无功补偿中各种型号的其意义

无功补偿中各种型号的其意义
无功补偿中各种型号的其意义

第1章绪论

1.1 无功补偿的意义

国民经济的高速发展和人民生活水平的不断提高带来了电力负荷的高速增长。尤其是近两、三年来,由于电力负荷增长迅猛,而发电装机容量和输配电能力不足,造成全国近20个省市电力供应紧张,部分省市出现限电拉闸[1]。与此同时,随着电力市场的开放,电力用户对电能质量的要求也在提高;电力生产与供应企业也比以往任何时候都重视电力系统运行的经济性。

电力系统运行的经济性和电能质量与无功功率有重大的关系。无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。

无功功率从何而来?显然,发电机提供的无功功率相对负荷和网络对无功功率的需求来说只是“杯水车薪”,仅仅依靠发电机提供无功功率也是极不经济的。无功功率最主要的来源是利用各种无功功率补偿(以下简称无功补偿)设备在电力系统的各个环节进行无功补偿。因此,无功补偿是电力系统的重要组成部分,它是保证电能质量和实现电力系统经济运行的基本手段。

低压电力用户量大面广,其负荷的功率因数又大都比较低,因此在低压电网中进行无功功率的就地补偿是整个电力系统无功补偿的重要环节。

低压电网的无功补偿主要采用并联电容器进行,它包括固定电容器(FC)补偿和自动投切电容器的动态补偿以及两者混合补偿等方式。

电力负荷是随时变化的,所需要的无功功率也是随时变化的,为了维持无功平衡,要求无功补偿设备实行动态补偿,即要根据无功负荷的变化及时投切电容器。以往的低压动态无功补偿设备以机械开关(接触器)作为电容器的投切开关,机械开关不仅动作速度慢,而且会产生诸如涌流冲击、过电压、电弧重燃等现象,开关本身和电容器都容易损坏。据调查,我国过去使用的自动投切电容器无功补偿装置在使用3年后损坏率达75%[2]。

随着电力电子技术和微机控制技术的迅速发展和广泛应用,出现了智能型的动态无功补偿装置。这种以电力电子器件作为无功器件(电容器、电抗器)的控制或开关器件的动态无功补偿装置被称为静止无功补偿装置(SVC:Static Var Compensator)。

SVC是动态无功补偿技术的发展方向,它正成为传统无功补偿装置的更新换代产

品。正因为如此,本课题选择这一技术领域进行研究。

1.2 静止无功补偿技术的发展

1.2.1 静止无功补偿的作用与类型

对电力系统中无功功率进行快速的动态补偿,可以实现如下的功能[3,4]:

(1)对动态无功负荷的功率因数校正。

(2)改善电压调整。

(3)提高电力系统的静态和动态稳定性,阻尼功率振荡。

(4)降低过电压。

(5)减少电压闪变。

(6)阻尼次同步振荡。

(7)减少电压和电流的不平衡。

应当指出,以上这些功能虽然是相互关联的,但实际的静止无功补偿装置往往只能以其中某一条或某几条为直接控制目标,其控制策略也因此而不同。此外,这些功能有的属于对一个或几个在一起的负载的补偿效果(负载补偿),有的则是以整个输电系统性能的改善和传输能力的提高为目标(输电补偿),而改善电压调整,提高电压的稳定度,则可以看作是两者的共同目标。在不同的应用场合,对补偿装置容量的要求也不一样。以电弧炉、电解、轧机等大容量工业冲击负荷为直接补偿对象的无功补偿装置,要求的容量较小,而以电力系统性能为直接控制目标的系统用无功补偿装置,则要求具有较大的容量,往往达到几十或几百兆乏[3]。

早期的无功补偿装置的典型代表是同步调相机。同步调相机能进行动态的无功补偿,至今在无功补偿领域中还在使用,而且随着控制技术的进步,其控制性能还有所改善。但同步调相机是一种旋转的机械,其损耗、噪声都很大,它正被静止无功补偿装置(SVC)所取代。

SVC近年来获得了很大发展,已广泛用于输电系统和供电系统的无功补偿。早期的SVC是饱和电抗器(SR)型的,尽管它具有静止型的优点,但它需要工作在饱和状态,损耗和噪声都很大,而且存在非线性的问题,因而未能占据SVC的主流。采用并联电容器进行无功补偿有一系列的优点,因而在电力系统的无功补偿中获得广泛应用。

