神经网络应用于手写数字识别-matlab说课讲解

神经网络应用于手写数字识别-matlab说课讲解
神经网络应用于手写数字识别-matlab说课讲解

神经网络应用于手写数字识别-m a t l a b

实验报告

实验课程:管理运筹学

实验名称:神经网络应用于手写数字识别-matlab 学生姓名:

指导教师:

实验时间: 2018年1月16日

实验要求:

运用matlab编程进行神经网络进行手写数字识别。

小组成员:

姓名学号

实验过程:

一、BP神经网络

神经网络是由很多神经元组成,可以分为输入,输出,隐含层。

BP神经网络的特点:信号前向传递,信号反向传播。若输出存在误差,根据误差调整权值和阈值,使网络的输出接近预期。

在用BP神经网络进行预测之前要训练网络训练过程如下:

1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。

2.计算隐含层输出

3.计算输出层输出

4.误差计算

5.权值更新

6.阈值更新

7.判断迭代是否结束

二、模型建立

数据集介绍:

数据集包含0-9这10个数字的手写体。是放在10个文件夹里,文件夹的名称对应存放的手写数字图片的数字,每个数字500张,每张图片的像素统一为28*28。

识别流程:

首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。为了方面,这里的神经网络的创建,训练和测试采用matlab函数来实现。

训练

运行流程:

1.确定神经网络的输入,输出。

输入是BP神经网络很重要的方面,输入的数据是手写字符经过预处理和特征提取后的数据。预处理有二值化,裁剪掉空白的区域,然后再统一大小为70*50为特征提取做准备。特征提取采用的是粗网格特征提取,把图像分成35个区域,每个区域100像素,统计区域中1像素所占的比例。经过预处理特征提取后,28*28图像转成1*35的特征矢量。提取完5000张图片后,依次把所有的特征存于一个矩阵(35*5000)中。

2.神经的网络的训练

用matlab的rands函数来实现网络权值的初始化,网络结构为输入层35,隐藏层34,输出层10,学习速率为0.1,隐藏层激励函数为sigmoid函数。随机抽取4500张图片提取特征后输入,按照公式计算隐含层和输出层输出,误差,更新网络权值。

3.神经网络的预测

训练好神经网络之后,用随机抽取的500个数字字符对网络进行预测,输入特征向量,计算隐含层和输出层输出,得到最后预测的数据。同时计算每个数字的正确率和全体的正确率。最后得到的总体正确率为0.8620。

主函数:

批量读取图片函数:

文件存放特点:在data下有10个子文件夹,每个子文件夹下有500张图片。函数可以利用于任何批量图片的读取,传入的是文件夹路径,输出的是一个n(对应图片数目)维cell,每个cell存放的是图片的数据。

if strcmp(in_filelist(j).name,'.')|| strcmp(in_filelist(j).name,'..')|| strcmp(in_filelist(j).name,'De sktop_1.ini')|| strcmp(in_filelist(j).name,'Desktop_2.ini')

else

tempind=tempind+1;

imglist{tempind}=imread(strcat(rootpath,'/',in_filelist(j).name));

end

end

end

end

end

特征提取函数:

提取所有图像的特征,二值化—resize-提取特征

function feature = feature_lattice(img)

% 输入:黑底白字的二值图像。输出:35维的网格特征

% ======提取特征,转成5*7的特征矢量,把图像中每10*10的点进行划分相加,进行相加

成一个点=====%

%======即统计每个小区域中图像象素所占百分比作为特征数据====%

for i=1:length(img);

bw2=im2bw(img{i},graythresh(img{i}));

bw_7050=imresize(bw2,[70,50]);

for cnt=1:7

for cnt2=1:5

Atemp=sum(bw_7050(((cnt*10-9):(cnt*10)),((cnt2*10-9):(cnt2*10))));%10*10box

lett((cnt-1)*5+cnt2)=sum(Atemp);

end

end

lett=((100-lett)/100);

lett=lett';

feature(:,i)=lett;

end

构造标签:

