复习专题 排列组合

复习专题 排列组合
复习专题 排列组合

学习好资料 欢迎下载

复习专题10---排列组合

不务正业收集、整理、点评

排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

复习巩固

1.分类计数原理(加法原理)

完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:

12n N m m m =+++

种不同的方法.

2.分步计数原理(乘法原理)

完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:

12n N m m m =???

种不同的方法.

3.分类计数原理分步计数原理区别

分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.

解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略

一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

先排末位共有1

3C

C 1

4

A 3

4

C 1

3

学习好资料 欢迎下载 然后排首位共有14

C 最后排其它位置共有34A

由分步计数原理得113

4

34288C C A =

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不

种在两端的花盆里,问有多少不同的种法?

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一

个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

甲丁

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20

解:将命中的四枪中的三枪捆绑在一起,组成复合元,这样就将命中的4枪分成了两组,未射中的4枪,形成5个空,在这5个空中,任取两个空,将这两个复合元放进去即可,共有A 52=5*4=20;也可用插空法,未射中的4枪,形成5个空,第一次插入时有5种插法,形成6个空,但第二次插入时,不能与第一次插入的相邻,所以,第二次只有4种插法,所共有5*4=20,结果是一样的。

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,

则节目的出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插

入第一步排好的6个元素中间包含首尾两个空位共有种4

6A 不同的方法,

由分步计数原理,节目的不同顺序共有54

56A A 种

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位

置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 也可以这样理解,这6个数字共可排尾数是奇数的5

位数有:从最后一位开始排C(3,1)*C(5,1)*C(4,1)*C(3,1)C(2,1)=360,但最一位是0的数要减掉。也就是要减掉由12345这几个数字组成的4位奇数,从最后一位数开始排:C (3,1)*C(4,1)*C(3,1)*C(2,1)=72,最后结果为:360-72=288

那么不同插法的种数为 30

四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其

他元素一起进行排列,然后用总排列数除以这几个元素之间的

全排列数,则共有不同排法种数是:73

73/A A 实际上是平均分组的问题

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4

7A 种方法,其余的

三个位置甲乙丙共有 1种坐法,则共有4

7A 种方法。

当四人坐好后,甲乙丙的位置也就确定了。

思考:可以先让甲乙丙就坐吗? 不能。

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐

增加,共有多少排法?5

10C 分析:任意取5人,剩下5人,都可以从高到矮进行

排列,则有510C 种取法

五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法

练习题:

1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87

六.环排问题线排策略

定序问题可以用倍缩法,还可转化为占位插 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

原来5个节目共形成6个空,将新增加的2个节目插入这6个空中,则有A 2

6=30;或者可以用隔板法,但要注意,第二次插入的节目与第一次插入的节目不能相邻。原来5个节目,共形成6个空,则第一次放“隔板”时,共有6种插法,形成7个空;第二次放“隔板”时,由于不能与第一次放的“隔板”相邻,所以共有5种放法。则,共有6*5=30种,结果是一样的。

例6. 8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定

一人A,并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!

H F

D C A

A

B C D E A

B E G

H G F

注释:坐在圆上,就是指通过旋转而能重合的排列都作为一种排列看待如ABCDEFGH 与BCDEFGHA 与CDEFGHA 。。。与HABCDEFG 这8个都都是算作一个排列的,所以要除以8

练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略

例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.前4

个位置特殊元素有24A 种,再排后4个位置上的特殊元素丙有1

4A 种,其

余的5人在5个位置上任意排列有55

A 种,则共有215

445A A A 种 前 排后 排

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规

定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.注意与例10比较。

一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有m

n A n 1 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研

将2排合并成一排,共有23个座位,前排3个位置不能坐,则共有A 2

20=380种,这当中包含两

人相邻的情况,共有19种相邻的座位,对应着38种坐法,因为两人的位置可以互换。但这时,已多减了一部分,因为前排中间3个位置(即5、6、7三个位置)两边的4号位与8号位,不可能相邻,符合题意;第11号位与12位也不可能相邻,符合题意,所以就将这两个多减的组合再找回来,实际应该减去19-2=17种相邻的座位,对应着34种坐法。最后结果为380-34=346种。

解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,

根据分步计数原理装球的方法共有2454C A

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不

同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种C 1

2

* C 3

4

*A 44 =192

九.小集团问题先整体后局部策略

例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在

两个奇数之间,这样的五位数有多少个?

