UASB相关计算公式

UASB相关计算公式
UASB相关计算公式

1、比产甲烷活性:

max 4124273

CH R T K U X V ?=?? 式中,X —微生物或污泥浓度,gVSS/L

K —累计产CH 4量曲线直线段的斜率,mlCH 4/h ;

T 1—实验条件对应的绝对温度,K ;

V R —反应区容积,100ml 。

U max.COD 可按下式进行计算:

4

max max (115%)350CH COD U U ??=-?

式中,U max.COD —最大比COD 去除率,gCOD/(gVSS ·d)。

2、VSS/TSS

1

32

4m m m m Ash --=

Ash 1VSS/TSS -=

VSS=(1-Ash)×TSS=(m 3-m 1)-(m 4-m 2)

式中:Ash —污泥中的灰分比例,%;

m1—坩埚在103~105°C 的烘箱中干燥后的重量,g ;

m2—坩埚在600°C 的马弗炉灼烧后的重量,g ;

m3—含污泥坩埚在103~105°C 的烘箱中干燥后的重量,

g ; m4—含污泥坩埚在600°C 的马弗炉灼烧后的重量,g 。

3、水力停留时间

HRT=V/Q

式中:Q —进液流量(m 3/h );

V —反应器有效容积(m 3);

上流速度:u=Q/A ,故:HRT=H/u

小反应器反应区体积=1.7L ,有效体积—3L ;

EGSB 反应区体积—9.22L ,有效体积—13.6L ;

UASB 反应区体积—11.2L ,有效体积—12.8L 。

4、有机负荷

有机负荷包括容积负荷(VLR)和污泥负荷(SLR):

VLR=Q·ρw/V

SLR=Q·ρw/V·ρs

式中:V—反应器容积,m3;

Q—进水流量m3/d;

ρw——进液浓度,KgCOD/m3或KgBOD/m3;

ρs—污泥浓度,KgCOD/Kg TSS或KgCOD/Kg VSS或KgBOD/Kg TSS或KgBOD/Kg VSS。

5、UASB 反应器容积

一般采用容积负荷计算法,按公式

式中:

V——反应器有效容积,m3;

Q——UASB 反应器设计流量,m3 /d;

N v——容积负荷,kgCOD/(m3·d);

S0——进水有机物浓度,kgCOD/m3。

反应器的容积负荷应通过试验或参照类似工程确定,在缺少相关资料时可参考附录A 的有关内容确定。处理中高浓度复杂废水的UASB 反应器设计负荷可参考表1。

沼气产率为0.45m3 /kgCOD~0.50m3 /kgCOD,沼气产量按公式:

式中:

Q a——沼气产量,m3/d;

Q——废水流量,m3/d;

η——沼气产率,m3/kgCOD;

S0——进水有机物浓度,kgCOD/m3;

S e——出水有机物浓度,kgCOD/m3。

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

建筑电气设计相关计算公式大全

一、常用的需要系数负荷计算方法 1、用电设备组的计算负荷(三相): 有功计算负荷 Pjs=Kx·Pe(Kw); 无功计算负荷 Qjs=Pjs·tgψ(Kvar); 视在功率计算负荷Sjs=√ ̄Pjs2+ Qjs2(KVA); 计算电流 Ijs=Sjs/√ ̄3·Ux·Cosψ(A)。 式中:Pe---用电设备组额定容量(Kw); Cosψ---电网或供电的功率因数余弦值(见下表); tgψ ---功率因数的正切值(见下表); Ux---标称线电压(Kv)。 Kx---需要系数(见下表) 提示:有感抗负荷(电机动力)时的计算电流,即: Ijs=Sjs/√ ̄3·Ux·Cosψ·η(A) η---感抗负荷效率系数,一般取值0.65~0.85。 民用建筑(酒店)主要用电设备需要系数Kx及Cosψ、tgψ的取值表: 注:照明负荷中有感抗负荷时,参见照明设计。