要构造出适合神经网络的标签,在这个例子中有10个类,若为某个标签,那么这个位置的值为1,其余为0。

BP神经网络创建,训练和测试:

主要是几个参数的设置,layer隐含层的神经元个数。trainFcn:训练算法

实验结果:

(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据 y=anew'; 1、 BP 网络构建 (1)生成 BP 网络 net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。 [ S1 S2...SNl] :各层的神经元个数。 {TF 1 TF 2...TFNl } :各层的神经元传递函数。 BTF :训练用函数的名称。 (2)网络训练 [ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV ) (3)网络仿真 [Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ) {'tansig','purelin'},'trainrp' BP 网络的训练函数 训练方法 梯度下降法 有动量的梯度下降法 自适应 lr 梯度下降法 自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrp Fletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgp

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

人工神经网络Matlab实现代码

以下是用Matlab中的m语言编写的BP神经网络代码,实现的是一个正弦函数的拟合过程,包括了初始化、BP算法、绘制曲线等过程,可以将代码放到一个M文件中运行,以下是代码: defaultpoints=20; %%%%%%%%%隐含层节点数 inputpoints=1; %%%%%%%%%输入层节点数 outputpoints=1; %%%%%%%%%输出层节点数 Testerror=zeros(1,100);%%%%每个测试点的误差记录 a=zeros(1,inputpoints);%%%%输入层节点值 y=zeros(1,outputpoints);%%%样本节点输出值 w=zeros(inputpoints,defaultpoints);%%%%%输入层和隐含层权值 %初始化权重很重要,比如用rand函数初始化则效果非常不确定,不如用zeros初始化 v=zeros(defaultpoints,outputpoints);%%%%隐含层和输出层权值 bin=rand(1,defaultpoints);%%%%%隐含层输入 bout=rand(1,defaultpoints);%%%%隐含层输出 base1=0*ones(1,defaultpoints);%隐含层阈值,初始化为0 cin=rand(1,outputpoints);%%%%%%输出层输入 cout=rand(1,outputpoints);%%%%%输出层输出 base2=0*rand(1,outputpoints);%%输出层阈值 error=zeros(1,outputpoints);%%%拟合误差 errors=0;error_sum=0; %%%误差累加和 error_rate_cin=rand(defaultpoints,outputpoints);%%误差对输出层节点权值的导数 error_rate_bin=rand(inputpoints,defaultpoints);%%%误差对输入层节点权值的导数 alfa=0.5; %%%% alfa 是隐含层和输出层权值-误差变化率的系数,影响很大 belt=0.5; %%%% belt 是隐含层和输入层权值-误差变化率的系数,影响较小 gama=5; %%%% gama 是误差放大倍数,可以影响跟随速度和拟合精度,当gama大于2时误差变大,容易震荡 %%%%规律100个隐含节点,当alfa *gama =1.5时,效果好,其他值误差变大,belt基本不影响效果 %%%%规律200个隐含节点,当alfa *gama =0.7时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样 %%%%规律50个隐含节点,当alfa *gama =3时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样 trainingROUND=200;% 训练次数,有时训练几十次比训练几百次上千次效果要好很多sampleNUM=361; % 样本点数 x1=zeros(sampleNUM,inputpoints); %样本输入矩阵 y1=zeros(sampleNUM,outputpoints); %样本输出矩阵 x2=zeros(sampleNUM,inputpoints); %测试输入矩阵

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

BP神经网络的数据分类MATLAB源代码.doc

%%%清除空间 clc clear all ; close all ; %%%训练数据预测数据提取以及归一化 %%%下载四类数据 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ; data ( 501:1000 , : ) = data2 ( 1:500 , : ) ; data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ; data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ; %%%%%%从1到2000间的随机排序 k = rand ( 1 , 2000 ) ; [ m , n ] = sort ( k ) ; %%m为数值,n为标号