解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,

再排小集团内部共有22

22

A A 种排法,由分步计数原理共有222222A A A 种排法.

分析:上面的解法好像有问题,可以这样考虑:因为恰有两个偶数夹1,本题只有两个偶数2、4,所以两偶数夹1的排列有A (2.2);分别为214或412,又因为5在两个奇数之间,所以考虑将214或412组成一个整体与3进行排列,在A (2.2)*A (2.2),至此已形成:214 3;3 214 ;412 3;3 412;这四种排列,又5在两奇数之间,所以对于每种情况,5有两个位置可放,所以:2*A (2.2)*A (2.2)=8

练习题:

1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,

那么共有陈列方式的种数为254

254A A A

2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255

255A A A 种

十.元素相同问题隔板策略

使用插板法有2个要求:①元素相同;②每组中至少分一个元素。如果题目中的要求不符合其中一项,可将题目变形,使题意符合这2个要求,再使用插板法。

一、直接使用插板型

例1、把9个相同的苹果分给5个人,每人至少一个苹果,

解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗? 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

4幅油画看成一个整体,5幅国画看成一个整体,与水彩画共3个“元素”,由于水彩画不能挂两端,故只有一种挂法,油画与国画有A 2

2种挂法,但水彩画、国画本身内部有排序要求,分别为 A 44与A 55,故最后后共有:1* A 22* A 4

4*A 55

那么不同的分法一共有多少种?()(2010年河南政法干警考试A 卷第41题) A.30B.40C.50D.60

答案:D 。该问题用分类计数法较复杂,但可以将9个苹果排成一行,9个苹果中间就出现8个空挡,再用,4个挡板把9个苹果分成有序的5份,每个人就依次按序分到对应的n 个苹果(可能是1个﹑2个﹑3个﹑4个、5个)。即在8个空挡中插入4个挡板,由4个挡板把球分成5份,共有C84种方法。

在这道题目中,直接符合了使用插板法的2点要求:(1)每个苹果都相同;(2)每个人都至少拿到1个苹果。

二、允许空组型例3、6个相同的苹果分给3个小朋友,请问一共有多少种分配方

法?注意,本题 未强调每个小朋友至少一个苹果。

A.16

B.20

C.24

D.28

答案:D 。先"借"给每个小朋友一个苹果,现在一共有6+3=9个苹果。我们现在将这9个苹果分给3个小朋友,为了偿还刚才"借"的苹果,要求现在分配的时候"每个小朋友至少得到1个苹果",在8个空中插上2个挡板:C82=28(种)方法。

这道题中,题目要求"6个相同的苹果分给3个小朋友",允许有空组的存在,显然不符合使用插板法的第二点要求:"每组中至少分得一个元素",因此,先"借"给每个小朋友一个苹果,之后要求每个小朋友至少分得1个苹果,再把分得的苹果中拿出一个偿还,这就使题目变形符合使用插板法的2点要求,可以使用插板法。

从上面几道题目中不难看出,元素分组问题使用插板法后能变得较为简单。而使用插板法有2个要求:①元素相同;②每组中至少分一个元素。如果题目中的要求不符合其中一项,可将题目变形,使题意符合这2个要求,再使用插板法。

三、一组多元素型

例2、某单位订阅了30份学习材料发放给3个部门,每个部

门至少发放9份材料。问一共有多少种不同的发放方法?()(2010年国家公务员考试行测第46题)

A.12

B.10

C.9

D.7

答案:B 。先拿出24份材料,每个部分发8份,这时变成"6份材料发给3个部门,每个部门至少发1份",再利用插板法,在5个空中插上2个挡板:C52=10(种)发放办法。 在这道题中,显然不符合使用插板法的第二点要求:"每组中至少分得一个元素"。题目要求"每个部分至少发放9份材料",因此可以把题目稍作变形,先给每个部分发8份材料,题目就变成了"每个部分至少发1份材料",符合使用插板法的2个要求,可以使用插板法。

例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个

空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

思考:有人会这样想C 48*A 5

5。问题出在哪呢? 分组时,实际上已包含顺序了,否则,像11115与11511就是一种分法了,正是因为对应着不同的人,才认为他们是不同的分法。

一班二班三班四班五班六班七班

练习题:

1. 10个相同的球装5个盒中,每盒至少一有多少装法? 49C

2 .100x y z w +++=求这个方程组的自然数解的组数 3

103C

分析:将之变形为(z+1)+(y+1)+(z+1)+(w+1)=104,即它的解数相当于x+y+z+w=104 的正整数解组数(存在一一对应) 然后想象104个点排列在数轴上,它们之间有103个空当,从这103个空当选三个出来,这样点就被分成了4份,第一份的点个数记为x ,第二份的点个数记为y ,第三份的点个数记为z ,第四份的点个数记为w , 则这样的操作就唯一对应一组正整数解 所以答案是C(103,3)=103*102*101/6=103*101*17=176851

有10粒糖,如果每天至少吃一粒(多不限),吃完为止,求有多少种不同吃法? 把10粒糖 放在桌子上 有9个空 选0个空有1种 就是1天都吃完 任选1个空有9种 就是2天吃完

任选2空有9*8/(1*2)=36 就是3天吃完 选3个空9*8*7/(1*2*3)=84 4天吃完 选4个空9*8*7*6/(1*2*3*4)=126 5天吃完 选5个空=126 6天 选6个空=84 7天 选7个空=36 8天 选8个空=9 9天 选9个空=1 10天 总共有256*2=512 种

还有一种算法 就是 10个糖 9个空 每个空就有选和不选两种选择 则共有 2^9=512 种

分析:将10粒糖排成一排,糖与糖之间共有9个空。从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线。每个空都有画线与不画线两种可能,根据乘法原理,不同的吃法共有2的9次方=512

将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为1

1m n C -- 策略8中的小球为什么不能采用这种方式呢。

因为这种分法不能针对不同的对象,在例8中,小球不能用这种方法分。将这5个小球标为12345号球,如果用这种分法进行划分,两个球的复合元只能是:12、23、34、45这几种相邻小球的组合,不相邻的小球不能形成复合元,即不相邻的小球不能放到同一个盒中,如13、25等就不可能放到同一个盒中。如果5个小球相同,就可以采用这种方式了。 思考:为什么要变形为(Z+1),(Y+1),(Z+1),(W+1)的形式?这样做的目的,是为了让每个“隔板”之间有元素,。注意变形后变量为大写的XYZW 。

十一.正难则反总体淘汰策略

例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,

只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +。再淘汰和小于

10的偶数共9种,符合条件的取法共有123

5

559C C C +- 10个数中取3个数,使其和为偶数共60种取法,有两种情况——取3个偶数

C(5,3)=10和取2个奇数1个偶数C(5,2)*C(5,1)=50。(2)使其和小于10的偶数的取法有9种,分别为(0,1,3)(0,1,5,)(0,1,7)(0,2,4)(0,2,6)(0,3,5)(1,2,3)(1,2,5)(1,3,4)。(3)使其和为不小于10的偶数60-9=51。

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种? 十二.平均分组问题除法策略

例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?

解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6

本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记

为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33

A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有2223

6423/C C C A 种分法。

有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰. 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n

n A (n 为均分的组数)避免重复计数。

练习题:

1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?

(544213842/C C C A )

2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法(1540)

把其他的8个人按照332分组,再把正副班长放进去

C(8,3)*C(5,2)*C(3,3)/A(2,2),正副班长必须分别放入一个三人组和一个两人组,共有4种可能,就再乘以4

把其他8个人按照422分组,再把正副班长放进去

C(8,4)*C(4,2)*C(2,2)/A(2,2),正副班长必须分别放入两个二人组,共有两种可能,就在乘以2 然后相加就是结果。

列式为4*C(8,3)*C(5,2)*C(3,3)/A(2,2)+2*C(8,4)*C(4,2)*C(2,2)/A(2,2),= 1120+420=1540种

3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的

两个班级且每班安排2名,则不同的安排方案种数为______(22224262/90C C A A )

十三. 合理分类与分步策略

例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法?

