偿和测量温度的原理。

热电偶温度传感器设计报告

传感器课程设计 设计题目:热电偶温度传感器 2010年12月30日 目录 1、序言 (3) 2、方案设计及论证 (4)

3、设计图纸 (9) 4、设计心得和体会 (10) 5、主要参考文献 (11) 一、序言 随着信息时代的到来,传感器技术已经成为国外优先发展的科技领域之一。测控系统的设计通常是从对象信息的有效获取开始的不同种类

的物理量不仅需要不同种类的传感器进行采集,而且因信号性质的不同,还需要采用不同的测量电路对信号进行调理以满足测量的要去。因此,触感其与检测技术在现代测量与控制系统中具有非常重要的地位。 而在所有的传感器中,热电偶具有构造简单、适用温度围广、使用方便、承受热、机械冲击能力强以及响应速度快等特点,常用于高温区域、振动冲击大等恶劣环境以及适合于微小结构测温场合。 因此,我们想设计一种热电偶传感器能够在低温下使用,可以适用于试验和科研中,测量为温度围:-200 ℃ ~500 ℃,电路不太复杂的简易的热电偶温度传感器,考虑到制作材料相对便宜,我们选择了铜-铜镍(康铜)。在选择测量电路时,我们从简单,符合测量围要求及热电偶的技术特性,我们采用了AD592对T型热电偶进行冷结点的补偿电路。这种型号的电路允许的误差(0.5 ℃或0.004x|t|)相对于其他类型的热电偶具有测量温度精度高,稳定好,低温时灵敏度高,价格低廉。能较好的满足测量围。 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,

铠装热电偶介绍

铠装热电偶介绍 铠装热电偶作为温度测量传感器,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中0-1800℃范围内的流体、蒸汽和气体介质以及固体表面等温度。铠状热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优点,它和工业用装配式热电偶一样,作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用。 基本信息 中文名称:铠装热电偶 外文名称:Armoured thermocoupl 生产过程中:0℃~800℃范围内的液体、蒸汽和其气体介质 铠装热电偶的结构原理:是由导体、高绝缘氧化镁、外套1Cr18Ni9Ti不锈钢保护管,经多次一体拉制而成 目录1简介 2工作原理 3特点 4温度补偿 5测温原理 6测量范围 7技术指标 8热响应时间 9形式 10基本结构 11检定方法 12使用技巧 13区分方法 14失效 15应用 16测温范围 17国际温标 18安装需知 简介 铠装热电偶 铠装热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优点,它和工业用装配式热电偶一样,作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,同时,亦可以作为装配式热电偶的感温元件。它可以直接测量各种生产过程中从0℃~800℃范围内的液体、蒸汽和其气体介质以及固体表面的温度。与装配式热电偶相比,铠装热电偶具有可弯曲、耐高压、热响应时间短和坚固耐用等优点。

工作原理

铠装热电偶131 是两种不同成份的导体两端经焊接,形成回路,直接测温端叫工作端,接线端子端叫冷端,也称参比端。当工作端和参比端存在温差时,就会在回路中产生热电流,接上显示仪表,仪表上就会指示出热电偶所产生的热电动势的对应温度值。铠装热电偶的热电动势将随着测量端温度升高而增长,热电动势的大小只和热电偶导体材质以及两端温差有关,和热电极的长度、直径无关。铠装热电偶的结构原理是,是由导体、高绝缘氧化镁、外套1Cr18Ni9Ti不锈钢保护管,经多次一体拉制而成。铠装热电偶产品主要由接线盒、接线端子和铠装热电偶组成基本结构,并配以各种安装固定装置组成。 特点 铠装热电偶 铠装热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测温范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。 国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代

热电偶基础知识及选型

热电偶基础知识及选型 一、热电偶基础 1. 热电效应:将两根不同的导体连接在一起,当导体的两端温度不一致时,导体构成的回路中就有电流产生,这种现象叫物质的热电效应(塞贝克效应)。热电特性是物质普遍具有的一种物理特性。 2. 热电偶:以测量热电动势的方法来测量温度的一对金属导体。注意是两根不同的均质导体,且只有热电特性曲线线性好、稳定性好、热电势率较大、耐蚀性好的一对金属导体才可用于热电偶。 3. 热电极:构成热电偶的两根金属导体叫热电极,其中一根叫正极,另一根叫负极。 4. 测量端与参比端:热电偶的焊接端叫测量端,也叫热端,另一端用于连接显示仪叫参比端,也叫冷端。 5. 热电动势:热电偶回路中由于测量端和参比端温度不一致时所产生的电动势,叫热电动势,包括温差电势和接触电势两部份。当参比端温度恒定时,热电偶的热电动势大小与测量端温度一一对应。 6. 热电势率:指温度每变化1℃引起热电偶的热电动势的变化值,又称“塞贝克系数”,单位为μV/℃。温度需换算成热电动势才能进行运算。 7. 热电偶的基本定律:均质导体定律、中间导体定律、中间温度定律、连接导体定律、参考电极定律。