%%%%%%%%%%%输入输出数据 input = data ( : , 2:25 ) ; output1 = data ( : , 1) ; %%%%%%把输出从1维变到4维 for i = 1 : 1 :2000 switch output1( i ) case 1 output( i , :) = [ 1 0 0 0 ] ; case 2 output( i , :) = [ 0 1 0 0 ] ; case 3 output( i , :) = [ 0 0 1 0 ] ; case 4 output( i , :) = [ 0 0 0 1 ] ; end end %%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本 input_train = input ( n( 1:1500 , : ) )’ ; output_train = output ( n( 1:1500 , : ) )’ ; input_test = input ( n( 1501:2000 , : ) )’ ;

BP神经网络地设计实例(MATLAB编程)

神经网络的设计实例(MATLAB编程) 例1 采用动量梯度下降算法训练BP 网络。训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为t = [-1 -1 1 1] 解:本例的MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练 % SIM——对BP 神经网络进行仿真pause % 敲任意键开始 clc % 定义训练样本 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量

clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用TRAINGDM 算法训练BP 网络 [net,tr]=train(net,P,T);

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

动态神经网络综述

动态神经网络综述 摘要 动态神经网络(DNN)由于具有很强的学习能力和逼近任意非线性函数的特点而被广泛应用。本文系统介绍了该网络的几种常见模型,并在此基础之上介绍它的基本学习算法、功能、应用领域、实际推广。 关键词:动态神经网络,模型,功能,算法,应用 Abstract Dynamic Neural Network (DNN) has been widely applied by means of the strong ability of learning and the characteristic of approximating any nonlinear function. The paper mainly introduces several models of common dynamic neural network, and dynamic neural network's function, basic algorithm, application and promotion. Keywords: DNN, Models , Function , Algorithm , Application

1、绪论 人工神经网络(Artificial Neural Networks,简写为ANNs)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达[1]。 神经网络按是否含有延迟或反馈环节,以及与时间是否相关分为静态神经网络和动态神经网络,其中含有延迟或反馈环节,与时间直接有关的神经网络称为动态神经网络[2]。动态神经网络具有很强的学习能力和逼近任意非线性函数的特点,自20世纪80年代末以来,将动态神经网络作为一种新的方法引入复杂非线性系统建模中引起了工程控制领域许多学者的关注[3]。动态神经网络现在已经广泛地用于模式识别、语音识别、图象处理、信号处理、系统控制、AUV自适应航向和机器人控制、故障检测、变形预报、最优化决策及求解非线性代数问题等方面。 本文第二章主要介绍了动态神经网络的分类,基本模型和算法;第三章主要介绍了动态神经网络的应用;第四章简要介绍了神经网络的改进方法。 2、DNN网络的基本模型和算法 根据结构特点,可以将动态神经网络分为3类:全反馈网络结构,部分反馈网络结构以及无反馈的网络结构。 反馈网络(Recurrent Network),又称自联想记忆网络,如下图所示: 图2-1 反馈网络模型 反馈网络的目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点: 第一、网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; 第二、系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络根据信号的时间域的性质的分类为

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明) 看到论坛里很多朋友都在提问如何存储和调用已经训练好的神经网络。 本人前几天也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:save net %net为已训练好的网络 然后在命令窗口 输入:load net %net为已保存的网络 加载net。 但一般我们都会在加载完后对网络进行进一步的操作,建议都放在M文件中进行保存网络和调用网络的操作 如下所示: %% 以函数的形式训练神经网络 functionshenjingwangluo() P=[-1,-2,3,1; -1,1,5,-3]; %P为输入矢量 T=[-1,-1,1,1,]; %T为目标矢量 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') %创建一个新的前向神经网络 inputWeights=net.IW{1,1} inputbias=net.b{1} %当前输入层权值和阀值 layerWeights=net.LW{2,1} layerbias=net.b{2} net.trainParam.show=50; net.trainParam.lr=0.05; net.trainParam.mc=0.9;