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。以唱歌人员为标准进行研究,只会唱的5人中没有人选上唱歌,那么只能在全能型的人员中选2人,那跳舞的2人只能从剩下的1个全能型的人和2个会跳舞

的人中选,共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112

5

34C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有

22112

223353455C C C C C C C ++种。实际上还可以“全能型”中选唱歌或跳舞入手,也

可以从只会跳舞的人入手,先选跳舞选手,结果都一样。只要以一个标准分组就行了。随便举个例子:在全能型中先选唱歌的选手①、先2人唱歌,则有C (3.2)*C (3.2)[解释:前一个C (3.2)是三个全能型选手中选2个唱歌的,后一个是跳舞选手的选取方法:全能型计3个,已选走了2人,那么现在会跳舞的只有3人了,一个全能型+2个只会跳舞的,所以有C (3.2)]。②、从中选一个唱歌选手,则C (3.1)C (5.1)C (4.2)[解释:C (3.1)是三个全能型选手中选一个唱歌的;C (5.1)还剩下一个唱歌的从5个只会唱歌的人中选一个,注意,此时全能型只能选一个,不能再剩下的2个与只会唱歌的合并起来再选,因为这样与在全能型中只选一个相矛盾;]③、选0个选手,即唱歌的只能在5个会唱歌的选手中选了,有:C (5.2)C (5.2)[每个以(5.2)是在5个只会唱歌的人中选2人,后一个C (5.2)从会跳舞的人中选2人];然后将他们相加,结果也一样的。

本题还有如下分类标准:

*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果

练习题:

1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有34 [相对来讲,选女生简单一些,因女生只有3人,有1个女生,有2个女生,有3个女生三种情况;C (3.1)*C (4.3)+C (3.2)*C (4.2)+C (3.3)C (4.1)=34;当然,以男生也一样,只不过,要分4种情况了]

2.现有1号船、2号船、3号船各1只,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人。3成人2小孩乘船游玩,他们任选2只船或3只船,但小孩不能单独乘一只船, 这5人共有多少乘船方法. (27)

[以小孩为突破口,因为小孩不能单独坐船。先考虑用2只船的情况:只能是1号船与2号船各1条,1、小孩都在1号。然后C (3.1)选一个大

解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。

人上去,剩下的人上2号船,C (2.2)*C (3.1)=3,剩下的只能上2号船,只有一种选择。2、小孩一个上1号船,另一个上2号。C (2.1)*C (3.2)=6,注意,剩下的只能上2号船,只有一种选择。总共6+3=9;再考虑用3只船的情况:因为用了3只船,而3号船只能坐1人,只能坐1个大人,这就回到了第一种2只船的情况了,只不过,此时人数变成4人了,变成2大人与2小孩。分三步,先坐3号船,有C (3.1)种乘法,再来坐2号船,又人分两种情况,2号船有1个小孩:C (2.1)*C (2.1),剩下的去坐1号船,有C (3.1)C (2.1)*C (2.1)=12;2号船没有小孩,但2号船不能为空,必须有一个大人,有C (2.1),剩下的全上1号船,所以有:C (3.1)*C (2.1)=6,所以在3船的情况下,共有12+6=18种;最后结果为9+18=27;实际上,对于3只船的情况,可以这样考,因为每条船上必须有一个大人,所在大人的排法有:A (3.1),小孩的排法有:如果全在1号船,有C (2.2)=1,如果1号船、2号船各1人,则有A (2.2)=2,所在小孩共有3种排法,所在共有6*3=18] 十四.构造模型策略

例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种? 解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有35C 种(因为不能关两端,所以只有5个空)

练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)

十五.实际操作穷举策略

例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法

[注意与错位法的区别,树图策略中的练习,可用错位法解] 解:从5个球中取出2个与盒子对号有25C 种还剩下3球3盒序号不能对应,

利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒

时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有252C 种

一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决 假设每人屁股下绑一张椅子,那么剩下的6张椅子形成5个,任选4个空让他们坐下去就行了。 对于剩下的345号球,有两种解法,一是错位法,二是直接求解。错

位法,直接用公式解,很快得出f(3)=2,所以共有2*2

5C 种=20种;直

接求解:剩下的3、4、5号球,往3、4、5号盒中放,那么3号球只

534

3号盒 4号盒 5号盒

练习题:

1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)