并联电容器补偿可采用固定电容器(FC)补偿和开关投切电容器的自动补偿。前者是不能调节的,不能进行动态补偿;后者用开关投切电容器,能进行动态无功补偿。传统的电容器动态无功补偿装置采用机械开关(接触器或断路器)投切电容器。机械开关的开关速度较慢,不可能快速跟踪负荷无功功率的变化;而且投切电容器时常会引起较为严重的冲击涌流和操作过电压,这样开关触头易受电弧作用而损坏,而且可能使电容器承受过电压而击穿。

随着电力电子技术的迅速发展,晶闸管开始用于SVC装置中,出现了晶闸管控制

电抗器(TCR)和晶闸管投切电容器(TSC)这两种基本结构型式的SVC,以及它们的混合装置,如TCR+TSC、TCR+FC等。

使用晶闸管对无功器件(电容器和电抗器)进行投切或控制的优点是响应速度快,可以频繁投切。因此,使用晶闸管的静止无功补偿装置近年来发展很快,静止无功补偿装置(SVC)这个词往往专指使用晶闸管等电力电子开关器件的静止无功补偿装置。

1977年,美国GE公司首次在实际电力系统中演示运行了其使用晶闸管的静止无功补偿装置。1978年,在美国电力研究院(EPRI)的支持下,西屋电气公司(Westing-house Electric Corp)制造的使用晶闸管的静止无功补偿装置投入实际运行[5,6]。随后,世界各大电气公司都竞相推出了各具特点的系列产品。我国也先后引进了数套这类装置。由于使用晶闸管的静止无功补偿装置具有优良的性能,所以,自20世纪80年代以来,在世界范围内其市场一直在迅速而稳定地增长,已占据静止无功补偿装置的主导地位[3]。

SVC主要有晶闸管控制电抗器(TCR:Thyristor Control Reactor)、晶闸管开关电容器(TSC:Thyristor Switch Capacitor)。比SVC更先进的无功补偿装置是静止无功发生器(SVG:Static VarGenerator)。以下进行简要介绍。

1.2.2晶闸管控制电抗器(TCR)

晶闸管控制电抗器(TCR)无功补偿装置的单相原理图如图1.1所示。两个反并联的晶闸管(SCR)与一个电抗器(L)相串联,其三相多接成三角形。这样的电路并入到电网中相当于交流调压器电路接电感性负载。

图1.1 TCR型补偿器原理图

TCR采用相控原理,其有效移相范围为90°~1 80°。当触发角α=90°时,晶闸管全导通,导通角δ=180°,此时电抗器吸收的无功电流最大。根据触发角与补偿器等效导纳之间的关系式B L=B Lmax(δ-sinδ)/ π和B Lmax=1 / X L可知:增大触发角即可增大补偿器的等效导纳,这样就会减小补偿电流中的基波分量。所以通过调整触发延迟角α的大小就可以改变补偿器所吸收的无功分量,达到调整无功功率的效果。

在工程实际中,可以将降压变压器设计成具有很大漏抗的电抗变压器,用晶闸管控制电抗变压器。这样就不需要单独接入一个变压器,也可以不装设断路器。电抗变压器的一次绕组直接与高压线路连接,二次绕组经过较小的电抗器与晶闸管连接。如果在电抗变压器的第三绕组选择适当的装置回路,例如加装滤波器,可以进一步降低无功补偿

产生的谐波。瑞士勃郎·鲍威利公司在20世纪80年代就制造出了此种补偿器用于高压输电系统的无功补偿[2]。

由于单独的TCR只能吸收无功功率,而不能发出无功功率,因此可以将并联电容器与TCR配合使用构成无功补偿器。根据投切电容器的元件不同,又可分为TCR与固定电容器配合使用的静止无功补偿器(TCR+FC)和TCR与断路器投切电容器配合使用的静止无功补偿器(TCR +MSC)。这种具有TCR型的补偿器反应速度快,灵活性大,目前在输电系统和工业企业中应用广泛。

1.3 课题来源及主要研究内容

1.3.1 课题来源

本课题是针对国内现有的电容器自动投切装置存在下列问题而提出的:

(1)采用接触器或断路器作投切开关,无法实现零电压(电网电压与电容器电压之差)投切,这样会产生很大的涌流冲击,容易损坏电力电容器和投切开关等设备。

(2)采用机械开关投切无法实现分相投切,这样在三相负荷不平衡时达不到补偿效果,并可能出现某些相过补偿。

(3)投切判据单一,通常根据以下五种方法之一来对电容器进行投切:电网电压高低、无功功率方向、功率因数大小、负荷电流大小、昼夜时间划分。很明显,这种投切方式无法做到最优化补偿,有时还会出现过补偿。以功率因数作为投切判据的无功补偿装置,在小负荷情况下会出现投切振荡[13]。