2、配电干线或变电所的计算负荷: ⑴、根据设备组的负荷计算确定后,来计算配电干线的负荷,方法如下:总有功计算负荷∑Pjs=K∑·∑(Kx·Pe); 总无功计算负荷∑Qjs= K∑·∑(Pjs·tg); 总视在功率计算负荷∑Sjs=√ ̄(∑Pjs)2+(∑Qjs)2。 配电干线计算电流∑Ijs=∑Sjs/√ ̄3·Ux·Cosψ(A)。 式中:∑---总矢量之和代号; K∑---同期系数(取值见下表1)。 ⑵、变电所变压器容量的计算,根据低压配电干线计算负荷汇总后进行计算,参照上述方法进行。即: ∑Sjs变= K∑·∑Sjs干线(K∑取值范围见下表2)。 变压器容量确定:S变=Sjs×1.26= (KVA)。 (载容率为80﹪计算,百分比系数取1.26,消防负荷可以不计在内)。变压器容量估算S变= Pjs×K×1.26= Pjs×1.063×1.26= (Kva)。 同期系数K∑值表: 计算负荷表(参考格式):

如何用SPSS求相关系数

参见: [1] 衷克定数据统计分析与实践—SPSS for Windows[M].北京:高等教育出版社,2005.4:195— [2] 试验设计与SPSS应用[M].北京,化学工业出版社,王颉著,2006.10:141— 多元相关与偏相关 如何用SPSS求相关系数 1 用列联分析中,计算lamabda相关系数,在分析——描述分析——列联分析 2 首先看两个变量是否是正态分布,如果是,则在analyze-correlate-bivariate中选择 pearson相关系数,否则要选spearman相关系数或Kendall相关系数。如果显著相关,输出结果会有*号显示,只要sig的P值大于0.05就是显著相关。如果是负值则是负相关。 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:

电气计算公式

电气计算公式 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是 2.63A,以上说的是指的单相的情况。 380V三相的时候,公式是 I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。电机不是特别先进的都是按0.75计算。按10kW计算: I=10kW/(1.732*380*0.75) =10kW/493.62 =20.3 A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是20.3 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2 Q2 S=√(P2 Q2) 视在功率S=1.732UI 有功功率P=1.732UIcosΦ 无功功率Q=1.732UIsinΦ 功率因数cosΦ=P/S 根号3,没有软件写不上,用1.732代替 系统图 Pe:额定功率 Pj:计算有功功率 Sj:计算视在功率 Ij:计算电流 Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器;FR表示热继电器;SQ表示限位开关; SB表示按钮开关; Q表示刀开关; FU表示熔断器; FR 表示热继电器

附录相关系数r的计算公式的推导.doc

相 关 系 数 r AB 的 计 算 公 式 的 推 导 设 A i 、 B i 分别表示证券 A 、证券 B 历史上各年获得的收益率; A 、 B 分别表示证券 A 、证券 B 各 年获得的收益率的平均数; P i 表示证券 A 和证券 B 构成的投资组合各年获得的收益率,其他符号的含义 同上。 2 = 1A n 1 2 = 1B n 1 2 1 P = 1 n = 1 n 1 = 1 n 1 = 1 n 1 = 1 n 1 =A 2 A × =A 2 2 A A ( A i A) 2 (B i B) 2 (P i 1 P i ) 2 n 1 [( A A A i A B B i ) ( A A A i A B B i )]2 n [( A A A i A B B i ) (A A A A B B)] 2 [ A A ( A i A) A B (B i B)] 2 [ 2 ( A i ) 2 2 ( B i B ) 2 2 A A A B ( A i )( B )] A A A A B A B i ( A i A) 2 A B 2 × ( B i B) 2 2A A A B [( A i A)( B i B)] n 1 n 1 n 1 2 2 2A A A B [( A i A)( B i B)] A B B n 1 对照公式( 1)得: ( A i A) 2 (B i B) 2 = × n × r AB n 1 1 ∴ r AB = [( A i A)( B i B)] ( A i A)2 (B i B) 2 这就是相关系数 r AB 的计算公式。 投资组合风险分散化效应的内在特征 1. 两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式( 1)左右两端对 A A 求一阶导数,并注意到 A B =1—A A : 2 2 2 A B r AB ( P )′=2A A A -2(1 -A A ) B + 2 (1 - A A ) A B r AB -2A A 令 ( P 2 )′=0 并简化,得到使 P 2 取极小值的 A A : 2 B r AB A A = B A ( 3) 2 2 2 A B r AB A B 式中,0 ≤ A A ≤ 1, 否则公式( 3)无意义。

