共基极放大电路

共基极放大电路

共基极、射极、集电极放大电路

基本信息

共基极放大电路中,输入信号是由三极管的发射极与基极两端输入的,再由三极管的集电极与基极两端获得输出信号因为基极是共同接地端,所以称为共基极放大电路。

编辑本段共基极放大电路具有以下特性

1、输入信号与输出信号同相;

2、电压增益高;

3、电流增益低(≤1);

4、功率增益高;

5、适用于高频电路。

共基极放大电路的输入阻抗很小,会使输入信号严重衰减,不适合作为电压放大器。但它的频宽很大,因此通常用来做宽频或高频放大器。在某些场合,共基极放大电路也可以作为“电流缓冲器”(Current Buffer)使用。

编辑本段电路原理图

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

共基极放大电路

共基极放大电路分析与计算 共基极放大电路(简称共基放大电路)如图1(a)所示,直流通路采用的是分压偏置式,交流信号经C 1从发射极输入,从集电极经C 2输出,C 1、C 2为耦合电容,C b 为基极旁路电容,使基极交流接地,故称为共基极放大器。微变等效电路如图1(b)所示。 图1 共基极放大电路 (a )基本放大电路;(b )微变等效电路 1) 静态工作点(与共发射极放大电路分析方法一样) 图1中如果忽略IBQ 对Rb1、Rb2分压电路中电流的分流作用,则基极静态电压U BQ 为 CC b b b BQ U R R R U 2 12 += 流经Re 的电流I EQ 为 e BE B e E EQ R U U R U I -== 如果满足UB 〉〉UBE ,则上式可简化为 (a ) + - u o β i i i (b )

CC b b b e e B EQ CQ U R R R R R U I I 2 121 +?=≈ ≈ 而β += 1EQ BQ I I CQ e C CC CEQ I R R U U )(+-= 2) 动态分析 利用三极管的微变等效模型,可以画出图1(a )电路的微变等效电路如图1(b )所 示。 图中,b 、e 之间用rbe 代替, c 、 e 之间用电流源βib 代替。 (1) 电流放大倍数。 在图1(b )中,当忽略Re 对输入电流ii 的分流作用时,则ii ≈-ie ;流经R ′L (R ′L=Rc ∥RL )的输出电流io=-ic 。 a i i i i A e c i i =--== 0 α称作三极管共基电流放大系数。由于α小于且近似等于1,所以共基极电路没有电流放大作用。 (2) 电压放大倍数。 根据图1(b )可得 ui=-rbeib uo=R ’L io=-R ’L ic=-βR ’L ib 所以,电压放大倍数为 be L i O u r R u u A '= = β 上式表明,共基极放大电路具有电压放大作用, 其电压放大倍数和共射电路的电压放大 倍数在数值上相等,共基极电路输出电压和输入电压同相位。 (3) 输入电阻。 当不考虑Re 的并联支路时, 即从发射极向里看进去的输入电阻r ′i 为 β β+=+--= 1)1('be b b be i r i i r r rbe 是共射极电路从基极向里看进去的输入电阻,显然, 共基极电路从发射极向里看进 去的输入电阻为共射极电路的1(1+β)。 (4) 输出电阻。 在图1(b )中,令u s =0,则i b =0,受控电流源βi b =0,可视为开路,断开RL ,接入u ,可得i=u/Rc ,因此,求得共基放大电路的输出电阻ro=Rc 。 综上所述,共基、共射电路元件参数相同时,它们的电压放大倍数Au 数值是相等的,但是,由于共基电路的输入电阻很小,输入信号源电压不能有效地激励放大电路,所以,在Rs 相同时,共基极电路实际提供的源电压放大倍数将远小于共射电路的源电压放大倍数。

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真 姓名: 学号: 班级:

仿真电路图介绍及简单理论分析 电路图: 电路图介绍及分析: 上图为电阻分压式共射极单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。 元件的取值如图所示。 静态工作点分析(bias point): 显示节点: 仿真结果:

静态工作点分析: VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ? 电路的主要性能指标: 理论分析: 设?=80,VBQ =2.8v VEQ=VBQ-VBEQ=2.1v rbe≈2.2kΩ Ri=1.12kΩ,Ro≈8.3 kΩ Au=-βRL’/rbe=56.7 仿真分析: 输入电阻:输出电阻:

Ri=0.86kΩRo≈9.56 kΩ输入电压:输出电压:

则A u=51.2 在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。 失真现象: 1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真

当Re大于等于25 kΩ时,会出现较为明显的截止失真 2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真 3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

差分放大电路Multisim仿真

差分放大电路仿真 双端输入双端输出差分放大电路模型: 双端输入双端输出差分放大电路的调零和静态工作点求解: XMM1和XMM2的电压都为6.398V,输出电压为零。双端输入双端输出时静态工作点如下图所示,Ib=4.975uA,Ie=1.13mA,Vcq=6.398V。 双端输入单端输出时的静态工作点: Ib=5.197uA, Ie=1.13mA,Vcq1=6.398V,Vcq2=2.169V。 对比上图的静态工作点可知,XMM2的静态工作点基本不变,但XMM1的静态工作点变化较大,计算公式可参照模电书上的静态工作点计算公式,经计算和实际的仿真结果非常接近。

VCC’=VCC*R6/(R1+R6)=12*5/(10+5)=4V,Rc’=R1//R6=10*5/(10+5)=3.33,Ieq1=(VCC-Ubeq1)/2R11=(12-0.7)/2/10=0.565mA,Vcq1=Vcc’-Ieq1*Rc’=4-0.565*3.33=2.11167V,基本和仿真结果相同。 双端输入双端输出差分放大电路差分放大倍数: 输入电压Ui=7.071mV,输出电压Uo=124.194,Aod=Uo/Ui=17.56 把R3和R4减小为510Ω后,放大倍数如下图所示:放大倍数为26.28。 共模放大倍数: 下图测量的是差分放大电路对共模信号的放大作用,Ui=7.071mV,输出电压为6.935nV,对共模信号有很强的抑制作用

把R11改为一个由三极管组成的恒流源: Uo=55.676pV,相对于加10KΩ的电阻R11,能更好的抑制共模信号,能模电书上的公式和结论吻合。

基本放大电路仿真实验

实验报告四 一、实验目的 1、通过仿真电路掌握单管共射电路的静态分析和动态分析; 2、通过对共射电路的仿真实验,分析静态工作点队对电路输出的影响; 二、实验内容 1.测量NPN管分压偏置电路的静态工作点并与估算值进行比较; 2.测量放大电路性能指标; 3.分析放大电路交流特性; 4.通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 三、实验环境 计算机、MULTISIM仿真软件 四、实验电路 1.实验电路 1.1静态分析 静态工作点仿真结果: 从仿真结果可知:

544127 = 1.7991.1690.63=5.21.16()=8.52BQ EQ BEQ BQ EQ BQ b b CC CQ C CEQ CC CQ c e V V V V V V V V V V V I A R R V V I mA R V V I R R V μ==-=-=--= =≈-+因此: 动态分析: 由仿真所得的数据可得: ip 421.405 ==-38.710.896 op v V A V = - 仿真波形: 1、

因此:ip i sp ip 10.642 = (1) 3.04814.13310.642 s V R R K K V V ≈?Ω≈Ω-- 2、oLp V 仿真 op V 仿真 因此:op oLp 836.417 =( 1)( 1)2 1.967421.691 o L V R R K K V -≈-?Ω≈Ω 放大电路交流仿真分析

3、通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 在电路图中放入探针 从图中可以得出,此时:919 A ==42.521.6 V 打开示波器,图形显示: 从图中的显示数据可以知道,输出波形已有部分失真 ; 1、增大b R (增大至75K )