1.3.2 主要研究内容

本课题研究用电力电子开关器件和微处理器构成的TSC型低压动态无功补偿装置。将对TSC型无功补偿装置的主回路、检测和控制方法、零电压投入方法等关键技术进行研究,并研制一种TSC型低压动态无功补偿装置。主要研究内容如下:(1)理论分析与仿真研究

a.对TSC静止无功补偿装置可能的主电路结构进行理论分析和仿真研究,明确各种方案的特点与适应性。

b.检测和控制方法的研究。研究无功电流、无功功率的实时检测方法及其实现,并探讨基于瞬时无功理论的无功电流检测方法。并确定合适的控制方法。

c.对电容器投入电网时的涌流进行分析计算,研究各种零电压投入方法,研究一种适应性较强的零电压投入方法。

(2)研制TSC型低压动态无功补偿装置

a.主回路的设计。

b.控制器的设计。设计一个基于16位高性能单片机的低压TSC装置,包括硬件电路设计和软件编程。控制器除了电容器的投切控制功能外,还具有电网参数测量和通信功能。

)sin(2)(?ω+=t I t i l )()(cos sin

2sin cos 2)(t i t i t I t I t i q p l +=+=ω?ω?QM l I I k i ==?πsin 2)2

(

第2章 仿真分析与关键技术的研究

2.1 概述

……………

2.3 无功分量的检测方法

2.3.1 无功电流幅值的检测

图2.7是采用并联电容器对负荷进行无功补偿的系统示意图。

图2.7 用电容器进行负荷补偿的系统示意图

设节点电压为 t U t u p ωsin 2)(= (2.1)

负载电流为

(2.2)

式(2.2)通过三角函数变换后得

(2.3)

式中 i p (t)和i q (t)分别为有功电流分量和无功电流分量。

当ωt=2k π时,由公式(2.2)得

(2.4) 式中 I QM 为负荷无功电流幅值。

可见,只要检测在电网电压正向过零时刻的负荷电流,就可知对应的无功电流幅值I QM 。这种无功电流检测方法简单、快速(在一个周期内只要采样一次)。

基于上述原理的无功电流幅值检测原理电路框图如图2.8所示。来自电压互感器的

电压信号u 和电流互感器的电流信号i 经过低通滤波器(LPF )滤波后由过零脉冲发生电路产生电压正向过零脉冲信号,作为采样保持器的采样开关信号,于是采样保持器的输出就是无功电流幅值。

t U C dt du C i p c ωωcos 2???-=??-=t

I t I i QM q ωω?cos cos )sin 2(==U

I C QM ω2-=?图2.8 无功电流幅值检测原理电路框图

检测无功电流幅值可用于TSC 无功补偿装置的电容器投切判据[23

~25]。由图2.7可知,

i l =i c +i s ,如果使i q =i c ,则实现了完全补偿。根据 (2.5)

(2.6)

可得 (2.7) △C 即为全补偿所需投切的电容量。若△C 为负,则是切除相应容量的电容器;反之,则应投入相应容量的电容器。

2.3.2 基于瞬时无功功率理论的瞬时无功电流检测

三相电路瞬时无功理论自20世纪80年代提出以来,在许多方面得到了成功的应用。

该理论突破了传统的以平均值为基础的功率定义,系统地定义了瞬时无功功率、瞬时有功功率等瞬时功率量。以该理论为基础,可以得出用于无功补偿的无功电流实时检测方法。无功电流实时检测方法为实现最优化的无功补偿控制奠定了技术基础[3]。

瞬时无功功率理论简述

在瞬时无功功率理论体系中,将三相瞬时电压u a ,u b ,u c 和瞬时电流i a ,i b ,i c 分别变换到两相正交的α-β坐标系上[3,26],得到两相瞬时电压u α,u β和瞬时电流i α,i β,有

(2.16)

(2.17)

在α-β平面上,矢量u α,u β和i α,i β的合成旋转电压矢量为u ,合成旋转电流矢c b a u u u u u 2/32/302/12/1132---=βα

c b a i i i i i 2

/32/302/12/1132---=β

α

θθsin cos i i i i i q p +=+=q p i i u q p =)

32sin()32sin(sin )

32cos()32cos(cos πθπθθπθπθθ+----+-=C c

b a

q p

i i i C i i 32=q

T cq

bq aq

i C i i i 0

32=量为i ,则有

u =u α+u β ,i =i α+i β (2.18)