8. 热电偶起源:基于1821年塞贝克发现的热电效应,1826年贝克雷尔首先根据热电效应来测量温度。 9. 分度号:对热电特性在一定范围内一致的一个类别的热电偶的命名符号。热电极化学成分相同的两支热电偶,其分度号相同。 10. 分度表:每类分度号的热电偶在每摄氏度对应的热电动势的数据表,叫热电偶分度表。 11. 热电偶的结构:两端五部,热电偶三要素 12. 装配热电偶:热电偶偶丝、绝缘材料、保护套管经过装配而成,并可拆卸的热电偶。 13. 铠装热电偶:热电偶偶丝采用氧化镁粉绝缘,将偶丝、绝缘材料、保护套管组装在一起,反复拉拔缩径,加工成一体化的细长的不可拆卸的热电偶电缆,再分剪成需要的长度,制作测量端和接线端,即成为铠装热电偶。 三、热电偶选型基础

热电阻安装使用说明书

热电阻 安装使用说明书安徽埃克森科技集团有限公司

1.热电阻工作原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。热电阻材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻种类 (1)精密型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制。

铠装热电偶设计特点

铠装热电偶设计特点: ? 两线连接? 测量用芯子可配备1 个、2 个或多个? 多种套管设计? 便于外部作业? 可集成变送器应用:铠装热电偶具有能弯曲、耐高压、热响应快和坚固耐用等优点。它可直接测量各种生产过程中从0 ℃~800 ℃范围内的液体、蒸汽和气体介质以及固体表面的温度,也可以作为装配式热电偶的感温元件。技术数据:? 机械设计由测量芯子、连接头、保护套管等组成。保护管材料和固定装置材料:1Cr18Ni9Ti 不锈钢。长度及直径详见选型表 铠装式热电偶选型表产品型号域号代码特征说明 接线盒类型 JTC2 1 A1 防尘式 A2 防水式 A3 防火式 A4 简易式 A5 带补偿导线式 分度号 2 B1 镍铬-镍硅K B2 镍铬-铜镍E B3 铁-铜镍J B4 铜-铜镍T B5 镍铬硅10 -铂N 热电偶对数 3 C1 单支式 C2 双支式 安装方式 4 D1 无固定式 D2 固定卡套螺纹 D3 可动卡套螺纹 D4 固定卡套法兰 D5 可动卡套法兰 D6 1/2NPT 固定螺纹 D7 G1/2B 固定螺纹(M27*2 ) 外保护管直径Φ D 5 E1 Φ 3 E2 Φ 4 E3 Φ 5 E4 Φ 6 E5 Φ 8 E6 Φ 12 置深长度l mm 6 F1 100 F2 150 F3 200 F4 250 F5 300

F6 400 F7 500 F8 750 F9 1000 测量端(热端)结构形式 7 G1 绝缘式 G2 接壳式 外保护管材料 8 H 1Cr18Ni9Ti 铠装式热电偶订单代码: 1 2 3 4 5 6 7 8 ( 可缺省) JTC2 - - - (附:订货时需要特殊置入深度、保护管材质、精度等级等要求请另注明。) 我来引用一些资料,睇能否帮到你: 1、热电偶的种类热: 电偶有K型(镍铬-镍硅)系列,N型(镍铬硅-镍硅镁)系列,E型(镍铬-铜镍)系列,J型(铁-铜镍)系列,T型(铜-铜镍)系列,S型(铂铑-铂)系列,R型(铂铑-铂)系列,B型(铂铑-铂铑)系列等。 2、热电偶的结构形式: 热电偶的基本结构是热电极,绝缘材料和保护管;并与显示仪表、记录仪表或计算机等配套使用。在现场使用中根据环境,被测介质等多种因素研制成适合各种环境的热电偶。热电偶简单分为装配式热电偶,铠装式热电偶和特殊形式热电偶;按使用环境细分有耐高温热电偶,耐磨热电偶,耐腐热电偶,耐高压热电偶,隔爆热电偶,铝液测温用热电偶,循环硫化床用热电偶,水泥回转窑炉用热电偶,阳极焙烧炉用热电偶,高温热风炉用热电偶,汽化炉用热电偶,渗碳炉用热电偶,高温盐浴炉用热电偶,铜、铁及钢水用热电偶,抗氧化钨铼热电偶,真空炉用热电偶,铂铑热电偶等。 热电偶工作原理 热电偶是一种感温元件,它把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路,当两端存在温度梯度时回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此在热电偶测温时,可接入测量仪表测得热电动势后,即可知道被测介质的温度。