基于matlab实现BP神经网络模型仿真

基于BP神经网络模型及改进模型对全国历年车祸次数预测 一、背景 我国今年来随着经济的发展,汽车需求量不断地增加,所以全国每年的车祸次数也被越来越被关注,本文首先搜集全国历年车祸次数,接着通过这些数据利用BP神经网络模型和改进的径向基函数网络进行预测,最后根据预测结果,分析模型的优劣,从而达到深刻理解BP神经网络和径向基函数网络的原理及应用。所用到的数据即全国历年车祸次数来自中国汽车工业信息网,网址如下: https://www.360docs.net/doc/546700347.html,/autoinfo_cn/cszh/gljt/qt/webinfo/2006/05/124650 1820021204.htm 制作历年全国道路交通事故统计表如下所示: 二、问题研究 (一)研究方向 (1)通过数据利用BP神经网络模型预测历年全国交通事故次数并与实际值进行比较。(2)分析BP神经网络模型改变训练函数再进行仿真与之前结果进行对比。 (3)从泛化能力和稳定性等方面分析BP神经网络模型的优劣。 (4)利用径向基函数网络模型进行仿真,得到结果与采用BP神经网络模型得到的结果进行比较。

(二)相关知识 (1)人工神经网络 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 人工神经网络有以下几个特征: (1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性网络关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。 (2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。 (3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。 (4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。 (2)BP神经网络模型 BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。 (3)径向基函数网络模型 径向基函数(Radial Basis Function,RBF)神经网络由三层组成,输入层节点只传递输入信号到隐层,隐层节点由像高斯函数那样的辐射状作用函数构成,而输出层节点通常是简单的线性函数。 隐层节点中的作用函数(基函数)对输入信号将在局部产生响应,也就是说,当输入信号靠近基函数的中央范围时,隐层节点将产生较大的输出,由此看出这种网络具有局部逼近能力,所以径向基函数网络也称为局部感知场网络。

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

用系统动力学、神经网络和特征值来分析供应链绩效-以实例论证讲解学习

用系统动力学、神经网络和特征值来分析供应链绩效 -以实例论证 L. RABELO*y, M. HELALy, C. LERTPATTARAPONGz, R. MORAGAx and A. SARMIENTOy 佛罗里达中央大学工程与管理系统部美国奥兰多佛罗里达中央大道4000号 摘要 由于内生变量和外生变量都影响改变供应链的行为,本文提出一种的新的方法来预测生产供应链。在用此方法进行预测识别时,由于方法允许的原因,可能导致负面的行为,为此建立供应链的动态模型,利用系统动力学进行仿真。用该模型对神经网络进行训练,使在早期,企业有能力作出反应并对相关行为进行预测。根据模型稳定性和可控性原则,特征值分析用于调查任何不可预见的行为,并消除或减少这些行为带来的影响。最后以一个电子制造公司案例来演示如何应用此方法给企业带来利益。 关键字:供应链模型系统动力学神经网络特征值分析 引言 供应链管理(SCM)目标是多方面的,包括成本最小化、提高服务质量、加强合作伙伴之间的沟通,并增加供货方面的灵活性和快速响应。而一个优秀的供应链管理则依赖于销售、需求和库存水平的数据,这需要假定供给是可预见的,这个市场过去是由供应商主导的而非消费者。目前在争夺全球市场时企业之间竞争十分激烈,因此做法上推行以顾客为中心的战略、以及拉式理念在制造业的运用和注重质量认证的策略越来越被企业看中,而这些革命性的变化迫使企业提高供应链管理,以达到预期的竞争优势。 与SCM相关的一个问题就是SC行为的变化,由于受内部和外部因素的影响,SC行为是动态的和非线性的相互作用。在客户需求层面一些小的变化都可以引起SC大幅波动(牛鞭效应)和振荡反应。例如在服务行业,当货款利率突然下降会导致对货款需求的突然增加,银行可能无法满足,因此制造业和服务业必须准备应付任何不良后果。在本文中,我们引入三个SC行分析方法:一是抓住SC 的动态;二是分析识别和分类不同情况下的系统参数;三是为SC设置自我修复能力,避免不良行为和后果。 为此我们利用系统动力学(SD)模拟该模型的性能及对SC的影响,用神经