电流矢量i 可分解为与电压矢量u 同相位的瞬时有功电流i p 和与u 正交的瞬时无功电流i q

(2.19)

式中,θ为α-β平面上u 与i 的相位差。

瞬时有功功率p 和瞬时无功电流q 为

(2.20)

根据三相电路各相电压的相位关系,设矩阵C 为

(2.21) 则有

(2.22) 各相瞬时无功电流i aq ,i bq ,i cq 由下式求取

(2.23)

式中,C T

为C 的转置矩阵。

瞬时无功电流微机检测的原理

三相电路瞬时无功电流的检测原理框图如图 2.10所示。

图2.10 瞬时无功电流检测原理框图

第4章控制器软件设计与抗干扰设计

4.1 控制器软件结构

4.1.1 系统程序工作流程

本装置控制器主要采用汇编语言进行系统的程序设计,采用模块化结构,主要包括以下几部分:主程序模块、交流采样模块、数据处理模块、控制输出模块、键盘处理和液晶显示模块、通信处理模块等。系统软件工作流程图如图4.1所示。

图4.1 系统软件工作流程图

结束语

本文对静止无功补偿(SVC)这一技术领域进行了研究和工程设计,所做的工作主要包括两个方面:其一,对电力系统静止无功补偿装置的工作情况进行了仿真分析,对晶闸管开关电容器(TSC)型无功补偿装置的检测方法与控制目标,对电容器投入过程中的电流冲击与零电压投入等关键技术进行了研究,提出了有效的技术方案;其二,对低压TSC静止无功补偿装置进行了工程设计,设计方案中从根本上解决了电容器投入过程中的电流冲击问题和小负荷时投切振荡问题,并使TSC型无功补偿装置具有通信功能。

通过本文的研究,得到这样一些结论:

(1)

参考文献

[1]周鹤良.我国电力市场与对策.见:第七届全国“智能化电器及应用”学术年会曁“2004

年配网自动化和变电站自动化”论坛论文集.南京:中国电工技术学会电器智能化系统及应用专委会,2004,1-3

[2]赵贺.电力电子学在电力系统中的应用-灵活交流输电系统.北京:中国电力出版社,

2001,20-50

[3]王兆安,杨君,刘进军.谐波抑制和无功功率补偿. 北京:机械工业出版社,1998,

164-241

[4]B Denfino,F Fornari,C Gemme.Power Quality Improment in Transmision and Distribution

Networks via Synchronous Switching.In:Transmission and Distribution Conference and Exposition,Genoa,2001, 168-172

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодлялюдей, которыеиспользуютсядляобучения, исследований и не должны использоваться вкоммерческих целях.

以下无正文

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодлялюдей, которыеиспользуютсядляобучения, исследований и не должны использоваться вкоммерческих целях.

以下无正文

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

用电企业无功功率补偿的作用、目的和意义

用电企业无功功率补偿的作用、目的和意义 电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中 S——视在功率,kVA P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用: 1、提高功率因数 如图2所示图中

无功补偿的合理配置原则

无功补偿的合理配置原则 电力系统运行的经济性和电能质量与无功功率有着密切的关系,无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。低压电力用户量大面广,其负荷的功率因数又大都比较低,因此在低压电网中进行无功功率的就地补偿是整个电力系统无功补偿的重要环节。根据电力网无功功率消耗的规则,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网(0.4KV)所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按分级补偿,就地平衡的原则,合理布局。 1、高压补偿与低压补偿结合,以低压为主; 2、集中补偿与分散补偿结合,以分散为主(为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿); 3、调压与降损相结合,以降损为主(对于无功补偿的主要目的是改善功率因数,减少线损,调压只是一个辅助作用)。 从以上补偿原则看出,补偿装置愈接近电动机或其他电力设备,无功电流通过的变配电设备愈少,通过的线路愈短,补偿愈彻底,节能效果愈显著。电动机无功就地补偿技术在国外如英、美、日、法和