铠装热电偶介绍Word版

铠装热电偶介绍 基本信息 中文名称:铠装热电偶 外文名称:Armoured thermocoupl 生产过程中:0℃~800℃范围内的液体、蒸汽和其气体介质 铠装热电偶的结构原理:是由导体、高绝缘氧化镁、外套1Cr18Ni9Ti不锈钢保护管,经多次一体拉制而成 简介

铠装热电偶

铠装热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优点,它和工业用装配式热电偶一样,作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,同时,亦可以作为装配式热电偶的感温元件。它可以直接测量各种生产过程中从0℃~800℃范围内的液体、蒸汽和其气体介质以及固体表面的温度。与装配式热电偶相比,铠装热电偶具有可弯曲、耐高压、热响应时间短和坚固耐用等优点。 工作原理 铠装热电偶131 是两种不同成份的导体两端经焊接,形成回路,直接测温端叫工作端,接线端子端叫冷端,也称参比端。当工作端和参比端存在温差时,就会在回路中产生热电流,接上显示仪表,仪表上就会指示出热电偶所产生的热电动势的对应温度值。铠装热电偶的热电动势将随着测量端温度升高而增长,热电动势的大小只和热电偶导体材质以及两端温差有关,和热电极的长度、直径无关。铠装热电偶的结构原理是,是由导体、高绝缘氧化镁、外套1Cr18Ni9Ti不锈钢保护管,经多次一体拉制而成。铠装热电偶产品主要由接线盒、接线端子和铠装热电偶组成基本结构,并配以各种安装固定装置组成。 特点 铠装热电偶 铠装热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测温范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

铠装热电偶与其它热电偶的不同之处

铠装热电偶与其它热电偶的不同之处 铠装热电偶是一种常用的检测仪器,具有稳定性好、灵敏度高、测量范围广、准确度高、使用灵活等多种的优点。我们在使用铠装热电偶的时候对于它与其它热电偶的不同之处都有了解过吗,其实它们的不同之处是非常多的。今天小编就来为大家具体介绍一下铠装热电偶与其它热电偶的不同之处吧。1)普通型热电阻 从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。 2)铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 3)端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 4)隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。 5)防腐热电阻采用PTFE防腐材质,作为整体保护套或两节式套管,也可以直接在保护管上作该材质的防腐处理,分喷涂、烧结和套管密封三种形式。适用于在强碱的腐蚀性介质中进行测量,耐温250℃,固定安装形势也可采用相同PTFE材质的固定螺纹、固定法兰(接触介面质面)或卡套螺纹等。配合PVC

MAX6675的温度传感器报告

课程设计 课程名称:传感器原理及应用 实验项目:热电偶温度传感器的设计 实验地点:信息学院传感器实验室 专业班级:电科1401班学号:2014001864 学生姓名:李康泽 2018年12月26日

太原理工大学课程设计任务书 1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订)。 2.可根据实际内容需要续表,但应保持原格式不变。

一、设计方案 设计中采用了两个方案,具体的方案见方案一和方案二。 方案一:分立元气件冷端补偿方案 该方案的热电偶冷端温度补偿器件是由分立元件构成的,其体积大,使用不够方便,而且在改变桥路电源或热电偶类型时需要重新调整电路的元件值。主要包括温度采集电路、信号放大电路、A/D转换电路、热电偶冷端补偿电路、数码管显示电路等。其系统框图如图1。 图1:分立元气件冷端补偿 方案二:集成电路温度补偿方案 采用热电偶冷端补偿专用芯片MAX6675,MAX6675温度转换芯片具有冷端温度补偿及对温度进行数字化测量这两项功能。一方面利用内置温度敏感二极管将环境温度转换成补偿电压,另一方面又通过模数转换器将热电势和补偿电压转换为代表温度的数字量, 将二者相加后从串行接口输出测量结果,即为实际温度数据。主要包括温度采集电路、MAX6675温度转换电路、数码管显示电路等。其系统框图如图2。 图2:集成电路温度补偿方案