Protues对放大电路的仿真

Protues对放大电路的仿真 摘要运用Protues仿真软件,通过对单管共射放大电路的仿真,详细描述了Protues仿真软件的使用方法。 关键词Protues;放大电路;仿真操作 Proteus 软件具有强大的调试功能和软硬件相结合的仿真系统,多用来调试单片机程序和仿真单片机外围器件的工作情况,一般情况下该仿真软件学习和单片机课程是同时开设的,同学们往往因为对软件不熟悉,而仿真不出应有的效果,学习积极性受到挫折。为了使同学们提前熟悉Proteus 软件的环境,我们在电子技术部分就开始使用该软件进行仿真,为今后单片机电路仿真做好准备。 1 原理图的绘制 1)新建一个设计 选择工具栏里的“”按钮,然后单击“文件”选择“文件另存为”,在弹出的对话框中选择一个路径,并在文件名框输入“单管共射放大电路”,再单击保存即完成一个电路设计。 2)元件的选取 首先选择“器件和仪器工具栏”的“”图标如图1所示,然后单击“ ”按钮,弹出“Pick Devices”窗口如图2所示。这时我们可以在关键词中输入要选择的元件的类型名称,在结果中就可以看到想要的相应类型元件,根据电路所需的具体型号在结果中双击该元件,即可将该元件添加到“DEVICE”栏目下。有些元件名称我们不熟悉,可以参考Protues 的元件库中英文对照表来进行选择。对于电源和地,需要左键单击“”按钮,这时在左侧元件列表中就会看到电源“POWER”和地线“GROUND”可供选取。正弦交流信号的选取,左键单击:“”,然后从元件列表中选择“SINE”即可。 3)元件的放置 isis操作页面的中右侧是搭建硬件电路系统原理图和显示系统运行状态的区域。点击已选好的“元件列表”中的元件,在工作区的任意位置点击左键就可将该元件放入工作区内,注意元件之间要留出一定距离,以方便连线。 4)元件的编辑 有些元件在放置完成后,由于元件方向或位置需要调整,这时需要按下工具栏中的“”按钮,在绘图区选中(单击或框选)需要编辑的元件,对其进行移动、旋转或复制操作。

低频放大电路实验仿真

综合性、设计性实验报告电子技术实验(模拟部分) 学期:2015-2016(II) 班级:电卓141 姓名:陈雨歌 日期:2016.6.6

一.实验目的 (1)掌握正弦波振荡电路的起振条件和稳幅特性。 (2)掌握三极管构成的RC串并联正弦波振荡器的工作原理和调试方法。(3)掌握集成运放构成的RC桥式正弦波振荡电路的工作原理和调试方法。(4)加深理解功率放大电路的工作原理。 (5)掌握功率放大电路的调试及主要性能指标的测试方法。 (6)了解自举电路原理及其对改善OTL功率放大电路性能指标的作用。二.实验原理及测试方法 (一)正弦波振荡电路的构成 图一正弦波振荡电路原理框图 正弦波振荡器是一个没有输入信号的正反馈放大电路,电路框架如图一所示。正弦波振荡器由放大电路和反馈网络构成。放大电路可以由三极管构成,也可以是由集成运放构成。反馈网络能使振荡电路引入正反馈,同时,还具有选频、稳幅功能。 (二)正弦波振荡电路的振荡条件 (1)振幅条件|AF|=1; (2)相位条件φ a +φ f =2nπ,(n=0,1,2,...);

(3)起振和选频:起振条件|AF|>1;只对f=f 放大,衰减其他信号频率。 (4)稳幅:电路起振后,输出信号会越来越大,但由于放大器件的非线性,导致AF下降,当降到|AF|=1时,电路进入稳定状态。 (三)由三极管构成的RC串并联正弦波振荡器 图二 RC桥式正弦振荡电路 运行 Multisim12, 在绘图编辑器中选择集成运放、直流电源、二极管、电阻、电容, 创建 RC 桥式正弦波振荡电路.如图 1 所示, .在电路中, 运放741 和电阻R4,R3构成正常的反馈放大电路,R1,C1,R2,C2构成RC串并联选频网络同时又由该选频网络作为反馈网络形成正反馈环节,其R2, C2上的反馈电压作为输入代替放大器的输入信号,D1, D2起稳幅作用。电路的震荡频率为。调节RW到适当的大小(如65K),在示波器“XSC1”窗口中可观察到输出波形幅度从0逐渐增大开始震荡,并最终到幅值稳定的正弦震荡波形输出,如图二所示:

共基极放大电路仿真与调试

共基极放大电路仿真与调试(三极管结构) 图1 共基极放大电路 1.电路仿真测试: 把图1的共基极放大电路输入到EWB仿真软件中,进行放大电路的性能指标参数测试。如图2所示: 图2共基极放大电路仿真电路 测试内容

(1)静态工作点(注意与共发射极电路进行比较) 先点Analysis ,再点DC Operating Point ,得到直流工作点如图3所示 三极管三个极上的电位是UB=1.9658V ,UC=7.44813V,UE=1.19416V. 三极管的偏置电压分别是UBE=0.7V,UCE=6.2V, 结论:由于三极管偏置在合适的放大电路工作点,所以能够进行小信号放大. (2)观察信号波形 图4 共基极放大电路的输入输出信号波形 如图4所示,蓝色表示输入信号,红色表示输出信号,共基极放大电路的输出信号波形与输入信号同相位,放大倍数大. (3)测放大倍数 把示波器的指针放在被测信号上,读出指针显示框中的读数,如图5所 示: 672.816677.78.6565 O U i U A U === (4)测输入电阻 在信号源和放大器之间串联接入一个1K Ω电阻,用示波器读出接入1K Ω 电阻前后,电路的输入信号,如图6所示,由测量值计算出输入电阻值为: 图3 三极管静态工作点 图5 测输入输出电压

图6 测输入电阻图 '''19.954210.31860.3186 10.0339.6356i i i i i i K u mV K u mV u R K K u u R Ω=Ω===Ω=Ω - 电阻接入前的输入电压 电阻接入后的输入电压 计算输入电阻值 结论:输入电阻比共发射极放大电路小得多 (5)测输出电阻 用示波器测量

三极管及其放大电路的仿真

三极管及其放大电路的仿真 一实验目的 熟悉Multisim的使用方法,了解元件库、分析功能、虚拟仪表等功能。使用multisim分析和设计电子电路。 二,实验设备 MultisimV13 三,实验内容 1三极管特性曲线测量 三极管:2N2222A。特点:小功率NPN型三极管。 I 输入曲线测量: 输入特性曲线参数要求:u BE:0~1.5V,步长0.01V; u CE:0~12V,步长0.2V。 图1-三极管输入曲线测量电路图 通过对u BE逐点扫描,每次变化一个Vcc,便可以得到一个变化曲线步骤:simulate→analysis→DC sweep

然后开始设定要求,设置输出,最后如图所示: 图二-三极管输入曲线参数设定 最后分析出来的结果为: 图三-三极管输入曲线 注:在最开始的输入曲线下还需设置一下纵轴的值。因为从图中可以看到I B到了200mA,显然是不可能的,所以要设置一下I B的值,设置

为1mA,变得到了和书中类似的图。 结论:从图中可以看出来,在u BE很小的时候,发现电流i B几乎为零,称为死区电压;当u BE大于1v时,三极管的特性曲线简化成一条曲线。 II 输出曲线测量 输出特性曲线参数要求:u CE:0~12V,步长0.01V; i B:0~100μA,步长:10μA。 图四-三极管输出曲线测量电路图 步骤:simulate→analysis→DC sweep 然后开始设定要求,设置输出,最后如图所示: 图5-三极管输出曲线参数

最后分析出来的结果为: 图六-三极管输出曲线 结论:从图中可以看出来。输出曲线基本分了三个区①当U CE大于1V 时,I C只与I B有关,I C=βI B,此区域也叫线性放大区②当U CE =0~1V,β I B>I C,也叫饱和区。造成饱和的原因是由于发射区发射的电子多,没有被完全收集到集电区。发射有余,收集不足③I B=0;I C=I CEO;U BE< 死区电压,该区称为截止区。