实用的电气计算公式

掌握实用得计算公式就是电气工作者应具备得能力,但公式繁多应用时查找不方便,下面将整理与收集得一些常用得实用公式与口诀整理出来,并用实例说明与解释。 1、照明电路电流计算及熔丝刀闸得选择 口诀:白炽灯算电流,可用功率除压求; 日光灯算电流,功率除压及功率因数求(节能日光灯除外); 刀闸保险也好求,一点五倍额定流; 说明:照明电路中得白炽灯为电阻性负荷,功率因数cosΦ=1,用功率P单位瓦除以电压等于其额定电流。日光灯为电感性负荷,其功率因数co sΦ为0、4-0、6(一般取0、5),即P/U/cosΦ=I。 例1:有一照明线路,额定电压为220V,白炽灯总功率为2200W,求总电流选刀闸熔丝。 解:已知U=220V,总功率=2200W 总电流I=P/U=2200/220=10A 选刀闸:QS=I×(1、1~1、5)=15A 选熔丝:IR=I×(1、1~1、5)=10×1、1=11A (取系数1、1) QS--------刀闸 IR---------熔丝 答:电路得电流为10安培,刀闸选用15安培,熔丝选用11安培。 例2:有一照明电路,额定电压为220V,接有日光灯440W,求总电流选刀闸熔丝。(cosΦ=0、5) 解:已知U=220V, cosΦ=0、5,总功率=440W 总电流I=P/U/ cosΦ=440/220/0、5=4A 选刀闸:QS=I×(1、1~1、5)=4×1、5=6A 选熔丝:IR=I×(1、1~1、5)= 4×1、5=6A 答:电路得总电流为4A,刀闸选用6A,熔丝选用6A。 2 、380V/220V常用负荷计算 口诀:三相千瓦两倍安,热,伏安,一千乏为一点五 单相二二乘四五,若就是三八两倍半。 说明:三相千瓦两倍安就是指三相电动机容量1千瓦,电流2安培,热,伏安,一千乏一点五就是指三相电热器,变压器,电容器容量1千瓦,1千伏安,1千乏电容电流为1、5安培,单相二二乘四五,若就是三八两倍半就是指单相220V容量1千瓦,电流为4、5安,380V单相电焊机1千伏安为2、5安培。 例1:有一台三相异步电动机,额定电压为380V,容量为14千瓦,功率因数为0、85,效率为0、95,计算电流?解:已知U=380V cosΦ=0、85 n=0、95 P=14千瓦 电流I=P/(×U×cosΦ×n)=P/(1、73×380×0、85×0、95)=28(安) 答:电流为28安培。 例2:有一台三相380伏、容量为10千瓦加热器,求电流? 解:已知U=380V P=10千瓦