测温的模拟电路是把当前K型热电偶传感器的电阻值,转换为容易测量的电压值,经过放大器放大信号后送给A/D转换器把模拟电压转为数字信号,再传给单片机AT89S51,单片机再根据公式换算把测量得的温度传感器的电阻值转换为温度值,并将数据送出到数码管进行显示。 综合对比以上两种方案,方案一电路复杂,且测量不精确照成误差较大,方案二采用集成温度转换芯片不仅能很好的解决冷端温度补偿及温度数值化问题,并消除由热电偶非线性而造成的测量误差,且精确度高,可实现电路的优化设计。故最后采用方案二。 二、传感器的选择: 物体的冷热水平可以通过温度来衡量,从分子水平看,又可以表示物体分子运动状态,温度越高,分子运动越猛烈。物体温度改变后显示出的一些特点只可以由温度间接测量。最基本的环境方法——温度,对周边环境会产生重要影响、和人们的衣食住行、农业生产等方面密不可分。温度的测量在工业、农业生产中必不可少,在工业生产中甚至需要时刻观察温度的变化。所以通过对温度的测量和测温设备的研究具有非比寻常的意义。 在社会生产力的不断提高下,对温度测量系统收集的温度数据方法要求越来越高,已经渗透到社会方方面面。温度的测量主要应用于工业、农业这两大领域。在这两大领域中,无论是机械的正常运转还是农作物的蓬勃生长,都离不开温度的测量。在工业生产中,由于生产环境的限制,员工不可长时间停留观察设备运行正常或因为其他原因不能在现场。这是找到最佳的方式收集数据的迫切需要,将数据发送到一个比较好操作的控制室,便于工作人员对数据的分析与处理;在农业生产上,对温室大棚的温度监测,以前都是选择分区取样的人工处理方式,工作辛苦,精确度不高。而且在实际操作中,因为大棚的诸多环境限制因素,例如占地面积广、测量点分散而且数目多,所以这种测量方式已经被淘汰。当前的科技水平下,为了取得更大的效益促使我们必须找到一种精确、简便易行的温度采集测量方法。在科学技术的不断发展下,现代社会对各种参数:准确度和精密度的要求有一个几何增长。在以此基础上,如何快速、准确获取这些参数需要依

热电偶、热电阻产品选型样本详解

产品选型样本 温度仪表 一、热电偶 1、WR□□-□□□系列装配式热电偶 工业用装配式热电偶是一种常用温度传感器,通常 与温度变送器、调节器及显示仪表等配套使用,组成过程 控制系统。可以直接测量各种生产过程中液体、蒸汽和 气体介质及固体表面温度。 □型号构成表 型号举例:WRK2-230表示感温元件为镍铬-镍硅、双支、固定螺纹、保护管直径为Ф16mm 金属管(不作特殊标注为1Cr18Ni9Ti)的装配式热电偶。

□主要技术指标│ ◎热响应时间 在温度出现阶跃变化时,热电偶的输出变化至相当于该阶跃变化的50%所需要的时间,称为热响应时间。用t0.5表示。

◎公称压力 一般是指在工作温度下,保护管所能承受的静态外压而不破裂。实际上,容许工作压力不仅与保护管材料、直径、壁厚有关,而且还与其结构、安装方法、置入深度以及被测介质的流速和种类有关。 ◎热电偶最小插入深度 对陶瓷保护管而言,应不小于其保护管直径的8~10倍;对金属及合金保护管,应大于其保护管直径的10倍以上 ◎绝缘电阻 常温绝缘电阻的试验电压为直流500±50V,测量常温绝缘电阻的大气条件为:温度15~35℃,相对湿度45%,大气压力86~106KPa。热电偶在该条件下放置时间不小于2小时。 a.对于长度超过1米的热电偶,它的常温绝缘电阻值与其长度的乘积应不小于100MW·m。 即:Rr·L ≥100MW·m L ≥1m 式中:Rr-热电偶的常温绝缘电阻值,MW L -热电偶的长度,m b.对于长度等于或不足1m的热电偶,它的常温绝缘电阻值应不小于100MW。 ◎接线盒结构(统一设计型) ◎外形尺寸