共射共集放大电路

共射共集放大电路 实验三共射——共集放大电路 一、实验目的 1.进一步熟悉放大电路技术指标的测试方法。 2.了解多级放大电路的级间影响。 二、预习要求 1.复习模拟部分有关内容,熟悉阻容耦合两级放大器的工作原理及级间影响。 2.根据实验所给定的电路参数,估算R b11的阻值以及各级放大电路的静态工作点。设β1=β2=50。 3.当输入信号为?=1KHz正弦波时,估算第一级电压放大倍数Au1总的电压放大倍数Au ,计算该放大器的输入电阻R i 和输出电阻R o (Rp =100K)。 4.了解共集放大电路的特点。 三、实验原理与参考电路 1.参考电路 实验参考电路如图3-1所示。该电路为共射—共集组态的阻容耦合两级放大电路。第 一级是共射放大电路,实验二中已经掌握。第二级是共集放大电路,其静态工作点可通过 电位器R p 来调整,两级均采用NPN 型硅三极管3DG6。 由于级间耦合方式是阻容耦合,电容对直流有隔离作用,所以两级的静态工作点是彼 此独立、互不影响的。实验时可一级一级地分别调整各级的最佳工作点。对于交流信号, 各级之间有着密切联系:前级的输出电压是后级的输入信号,而后级的输入阻抗是前级的 负载。第一级采用了共射电路,具有较高的电压放大倍数,但输出电阻较大。第二级采用 共集电路,虽然电压放大倍数小(近似等于1) ,但输入电阻[Ri2≈(Rb2+Rp )//β2R L ′],向第一级索取功率小,对第一级影响小;同时其输出电阻小,可弥补单级共射电路输出电 阻大的缺点,使整个放大电路的带负载能力大大增强。 2.静态工作点设置与调整 由于第一级共射电路需具备较高的电压放大倍数,静态工作点可适当设置得高一些。 在图3-1所示电路参数中,上偏置电阻R b11为待定电阻,若取I CQ1为1~1.3mA ,试 计算、选择R b11 的阻值范围。第二级共集电路,可通过调节电位器 图3-1 共射- 共集放大电路

差分放大电路仿真分析

差分放大电路仿真分析 差分放大电路是集成运算放大器的主要单元电路之一,它具有很强的抑制零点漂移的能力。作为集成运算放大器的输入级,差分放大电路几乎完全决定着集成运算放大器的差模输入特性、共模抑制特性、输入失调特性和噪声特性。 差分放大电路经由两个参数完全相同的晶体管组成,电路结构对称。电路具有两个输入端和两个输出端,因此差分放大电路具有四种形式:单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出。 实验内容: 一、理想差分放大电路 1、绘制电路图 启动Capture CIS程序,新建工程,利用Capture CIS绘图软件,绘制如下的电路原理图。 双击正弦电压源VS+的图标,在弹出的窗口中设置AC为10mV,DC为0V,VOFF为0,V AMPL为10m,VFREQ1kHz。VS-的设置除AC为-10mV外,其余均与VS+同。 2、直流工作点分析 选择Spice | New Simulation Profile功能选项或单击按钮,打开New Simulation对话框,在Name文本框中输入Bias,单击Create按钮,弹出Simulation Settings-Bias对话框,设置如下:

保存设置,启动PSpice A/D仿真程序,调出PSpice A/D窗口,可以在PSpice A/D窗口中选择View | OutPut Filse功能菜单选项,查看输出文件。

在Capture CIS窗口中,单击I 、V按钮,此时电路图中显示电路的静态工作电压与电流值,如下图: 3、双端输入是的基本特性 上面的电路是双端输入的形式,可以利用上面的电路来分析双端输入时的电路特性。 将分析类型设为交流扫描分析AC Sweep。选择PSpice | New Simulation

三极管放大电路基本原理

三极管放大电路基本原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。以NPN三极管的共发射极放大电路为例来说明三极管放大电路的基本原理。 以NPN型硅三极管为例,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。 三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因: 首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必 须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小

的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。 另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前。 但是在实际使用中要注意,在开关电路中,饱和状态若在深度饱和时会影响其开关速度,饱和电路在基极电流乘放大倍数等于或稍大于集电极电流时是浅度饱和,远大于集电极电流时是深度饱和。因此我们只需要控制其工作在浅度饱和工作状态就可以提高其转换速度。对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN 的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里