电气手算工程量方法及步骤

有关安装算量手算的要点总结(电气部分) 拿到图纸以后先核对一下图纸是不是齐全,齐全在进行下一步。 符号认识:所有未标注的数字除标高的单位是m外,其他的都是mm。(附表1)所有安装从室外进来的水平管都称做干管,从干管上立起来的称为立管,从立管上接出来的称为支管。切记要核实图上的比例是否是正确的。 (一)电气工程(包括强电部分、弱电部分及防雷接地部分) 一、强电部分: 1、熟悉图纸:①先看设计说明,把设计说明上的工程所用材料及防雷部分的说明全部记下来,然后说明上一般都附有图例,把图例上所有的需要数个数的(配电箱分不同规格、灯具、插座、开关等)都分别统计出数量;②看系统图时应对上平面图,了解管子的走向。系统图上的上下方向一般在平面图只有点或圈表示(说明是垂直走的);系统图上的左右方向在平面图上左右走;系统图上的斜线45度方向走,说明在平面图上前后走的管道;系统图上用标高推其立管的高度,平面图上可以量出干管及支管的水平段长度; 2、工程量计算流程:首先从室外→→→总配电箱→→→单元配电箱→→→户内配电箱→→→各个回路(照明、插座等)。 3、计算步骤:先算管(槽)后算线(缆),管(槽)不进箱、线(缆)进箱。 4、有关规定:室外进线图纸上未标注的情况下,室外预留1.5m(室外至外墙皮);电缆进箱长度加2m,电线进箱长度为配电箱的半周长;没给实际做法的情况,考虑地面做法为0.3m。所有的电线管子全部为暗敷(在混凝土楼板及墙面、地面中,在平面图中量管子时只有楼梯处的管子一般按图上画的量,其它房间的管子可以按两点间最短距离量) 计算电气工程应撑握以下的计算规律: 1)、照明灯具支线一般是两根导线,要求带接地的则是三根导线,一根火线与

线性回归方程中的相关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。R = R接近于1表明Y与X1,X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1,X2 ,…,Xk之间的线性关系程度不密切 相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位 就一个reg来说y=a+bx+e a+bx的误差称为explained sum of square e的误差是不能解释的是residual sum of square

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r

Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即: ∑∑∑∑∑∑∑---= 2 22 2 ) () (i i i i i i i i XY y y n x x n y x y x n r (2-23) (二)等级相关 在教育与心理研究实践中,只要条件许可,人们都乐于使用积差相关系数来度量两列变量之间的相关程度,但有时我们得到的数据不能满足积差相关系数的计算条件,此时就应使用其他相关系数。 等级相关也是一种相关分析方法。当测量得到的数据不是等距或等比数据,而是具有等级顺序的测量数据,或者得到的数据是等距或等比的测量数据,但其所来自的总体分布不是正态的,出现上述两种情况中的任何一种,都不能计算积差相关系数。这时要求两列变量或多列变量的相关,就要用等级相关的方法。 1. 斯皮尔曼(Spearman)等级相关 斯皮尔曼等级相关系数用R r 表示,它适用于两列具有等级顺序的测量数据,或总体为非正态的等距、等比数据。

电气设计相关计算公式大全

电气设计相关计算公式大全 一、常用的需要系数负荷计算方法 1、用电设备组的计算负荷(三相): 有功计算负荷Pjs=Kx·Pe(Kw); 无功计算负荷Qjs=Pjs·tgψ(Kvar); 视在功率计算负荷Sjs=√ ̄Pjs2+ Qjs2(KVA);计算电流Ijs=Sjs/√ ̄3·Ux·Cosψ(A)。 式中:Pe---用电设备组额定容量(Kw); Cosψ---电网或供电的功率因数余弦值(见下表);tgψ ---功率因数的正切值(见下表); Ux---标称线电压(Kv)。 Kx---需要系数(见下表) 提示:有感抗负荷(电机动力)时的计算电流,即:Ijs=Sjs/√ ̄3·Ux·Cosψ·η(A) η---感抗负荷效率系数,一般取值0.65~0.85。