热电偶温度传感器信号调理电路设计与仿真

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

铠装热电偶电缆及铠装热电偶

MV_RR_CNG_0024 标准镍铬-镍硅热电偶检定规程 1.标准镍铬-镍硅热电偶检定规程说明 编号JJG143-1984 名称(中文)标准镍铬-镍硅热电偶检定规程 (英文)Verification Regulation of Standard Ni-Cr/Ni-Si Thermocouple 归口单位辽宁省计量局 起草单位辽宁省计量测试技术研究所 主要起草人侯永山 (辽宁省计量测试技术研究所) 批准日期1984年2月9日 实施日期1984年12月1日 替代规程号 适用范围本规程适用于新制或使用中的标准镍铬-镍硅热电偶 (以下简称热电偶) 的检定。该热电偶主要用于对K型Ⅱ级及镍铬-考铜热电偶 的检定。 主要技术要求 1 热电偶的正极为镍铬合金,名义成分含铬约为10%,其余为镍;负极为镍硅合金,含硅约为3%,其余为镍。 2 对热电极和测量端的要求 3 热电偶测量端温度为1000℃时,其热电动势为41.269±0.156mV。 4 新制热电偶热电动势的稳定度 5 使用中热电偶热电动势的稳定度 6 热电偶的均匀性 7 热电偶的监督性校准 是否分级 否 检定周期(年)六个月 附录数目 5 出版单位中国计量出版社 检定用标准物质 相关技术文件 备注 2.标准镍铬-镍硅热电偶检定规程摘要 一、技术要求 1 热电偶的正极为镍铬合金,名义成分含铬约为10%,其余为镍;负极为镍硅合金,含硅约为3%,其余为镍。 2 对热电极和测量端的要求 2.1 热电极的直径为 3.2mm,长度不应小于1100mm;使用中的热电偶,热电极的长度不应小于1000mm。 2.2 新制热电偶的热电极表面应均匀、光洁、无油污、无折叠、无裂纹、无毛刺及夹层等。100

热电偶温度传感器

南昌航空大学 课程论文 题目热电偶温度传感器 姓名学号 1508408520316 姓名学号 1508208520322 姓名学号 1508081520330 专业年级 15级仪器仪表工程 2015年 12月 8日

目录 1 热电偶温度传感器的技术参数 (1) 1.1 热电偶、热电阻分度号 (1) 2 热电偶温度传感器的工作原理 (1) 2.1 温度传感器热电阻测温原理及材料 (2) 2.2.温度传感器热电阻的结构 (2) 3 热电偶温度传感器的基础指标 (2) 3.1 接触热电动势 (2) 3.2 温差电动势 (3) 3.3 热电偶回路总电动势 (3) 4 热电偶温度传感器的设计指标 (3) 5 热电偶温度传感器的静态指标及动态指标 (4) 5.1 静态指标 (4) 5.2 动态指标 (5) 6 热电偶温度传感器的静态及动态测试方法 (6) 6.1 静态测试方法 (6) 6.2 动态测试方法 (7) 7 热电偶温度传感器的安全性及可靠性分析 (7) 7.1 误差来源分析 (7) 7.2 补偿方法研究 (8) 参考文献 (9)

热电偶温度传感器 摘要 热电偶是将温度变化量转换为热电势大小的热电传感器,是一种广泛应用的间接测量温度的方法,即利用一些材料或元件的性能参数随温度而变化通过测量该性能参数,而得到被测温度的大小本文中主要介绍利用热电偶传感器测温的原理及系统设计。在论述测温的同时,针对不足,提出了一种基于数值计算软件化测温方法,并给出了实现这种测温的4个步骤,给出了相关电路、拟合关系式和计算方法。为了是测温精度更高,在此分析了误差优化方法,探讨了误差时间常数分析、非线性补偿法及冷端温度补偿技术。 【关键词】热电偶、软件化、时间常数、非线性补偿、冷端温度补偿

热电偶温度传感器如何正确安装和使用

热电偶温度传感器如何正确安装和使用 西安静敏机电设备有限公司在安装和使用热电偶温度传感器时,应当注意以下事项以保证最佳测量效果: 1、安装不当引入的误差 如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。 2、绝缘变差而引入的误差 如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。 3、热惰性引入的误差 由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动

的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。 4、热阻误差 高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