共集放大电路和共基放大电路

建 平 县 职 业 教 育 中 心 备 课 教 案 课 题 模块(单元) 项目(课)共集放大电路和共基放大电路 授课班级 11电子 授课教师 安森 授课类型 新授 授课时数 2 教学目标 知识目标 共集和共基放大电路的性能指标计算; 能力目标 三种接法放大电路的特点及应用场合 情感态度目标 培养学生的学习兴趣,培养学生的爱岗敬业精神 教学核心 教学重点 1、共集和共基放大电路的性能指标计算; 2、三种接法放大电路的特点及应用场合 教学难点 1、共集和共基放大电路微变等效电路的画法; 2、共集和共基放大电路微变等效电路的输入、输出电阻计算; 思路概述 本讲以教师讲授为主。用多媒体演示三种接法电路的构成方法,便于学生理解和掌握。启发讨论三种不同接法电路各自特点及应用场合。 教学方法 读书指导法、演示法。 教学工具 电脑,投影仪 教 学 过 程 一、组织教学:师生互相问候,安全教育,上实训课时一定要听从老师的指挥,在实训室不要乱动电源。 二、复习提问: 三、导入新课: 1、三极管放大电路的基本接法 三极管放大电路的基本接法亦称为基本组态,有共射(包括工作点稳定电路)、共基和共集三种。共射放大电路以发射极为公共端,通过iB 对ic 的控制作用实现功率放大。共集放大电路以集电极为公共端,通过iB 对iE 的控制作用实现功率放大。共基放大电路以基极为公共端,通过iE 对iB 的控制作用实现功率放大。 2、共集放大电路的组成及静态和动态分析 共集放大电路的组成 共集放大电路亦称为射极输出器如P92图2.23(a )所示,为了保证晶体管工作在放大区,在晶体管的输入回路,b R 、e R 与VCC 共同确定合适的静态基极电流;晶体管输出回路中,电源 VCC ,提供集电极电流和输出电流,并与e R 配合提供合适的管压降UCE 。 2)共集放大电路的静态分析 与共射电路静态分析方法基本相同。 (1)列放大电路输入方程可求得BQ I ;(2)根据放大区三极管电流方程 BQ EQ I I )1(β+=可求得EQ I ;(3)列放大电路输出方程可求得CEQ U ; 3)共集放大电路的动态分析 共集放大电路的动态分析方法与共射电路基本相同,只是由于共集放大电路的“交流地”是集电极,一般习惯将“地”画在下方,所以微变等效电路的画法略有不同,如P92图2.23(d )所示。 3、共基放大电路的静态和动态分析 1) 共基放大电路的静态分析 与共射电路静态分析方法基本相同。

基本放大电路Multisim仿真练习

基本放大电路仿真练习 [仿真题2-1] 在Multisim 中构建一个由NPN 三极管组成的单管共射放大电路,电路中Ω=k R c 5.7,Ω=k R b 430,负载电阻Ω=k R L 10,V CC =10V ,三极管的40=β,Ω=300'bb r ,电容C 1、C 2均为50F μ。 ①利用Multisim 的直流工作点分析功能测量电路的静态工作点; ②在仿真电路中接入虚拟仪表测量三极管的U BEQ 、I BQ 和U CEQ ; ③加上正弦输入电压,利用虚拟示波器观察u I 和u O 的波形; ④测量放大电路的? u A 、R i 和R o ; ⑤用电位器充当R b ,改变R b 的大小,观察Q 点和u O 波形的变化情况。 [仿真题2-2] 在Multisim 中构建由NPN 三极管组成的分压式工作点稳定电路,其中Ω=k R b 31,Ω=k R b 122,Ω=k R c 5.1,Ω=500e R ,负载电阻Ω=k R L 5.1,V V CC 20=;三极管的30=β,Ω=300'bb r ,电容C 1、C 2均为50F μ,F C e μ100=。 ①测量放大电路的静态工作点; ②加上正弦输入电压,观察u I 和u O 的波形; ③测量放大电路的?u A 、R i 和R o ; ④将三极管的β改为60,测量I BQ 、I CQ 和U CEQ ,并与第①问的结果进行比较; ⑤使三极管的β仍为30,改变电阻R b1的阻值,观察Q 点和u O 波形的变化情况。