2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种

5

4

3

21

十六. 分解与合成策略

例16. 30030能被多少个不同的偶数整除

对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果 假设4人分别为A 、B 、C 、D ,A 将贺卡送经3个中的一人,那么 C 13种送法,不妨假设A 将贺卡送给了B ,那么,B 送贺卡送出也有C 13

,那么剩下的2

个,只有一种送法了,所以共有C 13* C 13*1=9种送法。 分别将5个区设成A 、B 、C 、D 、E5个区,那么A 区有C 14,B 区有C 13,C 区有C 12。①D 区与C 区相同,则D 区有C 11,

E 区有2种,分别是与A 同,与A 不同,C 12;共有:C 14* C 13*

C 12* C 11* C 12=48 ②

D 区与C 区不同,则D 区有C 1

1,

E 区有1种,只能与A 相同。有24种方法,故共有48+24=72种。

分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×

11×13

依题意可知偶因数必先取2,再从其余5个因数中任取若干个

组成乘积,

所有的偶因数为:1234555555C C C C C +++++1(2本身也符合题意)

练习:正方体的8个顶点可连成多少对异面直线

解:我们先从8个顶点中任取4个顶点构成四体共有体共481258C -=,每个四面体有

3对异面直线,正方体中的8个顶点可连成358174?=对异面直线

十七.化归策略 例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?

解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的

方法有111

321C C C 种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有3355C C 选法所以从5×5方阵选不在同一行也不在同一列

的3人有33111

553

21C C C C C 选法。

练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走

到B 的最短路径有多少种?(3735C =)

B

A

十八.数字排序问题查字典策略

例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105

分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到

问题的答案 ,每个比较复杂的问题都要用到这种解题策略 处理复杂的排列组合问题时可以把一个问题退化成一个简

要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题

C

首先确定一个方向,如向上走,只要走完3个小格,就肯定能到达B (因为当向上走完3个小格,即使一次性沿直线直接到达A 的正上方C ,那么,再到达B 也只有一种可能,C —B ),同理,如果向右走,只要走完4个小格,就

能到达B 了,所以,要么有C 37,要么C 47。

符合题意的有:

4xxxxx 5xxxxx 34xxxx 35xxxx 325xxx 3245xx 32415x

大的数?

解:297221122334455=++++=A A A A A N

练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从

小到大排列起来,第71个数是 3140 十九.树图策略

例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球

仍回到甲的手中,则不同的传球方式有10=N

练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i =)

的不同坐法有多少种?44=N

二十.复杂分类问题表格策略

例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从

中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法 解: 数字排序问题可用查字典法,查字典的法

应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。 对于条件比较复杂的排列组合问题,不易用公式进行运算,树图会收到意想不到的结果 ]红 1 1 1 2 2 3 黄 1 2 3 1 2 1 兰 3 2 1 2 1 1

取法 1415C C 2415C C 3415C C 1325C C 2325C C

1235C C 一些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好的效

m 人传球传n 次仍回到某人手中,共有f(n)=m

m m n n )

1()1()1(--+- 错位排列公式:f(n)=nf(n-1)+(-1)n ; 本例解答:f(5)=5f(4)+(-1)5 f(4)=4f(3)+(-1)4 f(3)=3f(2)+(-1)3

f(2)=1 所以f(5)=44 [f(2)=1 f(3)=2 f(4)=9 f(5)=44]

二十一:住店法策略

解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.

例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有.

分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得75种.

补充:

1、6个人,穿红绿蓝三色服装,每颜色2人,现让6人排成一列,且穿同色服装的人不能相邻,共有多少种排法?

解:设三种颜色分别为A、B、C。

1、任取1色的排第一位,假设为A,共有C1

6

种排法。

2、那么第二位只能在B、C中选一个,共有C1

4

种排法。

3、第三位,分两种情况(与第一位同色或异色),有点类似于地图作色。

a、与第1位同色,那么,第三位只能有一种取法:C1

1

(如ABA),此时第4位只能放与第二位异色的,否则,第5位与第6位必同色,不合题意。注意,此时第4位有2种取法,因为假设第一位A,第二位为B,第三位必为A,

第4位必为C,有穿C色的有两人,故有C1

2种排法(C1

6

* C1

4

* C1

1

* C1

2

)(如

ABAC)。第5、6位只能有一种可能了,只能为BC。

所以有:C1

6* C1

4

* C1

1

* C1

2

*1=48

B、与第1位异色,则123位必为ABC这种形式,可能性为:C1

6* C1

4

* C1

2

第4位只能在AB中选择1种颜色,有C1

2

种选法,剩下的全排列就行了,即

为A2

2,所以有:C1

6

* C1

4

* C1

2

*C1

2

*A2

2

=192

共有:48+192=240

与本题容易混淆的:有红绿蓝三种颜色的电灯,拿出七盏排成一列,同种颜色的灯不能相邻,且每种颜色的灯至少装2盏,有多少种排法?