铠装热电偶

铠装热电偶
科技名词定义 中文名称: 铠装热电偶 英文名称: sheathed thermocouple 定义: 将热电偶丝和绝缘材料一起紧压在金属保护管中制成的热电偶。 所属学科: 机械工程(一级学科) ;仪器仪表元件(二级学科) ;仪器仪表机械元件-敏感元件(三级 学科)
本内容由全国科学技术名词审定委员会审定公布
百科名片 铠装热电偶作为温度测量传感器,通常与温度变送器、调节器及显示仪表等配套使用,组成过 程控制系统,用以直接测量或控制各种生产过程中0-1800℃范围内的流体、蒸汽和气体介质 以及固体表面等温度。铠状热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优 点,它和工业用装配式热电偶一样,作为测量温度的传感器,通常和显示仪表、记录仪表和 电子调节器配套使用。 目录 简介 工作原理 特点 冷端的温度补偿 测温原理 测量范围 技术指标 热响应时间
展开 编辑本段 简介
铠装热电偶
铠装热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优点,它和工业用 装配式热电偶一样,作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节 器配套使用,同时,亦可以作为装配式热电偶的感温元件。它可以直接测量各种生产 过程中从0 ℃ ~800 ℃范围内的液体、蒸汽和其气体介质以及固体表面的温度。与装配 式热电偶相比,铠装热电偶具有可弯曲、耐高压、热响应时间短和坚固耐用等优点。
编辑本段 工作原理
铠装热电偶131
是两种不同成份的导体两端经焊接,形成回路,直接测温端叫工作端,接线端子端叫 冷端,也称参比端。当工作端和参比端存在温差时,就会在回路中产生热电流,接上 显示仪表,仪表上就会指示出热电偶所产生的热电动势的对应温度值。铠装热电偶的 热电动势将随着测量端温度升高而增长,热电动势的大小只和热电偶导体材质以及两 端温差有关,和热电极的长度、直径无关。铠装热电偶的结构原理是,是由导体、高 绝缘氧化镁、外套1Cr18Ni9Ti 不锈钢保护管,经多次一体拉制而成。铠装热电偶产品 主要由接线盒、 接线端子和铠装热电偶组成基本结构, 并配以各种安装固定装置组成。
编辑本段 特点
铠装热电偶
铠装热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性 能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA 电信号,便于自动控 制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接 成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电 效应,又称为塞贝克效应

铠装热电偶的选用注意事项

铠装热电偶是一种温度传感器,利用物质在温度变化时,其电阻也随着发生变化的特征来测量温度的。当阻值变化时,仪表便显示出阻值所对应的温度值。它比装配式铂电阻直径小,易弯曲,适宜安装在管道狭窄和要求快速反应、微型化等特殊场合。其可对-200~600℃温度范围内的气体、液体介质和固体表面进行自动检测,并且可直接用铜导线和二次仪表相连接使用,由于它具有良好的电输出特性,可为显示仪、记录仪、调节器、扫描器、数据记录仪以及电脑提供精确的输入值。下面,我就给大家简单介绍一下在选择时的注意事项。 铠装热电偶由金属维护管、绝缘资料和电阻体三者组合经冷拔、旋银加工而成。铠装型热电偶中的电阻体是用细铂丝烧在铂铑热电偶陶瓷或玻珑支架上制成,引线普通为钢导线或银导线.注意事项 热电偶与显现仪表的衔接导线应采用绝缘铜线,不得运用热电偶的补偿导线。铜线的电阻值应按显现仪表技术条件规则的数据选配,普通为2一50,导线的电阻值可用直流均衡电桥来调整。 不能把一个热电偶与两个显现仪表并联运用,只要双支式热电偶才能够用来和两个显现仪表一同运用。 热电偶及其附件在不运用的时分,必需保管在钨铼热电偶不受振动和碰撞的中央。最适宜的存放场所条件为:环境温度10-35gC;相对湿度不大于80%;四周空气中不应含有可能形成热电偶零件腐蚀的物质。 热电偶接线时,先将接线盒翻开,然后接线。接线的办法普通有二线制和三线制两种。三线制衔接的优点是,能够防止双金属温度计因衔接导线电阻值所惹起的显现仪表的示值误差。大多数热电偶的敏感元件长度约为120mm,中选择热电偶的插人深度时,应该思索到热电偶只能侧量敏感元件左近范围内被测介质的均匀沮度。 热电偶最高运用温度和压力不可超越该热电偶的额定数值,假如热电偶需在腐蚀性介质中运用时,应采用由不锈钢制成的维护管。 具有可弯曲性能,恺装热电偶除头部外,可以作任愈方向的弯曲,因而它适用于构造较为复杂,狄小设备的温度侧Ao,还具有良好的耐振动、抗冲击性能。 热惰性小,反响疾速,如维护管直径为妇2mm的普通铂电阻,其时间常数为25s;而金属套管直径为扭.0mm的恺装热电偶,其时间常效仅为5。左右。 ②②

相关文档
最新文档