瑞典等一些发达国家推广使用已有几十年的历史。日本为便于推广使用就地补偿装置于1997年就将串联电容器、电抗器、放电电阻联合在一起,为防止高次谐波对电容器的危害,还规定了使用范围。日本东京电力公司规定,每台大容量的电动机都要装设低压进相电容器,当负荷为100%时,功率因数应补偿到0.95,凡是低压三相异步电动机,必须全部进行就地补偿。我国在上世纪八十年代初,对配电网变压器低压侧实行强制性电容器补偿装置以来,直到八十年代末,所使用的无功补偿设备,不外乎采用下述两种方法:一是人工投切电容器组,二是用电磁开关自动投切电容器组,前者不仅劳动强度大,而且无法准确地按运行要求投切,造成欠补或过补,不能真正地改善用电质量;后者由于很难控制投切瞬间造成较大的合闸涌流和分闸过电压,对电容器和用电设备造成危害。随着电力电子器件、大功率可控硅器件的问世和计算机技术的飞速发展,近年来,采用数字微处理器为核心的智能化无功功率动态补偿控制器和智能复合开关已成为当前低压无功补偿装置的必然趋势,它能自动跟踪无功功率需求的变化,实现电容器组的平滑投切,因而无合闸涌流,无分闸过电压,且不受投切次数的限制,这是无功补偿技术的质的飞跃,实现了全自动、长寿命、免维护、安全可靠的无功动态补偿,使供电系统可以始终处于理想的工况下运行。

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

无功补偿柜技术协议

无功功率补偿装置 技术协议 需方(甲方): 供方(乙方):

1 总则 1)本协议适用于项目。 2)本技术协议执行标准:GB/T 15576-2008—低压成套无功功率补偿装置国家标准。 3)本设备技术协议书经供、需双方确认后作为定货合同的技术附件,与合同正文具有同等法律效力。 4)本设备技术协议书未尽事宜,由供、需双方协商确定。 2 供货范围 1)无功功率补偿装置柜 装置柜包含组成整柜的所有结构及电气元件,包含柜内连接的导线及铜排,所有电气连接排及导线材料均为铜质,但乙方柜中不含水平主母排及支撑件,不含零地排及支撑件。2)柜内主要元件(500KVAR) 3 技术参数 3.1. 主要技术参数 1)额定电压: 400V 2)额定容量:500kVar 3)额定频率:50Hz 4)串联电抗器阻抗比:7%

5)冷却方式:强迫风冷 6)系统保护:系统过压、模块过温保护、支路过载保护 7)控制电源:AC220V(-10%~+10%) 8)补偿后功率因数:0.9~0.95 3.1.1. 静态补偿模块 静态补偿模块采用模块化设计,一个模块内含一个补偿支路的所有部件,包含熔断器、接触器、电容器、串联电抗器和其他安装附件等。一个模块本身就是一个相对独立系统,可单独进行设计、制造和检验,它对外安装从电气上来看只有2个接口:模块并入电网的接口和接受控制器控制信号的接口。 3.1.1.1电容器性能 纯充气干式环保结构、带二次保护装置、金属化聚丙烯膜,方便、快捷、可靠的连接方式、介质损耗:tanδ≤0.0010、电容偏差:标称容量的0~+5%,三相电容器任何两端子之间电容的最大值与最小值之比不超过1.05、放电器件试验:电容器在3分钟内放电至75伏以下、 最高允许电压:1.10Un时,每24小时中不超过12小时。 最大允许电流:允许在电流不超过1.3倍额定电流下运行,承受浪涌电流能力:300倍额定电流,,电容器配置放电电阻。 3.1.1.2.电抗器性能 产品特点: 纯干式结构,树脂浇注,采用优质硅钢片,铜线制造,真空干燥浸渍工艺,设计余量大,损耗小,温升低,过载能力强,可在1.35倍额定电流下长期工作,噪音低。 技术参数: 额定频率:50Hz,损耗:≤15KW/kvar,温控保护:65℃常开、120℃常闭,噪音:≤48db、线性度:1.4-2.0In,电抗率: 7%,电感量:LN 0~5%,温升:线圈温升≤75K,绝缘温度等级:F。 防护等级:IP00,户内安装使用,安装间距:>30mm。 3.1.2.控制器 3.1.2.1产品特点 全数字化设计,交流采样,人机界面采用大屏幕LCD中文液晶显示器

详解电网无功补偿与电压调节

详解电网无功补偿与电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V 及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准:

500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的2.5%,并满足主变最大负荷时,功率因数不低于0.95。 以上只是大概的比例估计,具体工程的变电站的无功配置是需要通过计算的,计算分不同运行方式(针对容性和感性),无功计算一般是有无功交换的整个区域一

无功补偿的意义及原理

四、无功补偿的意义及原理 人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。 无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现。而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。 无功补偿的作用主要有以下几点: (1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗; (2)稳定受电端及电网的电压,提高供电质量。在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力; (3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 (一).无功补偿的物理意义 无功功率只是描述了能量交换的幅度,而并不消耗功率。图中的单相电路就是这