民用建筑(酒店)主要用电设备需要系数Kx及Cosψ、tgψ的取值表: 注:照明负荷中有感抗负荷时,参见照明设计。 2、配电干线或变电所的计算负荷: ⑴、根据设备组的负荷计算确定后,来计算配电干线的负荷,方法如下:总有功计算负荷∑Pjs=K∑·∑(Kx·Pe); 总无功计算负荷∑Qjs= K∑·∑(Pjs·tg); 总视在功率计算负荷∑Sjs=√ ̄(∑Pjs)2+(∑Qjs)2。 配电干线计算电流∑Ijs=∑Sjs/√ ̄3·Ux·Cosψ(A)。 式中:∑---总矢量之和代号; K∑---同期系数(取值见下表1)。

⑵、变电所变压器容量的计算,根据低压配电干线计算负荷汇总后进行计算,参照上述方法进行。即: ∑Sjs变= K∑·∑Sjs干线(K∑取值范围见下表2)。 变压器容量确定:S变=Sjs×1.26= (KVA)。 (载容率为80﹪计算,百分比系数取1.26,消防负荷可以不计在内)。变压器容量估算S变= Pjs×K×1.26= Pjs×1.063×1.26= (Kva)。同期系数K∑值表: 计算负荷表(参考格式):

线性相关系数的计算

Spss电脑实验-第六节(3)线性相关系数的计算 https://www.360docs.net/doc/5415506771.html,更新时间:2006-1-19 21:11:30 关注指数:7992 Ⅲ.线性相关系数的计算 1. 线性相关的概念 如果各统计指标是定量数据,要了解它们间的关系密切程度,可用线性相关分析。 例如:大家都知道的糖尿病病人,它靠胰岛素来治疗。现测量20 名糖尿病病人(以ID 来编号)血中的血糖值(y)、胰岛素值(x1)和生长激素值(x2)。我们即可分析 y、x1 和x2 间的两两/ 双变量间的线性关系。数据见下面的程序文件CorreRegre2.sps 的例*2。 2. 线性相关计算的所用命令 用SPSS Analyze 菜单中的子菜单Correlate,其中的Bivariate 对话框即可计算两两/ 双变量间的线性相关系数r 及其显著性。这是通常最常见、最常用的情况。 本例所用程序文件名为CorreRegre2.sps 中的例*2。(例*2 中还有用于偏相关系数与距离相关系数的计算命令,详后)。 ---------------------------------------------------------------- *2. Prof. Zhang Weng-Tong: SPSS 11, P.273-277:. DATA LIST FREE /ID y x1 x2. BEGIN DATA. 1 12.21 15.20 9.51 2 14.54 16.70 11.43 3 12.27 11.90 7.53 4 12.04 14.00 12.17 5 7.88 19.80 2.33 6 11.10 16.20 13.52 7 10.43 17.00 10.07 8 13.32 10.30 18.89 9 19.59 5.90 13.14 10 9.05 18.70 9.63 11 6.44 25.10 5.10 12 9.49 16.40 4.53 13 10.16 22.00 2.16 14 8.38 23.10 4.26 15 8.49 23.20 3.42 16 7.71 25.00 7.34 17 11.38 16.80 12.75 18 10.82 11.20 10.88 19 12.49 13.70 11.06 20 9.21 24.40 9.16 END DATA. CORRELATIONS /VARIABLES=y x1 x2 /PRINT=TWOTAIL NOSIG. NONPAR CORR /VARIABLES=y x1 x2 /PRINT=SPEARMAN TWOTAIL NOSIG.

第三章:相关系数r 的计算公式的推导

设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ= 11 -n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1 122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 2 2 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22 2 2 2---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ =---∑1 )])([(