[仿真题2-3]仿真图参考理论教材《模拟电子技术基础》(第四版)P2-11电路。测量放大电路的静态工作点,观察u I和u O的波形,并测量? A、R i和R o。 u [仿真题2-4]仿真图参考理论教材《模拟电子技术基础》(第四版)P2-12中的共集电极放大电路。测量电路的静态工作点以及? A、 u R i和R o,观察u I和u O的波形。 [仿真题2-5](基础型开放实验题目)仿真图参考实验教材《电子技术》图2-3电路(即“模拟电子技术”课程基础实验一的实验参考电路)。 (1)确定一组电路参数,使电路的Q点合适。 (2)测量放大电路的静态工作点,观察u I和u O的波形,并测量放大电路的? A、R i和R o。 u (3)若输出电压波形底部失真,则可采取哪些措施?若输出电压波形顶部失真,则可采取哪些措施?调整Q点约在交流负载线的中点。 (4)要想提高电路的电压放大能力,可采用哪些措施? (5)撰写开放实验研究报告,向主讲教师提交报告的电子文档。 [实验目的] (1)学习在Multisim环境下搭建电路的方法; (2)学习静态工作点与动态参数的测量方法和分析方法; (3)进一步理解放大电路的组成原则、各元器件的作用及其对动态参数的影响。

最简单的三极管音频放大电路

最简单的三极管音频放大电路 最简单的三极管音频放大电路 调节R1大小,使在最大输出时信号不失真即可,减小R可输出更大的功率。如果有万用表,可将C极电压调为电源电压的1/2左右。 图一固定偏置,电源电压对偏置电流影响很大 基本的共发射极电路

图二偏置接入负反馈,放大倍会变小,电源电压对偏置电流影响较小。 电压负反馈接法,适应电压范围更宽。 此种属甲类放大类,效率最低,特点是简单。低电压电路中极少采用,因为输出功率太小,实际多用在功率推动电路,同时放大电压和电流。 这里介绍一个设计小巧、线路简单但性能不错的三管音频放大器。其电路见附图。也许你在一些袖珍晶体管收音机可以看到一些与此类似的电路。

原理分析: 电路如图所示,输入极(9014)的基极工作电压等于两输出极三极管的中点电压,一般为电源电压的一半,这个电压的稳定由输出三极管的基极的两个二极管控制。3.3欧姆电阻串联在输出三极管的发射极上,以稳定偏流。以减小环境温度、不同器件(如二极管、输出三极管)参数区别对电路的影响。当偏流增加时,输出三极管发射极与基极间电压会减小,以减小偏流。此电路输入阻抗为500欧姆,在使用8欧姆扬声器时,电压增益为5。 电路在不失真输出50mW的功率时,扬声器上有约2V左右的电压摆动。增加电源电压可提高输出功率,但此时应注意输出晶体管散热问题。在9V电源电压时,电路耗电约30mA。制作时要注意两个输出功率管放大倍数应接近。其它器件参数可以参考图示选择。此电路适合于制作成耳机放大器或其它小功率放

大器用。由于它是一个很典型的功放电路,所以非常适合初学者学习功放电路原理之余,动手实践制作时的参考电路。

单级放大电路的设计与仿真

单级放大电路的设计与 仿真 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

单级放大电路的设计与仿真一、实验目的 1)掌握放大电路静态工作点的调整与测试方法。 2)掌握放大电路的动态参数的测试方法。 3)观察静态工作点的选择对输出波形及电压放大倍数的影响。 二、实验器材 1mV5KHz正弦电压源,15mV5KHz正弦电压源,12V直流电压源,2N2222A三极管,10uF电容(3个),10KΩ电阻(2个),3.0KΩ电阻,1.5KΩ电阻,5.1KΩ电阻,250KΩ电位器,万用表,示波器等。 三、实验原理与要求 三极管工作在放大区时具有电流放大作用,只有给放大电路中的三极管提供合适的静态工作点才能保证三极管工作在放大区。如果静态工作点不合适,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。静态工作点合适时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。表征放大电路放大特性的交流参数有电压放大倍数、输入电阻、输出电阻。对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。 设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV),负载电阻5.1kΩ,电压增益大于50。调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。加入信号源频率5kHz(幅度 1mV),调节电路使输出不失真,测试此时的静态工作点值。测电路的输入电阻、输出电阻和电压增益。测电路的频率响应曲线和fL、fH值。

相关文档
最新文档