方面的一个例子,其负载为一阻感负载。电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量。无功功率的大小表示了电源和负载电感之间交换能量的幅度。电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。 下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。这时无功功率的大小当然也表示了电源和负载电感之间能量交换的幅度。无功能量在电源和负载之间来回流动。

无功补偿容量配置方法

1无功补偿作用: 提高变压器利用率,降低损耗、提高功率因数,避免罚款争取奖励。2型号示意 设计时:估算根据变压器容量估算补偿容量:变压器30%左右;计算负载有功功率,估算补偿前功率因数,确定补偿后达到的功率因数,根据无功补偿系数表查询数据,计算出所需补偿(比较准确)。 改造时:断掉现有补偿,记录、监测:有功功率、功率因数(补偿前),取得数据后,确定补偿后功率因数,查询无功补偿系数表,计算达到补偿后功率因数需要的补偿容量。 以上的到的补偿容量均为计算容量,即所需补偿的实际输出容量,而实际电容器输出容量和额定容量不是一致的。额定容量即安装电容器在电容器标注的额定电压下的容量,如450V电容器额定容量30kVar,指电容器在450V下输出30kVar,而实际在400V系统下,此电容器输出容量为30*(400*400/450*450)=23.7,如果实际电容端电压只有380V,输出只有21kVar。 (公式: Qc=2×π×f×C×U×U;当电源频率f=50HZ、π=3.14时,则简化为: Qc=0.314×C×U×U (Qc=千乏,C=μF))

带电抗时考虑电抗影响,实际输出容量(Qc)与安装容量(Qe),计算系数为,带7%电抗(额定电压480V)时,Qc=0.746Qe,带14%电抗(额定电压525V)时,Qc=0.675Qe,为确保容量配置足够,根据此公式计算所需安装电容补偿容量Qe。 附-无功补偿容量补偿表

根据上述计算容量,计算容量为补偿所需输出容量,根据输出容量计算出安装容量,为最后所需配置的补偿容量。一般配置补偿容量要求加一定裕量,1.2倍左右配置最佳。

无功功率补偿投切原理

无功功率(reactive power ):无功功率是按电磁感应原理工作的某个交流供用电设备和交流电源之间的能量交换,这种能量互换的最大值称为无功功率。这部分能量是用电器工作所必须的,但不能转换为我们所需要的能量,如机械能和热能。为了形象的描述电源利用的程度,我们提出了功率因数的概念,功率因数就是电路中有用功率和视在功率(电源总功率)的比值。由此可见,提高电网的功率因数对国民经济发展的重要意义。功率因数的提高,能使发电设备的容量得到充分利用,减少线路电流和功率损失。 无功补偿原理:通常我们用来提高功率因数的方法就是补偿法。即采用能够提供无功功率的装置来补偿用电设备所需的无功功率,降低电源的功率损失,提高功率因数,采用电力电容器来补偿用电设备所需无功功率的方法,称为电容无功补偿法。 这是由于理想的电容器在电路里是不消耗电能的,它只是从电源吸收电能转换成电场能,再把电场能转换成电能还给电源,完成它与电源之间的能量互换,因此电容上的功率也是无功功率,它的无功功率是由于电容上的电流I超前电压90°引起的,而我们的用电设备大多数都是感性负载,其工作时由于电流滞后引起的无功功率刚好与电容引起的无功功率相反。所以我们可以利用电容工作时产生的无功功率来补偿用电设备在工作时消耗的无功功率。 电容投切无功补偿简介:通过以上分析我们知道在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。电容组投切的时机和数量则由专用控制器决定,而电容组容量一般选择系统额定容量的15%~40%。 电容投切无功补偿装置组成及其技术要点: 电容器:选用优质自愈式并联电容器,可按不同容量灵活编码组合,投切级数多,大容量补偿可一次到位。 控制器:选用快速DSP芯片,能够准确快速的检测出电路当前的功率因数,并根据当前功率因数选择合适的电容组数量投入到电路中,或在过补偿时及时投入感性电抗消除影响。 投切开关:触点式:功耗较小,但不适合频繁开启的场合。 晶闸管式:开关频率高,但功耗较高,容易损坏。 复合式:开关时采用晶闸管,导通后切换到触点式,开关频率高,功耗小,但是结构复杂 电抗器(装置中多为感性):多用在高压系统中,用来消除过补偿功率,滤除谐波。