电气常用公式

母线连接处的允许温升、伸缩节安装跨数、钢构允许温度电力工程电气设计P356 建筑物年预计雷击次数计算指导书P414 雷击分类指导书P413 雷电流表格规范合P75 手册P776 与避雷器相关参数表规范补P22 等电位联结导体的最小截面手册P826 电涌保护器的选择和配合要求手册P827 绝缘配合的表格规范合P54 标称电压及最高电压各级电压线路输送能力手册P31 35KV及以下线路绝缘子最少片数和最小空气间隙手册P856 3-20KV高压配电装置的空气间隙手册P857 阀式避雷器、金属氧化物避雷器至主变的最大电气距离指导书P394、395 有避雷线线路的耐雷水平、有避雷线杆塔的工频电阻指导书P485 无间隙金属氧化物避雷器持续运行电压和额定电压指导书P407 排气式避雷器外保护间隙的距离、主辅间隙指导书P409、 导线阻抗、电抗,导线排列手册P541 架空线和电缆的电抗计算及几何均矩钢铁手册P189 母线电抗钢铁手册P190 线芯的自几何均距手册P541 线路电压损失计算公式手册P542 导体短路热稳定校验(补充P5) 手册P211 经济电流密度手册P530 指导书P301 谐波对导线截面选择手册P495 硬导体短路机械应力校验手册P208 硬导体的最大允许应力、安全净距规范合P37 15-100Hz交流电流幅值与作用时间指导书P20 变压器 变压器损耗及效率 P77、P135 变压器分接头与二次侧空载电压和提升的关系 P158 变压器选择及接线方式手册P37 电力变压器继电保护 P331 线路的功率损耗 P88、P132 单台电动机补偿容量 P96 并联电容补偿容量、补偿后COSφ指导书P169 投入电容器后电压损失减少的数据手册260 电动机效率及电动与水泵配套电动机功率钢铁手册P308 P90、P557 电压波动对异步电机的影响指导书P92 6项电能质量国家标准摘要指导书P103 谐波有关的参数指导书P165 电压偏差计算、电压偏差对用电设备的影响指导书P158 公共点电压偏差允许值、母线电压波动允许值指导书P162 Cosφ与tgφ、 sinφ的对应值手册P6

第三章附录:相关系数r 的计算公式的推导

相 关 系 数 r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符 号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ= 12)1(-i i P P 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2 P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。 由于使(2P σ)′=0的A A 值只有一个,所以据公式(3)计算出的A A 使2 P σ为最小值。

以上分析清楚地说明:对于证券A和证券B,只要它们的系数r AB 适当小(r AB 的“上限”的 计算,本文以下将进行分析),由证券A和证券B构成的投资组合中,当投资于风险较大的证券B 的资金比例不超过按公式(3)计算的(1—A A ),会比将全部资金投资于风险较小的证券A的方 差(风险)还要小;只要投资于证券B的资金在(1—A A )的比例范围内,随着投资于证券B的资 金比例逐渐增大,投资组合的方差(风险)会逐渐减少;当投资于证券B的资金比例等于(1—A A )时,投资组合的方差(风险)最小。这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。按公式(3)计算出的证券A和证券B的投资比例构成的投资组合称为最小方差组合,它是证券A和证券B的各种投资组合中方差(亦即风险)最小的投资组合。

电气设计相关计算公式大全

电气设计相关计算公式大全 注:因根号属于特殊字符,所以根号下的式子采用了例如A=√ ̄b+c的形式,表示A等于根号下b+c。

同期系数K∑值表: 计算负荷表(参考格式): 计算举例(方法参照如上计算): Pjs=Kx·Pe(Kw);Qjs=Pjs·tgψ(Kvar);Sjs=√ ̄Pjs2+Qjs2(KVA);Ijs=Sjs/√ ̄3·Ux·Cosψ(A)。 提示:按设备组计算,配电干线逐项计算累加后,来计算变电所低压母线和变压器的容量。变电所低压母线一般按计算电流的1.35—1.5倍的系数考虑。 3、推荐的配电干线、配变综合需要系数简明方法 综合系数(K综)表: 注明:建筑电气计算中变电所的综合同期系数,可作为估算时使用,即:住宅建筑综合系数K∑综一般取0.45~0.55; 商业建筑综合系数K∑综一般取0.6~0.8; 计算举例: S变=Pe·K综,或S配电干线=Pe·K综。 计算举例:S变=Pe·K综,或S配电干线=Pe·K综。 二、单位面积功率的电力负荷计算方法 建筑物单位面积功率Pe(负荷密度)乘以建筑总面积S。 即: Pjs=Pe·AS/1000(Kw) 式中:Pjs---有功计算负荷(Kw); Pe---单位面积的功率指标(W/m2); AS----建筑总面积(m2)。 民用建筑用电负荷估算指标(表) 注明:1、此方法主要用于初步设计或方案设计阶段,负荷的最终确定以实际为准。