BP神经网络MATLAB代码

BP神经网络matlab代码 p=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;]'; %====期望输出======= t=[4554292834972261692113913580445126363471385435562659... 4335288240841999288921752510340937293489317245684015... 3666]; ptest=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;456840153666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%将数据归一化 NodeNum1=20;%隐层第一层节点数 NodeNum2=40;%隐层第二层节点数 TypeNum=1;%输出维数 TF1='tansig'; TF2='tansig'; TF3='tansig'; net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1TF2 TF3},'traingdx');

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

matlab BP神经网络

基于MATLAB的BP神经网络工具箱函数 最新版本的神经网络工具箱几乎涵盖了所有的神经网络的基本常用模型,如感知器和BP网络等。对于各种不同的网络模型,神经网络工具箱集成了多种学习算法,为用户提供了极大的方便[16]。Matlab R2007神经网络工具箱中包含了许多用于BP网络分析与设计的函数,BP网络的常用函数如表3.1所示。 3.1.1BP网络创建函数 1) newff 该函数用于创建一个BP网络。调用格式为: net=newff net=newff(PR,[S1S2..SN1],{TF1TF2..TFN1},BTF,BLF,PF) 其中, net=newff;用于在对话框中创建一个BP网络。 net为创建的新BP神经网络; PR为网络输入向量取值范围的矩阵; [S1S2…SNl]表示网络隐含层和输出层神经元的个数; {TFlTF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’; BTF表示网络的训练函数,默认为‘trainlm’; BLF表示网络的权值学习函数,默认为‘learngdm’; PF表示性能数,默认为‘mse’。

2)newcf函数用于创建级联前向BP网络,newfftd函数用于创建一个存在输入延迟的前向网络。 3.1.2神经元上的传递函数 传递函数是BP网络的重要组成部分。传递函数又称为激活函数,必须是连续可微的。BP网络经常采用S型的对数或正切函数和线性函数。 1) logsig 该传递函数为S型的对数函数。调用格式为: A=logsig(N) info=logsig(code) 其中, N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1)中; 2)tansig 该函数为双曲正切S型传递函数。调用格式为: A=tansig(N) info=tansig(code) 其中, N:Q个S维的输入列向量; A:函数返回值,位于区间(-1,1)之间。 3)purelin 该函数为线性传递函数。调用格式为: A=purelin(N) info=purelin(code) 其中, N:Q个S维的输入列向量; A:函数返回值,A=N。 3.1.3BP网络学习函数 1)learngd 该函数为梯度下降权值/阈值学习函数,它通过神经元的输入和误差,以及权值和阈值的学习效率,来计算权值或阈值的变化率。调用格式为: [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) [db,ls]=learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

BP神经网络matlab源程序代码

BP神经网络matlab源程序代码) %******************************% 学习程序 %******************************% %======原始数据输入======== p=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;]'; %===========期望输出======= t=[4554 2928 3497 2261 6921 1391 3580 4451 2636 3471 3854 3556 2659 ... 4335 2882 4084 1999 2889 2175 2510 3409 3729 3489 3172 4568 4015 ... 3666]; ptest=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;4568 4015 3666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %将数据归一化 NodeNum1 =20; % 隐层第一层节点数 NodeNum2=40; % 隐层第二层节点数 TypeNum = 1; % 输出维数 TF1 = 'tansig';

相关文档
最新文档