静止型动态无功补偿成套装置技术规范

35kV SVG型静止型动态无功补偿成套装置技术规范 1总则 1.l 本设备技术规范书适用于XXXXXXXXXXXXXXXXXXXX工程XXkV 动态无功补偿与谐波治理装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本协议要求的优质产品。 1.3 如果供方没有以书面形式对本技术规范书的条文提出异议,则意味着供方提供的设备完全符合本技术规范书的要求。 l.4 本设备技术规范书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本设备技术规范书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜,由甲、乙双方协商确定。 2工程概况 2.1环境条件 周围空气温度 最高温度 ℃ 37.8 最低温度 ℃ -37 最大日温差 K 25 1 日照强度 W/cm2 (风速 0.5m/s) 0.1 2 海拔高度 m 1805 最大风速 m/s 23.7 3 离地面高10m处,30年一遇10min平均最大风速 4 环境相对湿度(在25℃时)平均值 65% 地震烈度(中国12级度标准) 8 水平加速度 g 0.30 垂直加速度 g 0.15 5 地震波为正弦波,持续时间三个周波,安全系数1.67 污秽等级 III 泄漏比距 3.1cm/kV 6 最高运行电压条件下,制造厂根据实际使用高海拔进行修正,并提供 高海拔修正值 7 覆冰厚度(风速不大于15m/s时) 10 批注 [s1]: 需根据现场实际情况进行更改 第1页

用户无功补偿装置的配置

?电能质量? 低压电器(2008№4) 现代建筑电气篇 吴工文(1972—),女,高级工程师,研究方向为电气工程。 用户无功补偿装置的配置 吴工文, 艾 芊 (上海交通大学电气工程系,上海 200030) 摘 要:根据用户负荷特性、实际用电情况以及电网电压、电流变动大小,提出了选择JK W 系列无功功率自动补偿控制器和F DKS 动态复合开关的无功补偿装置,以确保用户精确无误地控制无功投切。给出了用户无功补偿装置配置的应用实例,并对其性能参数、出现问题进行了分析。阐述了熔断、短接的原因及应采取的措施。 关键词:无功功率;功率因数;电容器;接触器;继电器;复合开关;无功补偿中图分类号:T M714.3 文献标识码:B 文章编号:100125531(2008)0420051203 Conf i gura ti on of Reacti ve Power Com pen s a ti on Equ i p m en t WU Gongw en, A I Q ian (Depart m ent of Electrical Engineering,Shanghai J iaot ong University,Shanghai 200030,China ) Abstract:According t o the l oad characteristic,the actual power consu mp ti on situati on and the change of the voltage and current of power grid,a reactive power compensati on which consists of the JK W series of reactive power aut omatic compensati on contr oller and F DKS dyna m ic compound s witch was br ought for ward,s o that the accuracy of the s witch on /off of the reactive power was ensured .An app licati on exa mp le of configurati on of reactive power com 2pensati on equi pment was given,and its para meters and p r oble m s were analyzed .The reas ons f or fusing and short connecting were expounded and the measures were given . Key words:reacti ve power;power factor;capac itor;con t actor;rel ay;co m pound sw itch;reacti ve power co m pen s a ti on 艾 芊(1969—),男,副教授,研究方向为电能质量、人工智能及其在电力系统中的应用、电力系统元件建模、电力系 统继电保护、故障诊断与定位。 0 引 言 由于系统中存在大量的感性负载,如感应电 动机、电力变压器、电焊机、高频炉、气体放电灯等,因此出现大量相位滞后的无功功率,导致产生功率因数降低,系统电压损耗增大等不良影响。 为了鼓励用户自行提高其负荷的功率因数,降低系统的电压损耗,原水利部和国家物价局颁发了《功率因数调整电费办法》,对用户功率因数进行考核,规定凡装有无功补偿设备且有可能向电网倒送无功电量的用户,应随其负荷和电压变动及时投入或切除部分无功补偿设备。电业部门应在计费计量点加装带有防倒送装置的反向无功电能表,按倒送的无功电量与实用的无功电量两者的绝对值之和计算月平均功率因数。 无功补偿设备可采用并联电容器或同步补偿机,使之产生相位超前的无功功率,以补偿系统中相位滞后的无功功率。用户方面的难点是:如何随其负荷和电压变动及时投入或切除部分无功补偿设备。这需要用户根据自身的用电特点选择最佳的无功补偿装置,一般采用无功功率自动补偿控制器+复合开关+电抗器+电容器的方案。 1 无功补偿装置的选择 1.1 无功功率自动补偿控制器的选择 本文以JK W 系列无功功率自动补偿控制器为例进行介绍。JK W 系列依据DL /T 597—1996《低压无功补偿控制器订货技术条件》,采用LCD 液晶中文显示器和先进的单片机技术研制而成。 — 15—