2、有红绿蓝三种色球,每种色球标有1234567标号,从中任取3个标号不同,且标号不相邻,颜色不同的色球,有几种取法?

解:1、标号互不相邻的取法有10种。分别:(13)567 (14)67 (15)7 (24)67 (25)7 (35)7

2、颜色不同的有:A3

3

。当三个标号不相邻的球确定后,如135号球,

让这3个球选色,则有A3

种选法。

3

=60

所以:10*A3

3

3、有4个不同的球,4个不同的盒子,把球全部放入盒内

a、共有多少种分法?

b、恰有一个盒子不放球,有多少种分法?

c、有两个盒子不放球,有多少种分法?

解:分4步:

a、第1个球有4种放法(放第1个球)

b、放第2个球,因为没说每个盒子至少有一个球,所以第2个球也有4种放法。

c、同理,第3个和第4个球都有4种放法。

所以共有:4*4*4*4=44种

如果用盒子选球,结果也是一样的:第一个盒子有4种选法,第二个盒子也有4种选法(因为第一个盒子可以为空,如果每盒至少有1个球,那么第二个盒子最多只能有3种选法,这个要注意区分),同理,第三个盒子、第四个盒子也有4种选法,所得结果是一样的。

4、有5本不同的书,其中语文2本,数学2本,物理1本,将其随机放到书架上的同一层上,则同一科目的书不相邻的概率为:

解:①语文、数学都相邻:A22* A22* A33=24

②只有语文相邻:先选语文,有A22种选法,再选物理,只有1种选法,将物理和语文进行全排列有:A22种排法;这时形成3个空,任意拿出2个空,放置数学即可,共有C23,所以共有:A22*1* A22* C23=24种。

先选语文,有A22种选法,再选物理,只有1种选法,将物理和语文进行全排列有:A22种排法;这时形成3个空,将两本数学书放进去,第一本有3种放法,形成4个空,由于第2本数学书不能与第一次放进去的数学书相邻,所以只能有2种放法,所以有:A22*1* A22*3*2=24种。

先选数学,有A22种选法,形成3个空;再选语文,有A22种选法,接着选物理,只有1种选法,将物理和语文进行全排列有:A22种排法;再将2本语文作为一个整体,和物理共2个元素,在数学形成的3个空中,任选2个空放入这“2个元素”,共有C23种;所以最后共有:A22*( A22*1* A22)* C23=24种。

③同理可得,只有数学相邻的排法也有24种。

④5本书共有A55=120种,符合题意的有:120—24-24-24=48

同一科目的书不相邻的概率为:%20120

48

5、红绿蓝三种色球,每种色球分别标有1、2、3、4、5、

6、7数字,从中任取3个标号不同且标号不相邻的,颜色不同的球,有多少种取法?

解:①取标号不相邻,共有10种取法:

对任意取出符合条件的3个标号不相邻的球,按标号从小到大排列,则第一个数字最大只能为3,那么符合条件的有下面几种取法: (1、3)5、6、7 (1、4)6、7 (1、5)7 (2、4)6、7 (2、5)7 (3、5)7

②对取出任意一组符合条件的3个色球,有A 33

种取法(实际上是让3个标号不同的球去选色,所以有A 33

种选法)。

所以共有:10*A 33=60种。

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中排列组合基础题

排列、组合问题基本题型及解法 同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法. 一、相邻问题“捆绑法” 将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法” 该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端). 例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?. 分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2 种方法.则共有52 54A A =440种排法. 三、定位问题“优先法” 指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素. 例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种. 分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个 排在余下的5个位置上,有55A 种方法.则共15 45A A =480种排法.还可以优先排两端 (位置优先). 四、同元问题“隔板法” 例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ×××× 一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列 对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和. 例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( ) (A )210个 (B )300个 (C )464个 (D )600个 分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、13 33A A 个,合计300个,所以选B 例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个? 【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种, 其中0居首位的有314 544C C A 种,故符合条件的五位数共有325314 555544C C A C C A =11040个. 【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的. ①不含0的:由三个奇数字和两个偶数字组成的五位数有325 545C C A 个; ②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法, 再选三个奇数数与一个偶数数字全排放在其他数位上,共有3141 5444C C A A 种排法. 综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +3141 5444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