2、配电变压器的容量估算,一般按计算总负荷的70~80﹪初定,即: S变=(Pe·S/1000)·(70~80﹪)(KVA) 变压器容量的最终确定,按实际计算结果来进行校正。 三、建筑照明设计简明方法 1、照度lx与照度计算公式: E=F/A 式中: E---单位面积上接受的光通量,称照度,计量单位lx(勒克斯); F---光通量,lm(流明); A---光照的面积(m2); 流明与照度的关系:1勒克斯(lx)=1流明(lm)/1平米(m2)。 光源换算举例: 直管荧光灯每瓦功率W是60~94lm取值80lm(见表5), 40W荧光灯管×80lm=3200lm(lx参照的近似值)。 2、常用的单位容量法照明计算: W=∑P/A(W/m2) 式中:W---在某最低照度下的单位容量W/m2; ∑P---房间内照明总安装容量(含镇流器功率在内)W; A---房间的面积m2。 ∑P=W·A/Kmin 式中:Kmin---最小照度值(查表)。 灯具盏数N=∑P/W’ 式中:N---在规定照度下所需灯具盏数; W’----每盏灯具的功率(包括镇流器功率在内)W;3、照明负荷计算方法: (1)、在初步设计方案设计阶段时,可采用单位面积容量方法(见表)进行估算。 (2)、在施工图设计阶段时,可采用下述方法计算: ①照明分支线路计算负荷,即: Pjsc=∑(Pe+Pb);或Pjsc=∑Pe(1+Ka); ②照明干线计算负荷,即: Pjsc=Kx·∑(Pe+Pb);或Pjsc=K∑·∑Pe(1+Ka); ③照明负荷分布不均匀时的计算负荷,即: Pjsc=3·Kx·∑(Pm+Pb);或Pjsc=3·Kx·∑Pm(1+Ka);

电气相关计算公式

电气相关计算公式 一电力变压器额定视在功率Sn=200KVA,空载损耗Po=0.4KW,额定电流时的短路损耗PK=2.2KW,测得该变压器输出有功功率P2=140KW时,二次则功率因数2=0.8。求变压器此时的负载率和工作效率。 解:因P22×100% 2÷(Sn×2)×100% =140÷(200×0.8)×100%=87.5% =(P 2/P1)×100% P1=P2+P0K =140+0.4+(0.875)2×2.2 =142.1(KW) 所以 =(140×142.08)×100%=98.5% 答:此时变压器的负载率和工作效率分别是87.5%和98.5%。

有一三线对称负荷,接在电压为380V的三相对称电源上,每相负荷电阻R=16,感抗X L=12。试计算当负荷接成星形和三角形时的相电流、线电流各是多少? 解;负荷接成星形时,每相负荷两端的电压,即相电压为U入Ph===220(V) 负荷阻抗为Z===20() 每相电流(或线电流)为 I入Ph=I入P-P===11(A) 负荷接成三角形时,每相负荷两端的电压为电源线电压,即==380V 流过每相负荷的电流为 流过每相的线电流为 某厂全年的电能消耗量有功为1300万kwh,无功为1000万kvar。求该厂平均功率因数。 解:已知P=1300kwh,Q=1000kvar 则 答:平均功率因数为0.79。 计算: 一个2.4H的电感器,在多大频率时具有1500的电感? 解:感抗X L=则 =99.5(H Z) 答:在99.5H Z时具有1500的感抗。 某企业使用100kvA变压器一台(10/0.4kv),在低压侧应配置多大变比的电流互感器? 解:按题意有 答:可配置150/5的电流互感器。 一台变压器从电网输入的功率为150kw,变压器本身的损耗为20kw。试求变压器的效率? 解:输入功率 P i=150kw 输出功率 PO=150-20=130(KW)