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

电容无功补偿柜

电容无功补偿柜 一. 电容补偿柜之作用 :用以提高功率因数,调整电网电压,降低线路损耗,充分发挥设备效率,改善供电质量。 二.电容柜工作原理:用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三 . 电容补偿技术 :在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压 90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害: ?增长线路电流使线路损耗增大,浪费电能。

?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于 0.7 时,供电局可拒绝供电。 ?对发电机而言,以 310KW 发电机为例。 310KW发电机的额定功率为 280KW ,额定电流为 530A ,当负载功率因数 0.6 时 功率 = 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为 530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到 0.96 ,同样 210KW 的负荷。 电流 =210000/ ( 380x1.732x0.96 ) =332A 补偿后电流降低了近 200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 电容补偿柜工作原理及用途 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压

低压无功补偿配置方案

低压无功补偿配置方案 把具有容性功率的装置与感性负荷联在同一电路,当容性装置释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性装置吸收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功功率中得到补偿。 在电网运行中,因大量非线性负载的运行,除了要消耗有功功率外,还要消耗一定的无功功率。负荷电流在通过线路、变压器时,将会产生电能损耗,由电能损耗公式可知,当线路或变压器输出的有功功率和电压不变时,线损与功率因数的平方成反比。功率因数越低电网所需无功就越多,线损就越大。因此,在受电端安装无功补偿装置,可减少负荷的无功功率损耗,提高功率因数,降低线损耗。 接入电网要求 安装地点和装设容量,应根据分散补偿和降低线损的原则设置。补偿后的功率因数应符合现行国家标准《全国供用电规则》的规定(一般不低于0.9)。 无功补偿的作用 功率因数低,电源设备的容量得不到充分利用,负载功率因数越低,通过变压器送出的有功功率就越小,有相当大的一部分功率在电源和负荷之间来回传输,这部分功率不能做有用功,变压器不能被充分利用。功率因数偏低,在线路上会产生较大的压降和功率损耗。线路压降增大则负载电压降低,有可能使负载工作不正常。 补偿方式 1)集中补偿:电容器组集中安装在总降压变电所6—10kV母线上,提高整个变电所的功率因数,这样可减少高压线路的无功损耗,提高变电所的供电电压质量。 2)分组补偿:电容器组安装在终端变电所的高压或低压线路上。 3)就地补偿:将电容器安装在感性负载附近,就地进行无功补偿。 4)静态补偿:电容柜的控制器测出电路的功率因数并决定要补偿的电容器,并投入电容器补偿,需要一定的时间。特别是某个或几个电容器从电路中切除后需要有一定的时间间隔进行放电,才可以再次投入。有的负载变化快,这时电容器的切除、投入的速度跟不上负载的变化,所以称为静态补偿。静态补偿的优点:价格低,初期的投资成本少,无漏电流。缺点:涌流大,即使采用了限流接触器,涌流仍可达到电容器工作电流的十几倍。寿命短、故障多、维修费用多。 5)动态补偿:采用晶闸管控制电容器的接入和切除,选择电路上电压和电容器上电压相等时投入、切除,此时流过晶闸管和电容器的电流为零。解决了电容投入时的涌流问题。动态补偿的优点:涌流小、无触点、使用寿命长、维修少、投切速度快(≤20ms)。缺点:价格高、发热严重、耗能、有漏电流。 低压并联电容器无功补偿回路配置 总回路刀开关和分回路交流接触器或功能相同的其他的元件:保护用避雷器:熔断器,热继电器(装设谐波超值保护时可不装》限制涌流的限流线圈(交流接触器或电容器本身具备限制涌流的功能时可不装》放电元件:动投切控制器、保护元件、信号和测量表计等配套元件,谐波含量超限保护,在电容器前装上HFX消谐波磁环,阻止谐波进入电容器,保护设备正常运行。 电器和导体的选择 1)并联电容器装置的总回路、分组回路的电器和导体的稳态过电流,应为电容器组额定电流的1.35倍。 2)开关:额定电流不能小于电容器组额定电流的1.35倍。

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

电网无功补偿和电压调节

电网无功补偿和电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。 无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准: 500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的 2.5%,并满足主变最大负荷时,功率因数不低于0.95。

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

相关文档
最新文档