(完整版)排列组合练习题___(含答案)

排列组合练习题 1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种 不同的选法。 2、8名同学争夺3项冠军,获得冠军的可能性有种。 3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安 排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。 4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天, 要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。 5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人) 得2本,其它每人一本,则共有种不同的奖法。 6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。 7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成 一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。 8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。 9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。 10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是 11、6名男生6名女生排成一排,要求男女相间的排法有种。 12、4名男生和3名女生排成一排,要求男女相间的排法有种。 13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有 种排法。 14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。 若4个空位中恰有3个空位连在一起,有种坐法。 16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5 不能排在一起,则不同的5位数共有个。 17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变, 那么不同的排法有种。 18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒, 乙不能跑第四棒,共有种参赛方案。 19、现有6名同学站成一排:甲不站排头也不站排尾有种不同的排法甲 不站排头,且乙不站排尾有种不同的排法 20、有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共 有种。 21、以正方体的顶点为顶点的四面体共有个。 22、由1、2、3、4、5、6组成没有重复数字的六位数,其中个位数字小于十位数字, 十位数字小于百位数字,则这样的数共有个。 23、A,B,C,D,E五人站一排,B必须站A右边,则不同的排法有种。 24、晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目 插入原节目单中,则不同的插法有种。 25、书架上放有6本书,现在要再插入3本书,保持原有书的相对顺序不变,则不 同的放法有种。 26、9个子高低不同的人排队照相,要求中间的最高,两旁依次从高到矮的排法共 有种。 27、书架上放有5本书(1~5册),现在要再插入3本书,保持原有的相对顺序不变, 有种放法。 28、12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调 整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 29、有五项工作,四个人来完成且每人至少做一项,共有种分配方法。

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

高中排列组合练习题[1]

高二数学排列与组合练习题 黎岗 排列练习 1、将3个不同的小球放入4个盒子中,则不同放法种数有() A、81 B、64 C、12 D、14 2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于() A、 B、 C、 D、 3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数() A、64 B、60 C、24 D、256 4、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是() A、2160 B、120 C、240 D、720 5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且 合唱节目不能相邻,则不同排法的种数是() A、 B、 C、 D、 6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() A、 B、 C、 D、 7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有()

A、24 B、36 C、46 D、60 8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是() A、B、 C、D、 答案: 1-8 BBADCCBA 一、填空题 1、(1)(4P 84+2P 8 5)÷(P 8 6-P 9 5)×0!=___________ (2)若P 2n 3=10P n 3,则n=___________ 2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为 __________________________________________________________________ 3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法。 4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成 _________种不同币值。 二、解答题 5、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数, (1)在下列情况,各有多少个?

(完整)高中数学排列组合专题复习

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置.

(完整版)排列组合练习题3套(含答案)

排列练习 一、选择题 1、将3个不同的小球放入4个盒子中,则不同放法种数有() A、81 B、64 C、12 D、14 2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于() A、 B、 C、 D、 3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数() A、64 B、60 C、24 D、256 4、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是() A、2160 B、120 C、240 D、720 5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是() A、 B、 C、 D、 6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() A、 B、 C、 D、 7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有() A、24 B、36 C、46 D、60 8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是() A、B、C、D、 二、填空题 1、(1)(4P 84+2P 8 5)÷(P 8 6-P 9 5)×0!=___________(2)若P 2n 3=10P n 3,则n=___________ 2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为 __________________________________________________________________ 3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法 4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成_________种不同币值。

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

复习专题15--排列组合

复习专题10---排列组合 不务正业收集、整理、点评 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

高中排列组合知识点汇总及典型例题

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2.规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !!10 =n C 规定: 组合数性质:.2n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空 法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。

相关文档
最新文档