相关系数计算公式

相关系数计算公式 相关系数计算公式 Statistical correlation coefficient Due to the statistical correlation coefficient used more frequently, so here is the use of a few articles introduce these coefficients. The correlation coefficient: a study of two things (in the data we call the degree of correlation between the variables). If there are two variables: X, Y, correlation coefficient obtained by the meaning can be understood as follows: (1), when the correlation coefficient is 0, X and Y two variable relationship. (2), when the value of X increases (decreases), Y value increases (decreases), the two variables are positive correlation, correlation coefficient between 0 and 1. (3), when the value of X increases (decreases), the value of Y decreases (increases), two variables are negatively correlated, the correlation coefficient between -1.00 and 0. The absolute value of the correlation coefficient is bigger, stronger correlations, the correlation coefficient is close to 1 or -1, the higher degree of correlation, the correlation coefficient is close to 0 and the correlation is weak. The related strength normally through the following range of judgment variables: The correlation coefficient 0.8-1.0 strong correlation 0.6-0.8 strong correlation

电气专业常用公式

电气专业常用公式 一、估算施工用变压器的容量:S=K X×ΣP机/cosФ S——视在功率 K X——需要系数(一般取0.5) cosФ——平均的功率因数( 一般取0.7) 二、线路导线截面的选择: 1、按允许电流选择:I= K X×ΣP机×1000/3×U线×cosФ 2、按允许电压降选择:S=K X×Σ(P×L)/C×△U S——导线的截面积(㎜2) K X——需要系数 L——距离(米) P——功率(KW) C——计算系数(C Cu=77,C AL=46.3) △U——允许的电压降(如:5%,公式中就带入5) 公用电网5%,单位自用电源6%,临时线路8% 三、单台设备的电流计算: 方法1、I= P机×1000/3×U线×cosФ (未考虑安全系数) 方法2、I=( P机÷0.66)÷0.85 (P机÷0.66)——估算的计算电流 ÷0.85——增加的安全系数 四、坐标系斜置时,计算两点间的距离

L=2)21(2)21y y x x -+-( (一)、 变压器的一次裸铝线如何选择: 根据公式;S=U*I 单相 I=S/U 三相 I=S/U/3 额定电流=视在功率(KVA )/电压 单相 额定电流=视在功率(KVA )/电压400V/3 三相 S ——视功率 U ——变压器一次电压 I ——变压器一次额定电流 例如;银利嘉现场临时变压器使用的是315KV A 它的电流为?选择的高压裸铝线为?(高压侧)它属于三相电压 它现场临时现场的高压电压为10KV 用U 根据S=U*I I=S/U/3 3=1.732 I=315KV A/10KV/3=315000VA/10000V/1.732=18.18A 根据计算6平方铝线就够用,但要考虑它的工作强度,必须用35平方以上的裸铝线。 低压侧的计算和高压一样的道理 I=S/U/3 3=1.732 I=315KVA/400V/3=315000VA/400V/1.732=454.6A 这样他要是满载情况下就需用的电缆为240的电缆 240mm 平方的电缆载流为240*2=480A 指的是铝芯电缆 根据现在的变压器生产情况大概有以下几种 20KV A 、30KV A 、50KV A 、80KV A 、100KV A 、200KV A 、315KV A 、

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----=n i i n i i n i i i XY Y y X x Y y X x r 12121 )()())(((2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑=(2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差除,使之成为没有实际单位的标准分数,然后再求其协方差。即: Y X Z Z n ∑?=1(2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式(2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即:

相关文档
最新文档