高考数学百大经典例题 逻辑联结词

高考数学百大经典例题 逻辑联结词
高考数学百大经典例题 逻辑联结词

高考数学百大经典例题——逻辑联结词

例1 下列语句中不是命题的是

[ ] A.台湾是中国的

B.两军相遇勇者胜

C.上海是中国最大的城市

D.连接A、B两点

分析“D”是描述性语句.

答D.

例2 命题“方程x2-4=0的解是x=±2”中,使用的逻辑联结词的情况是

[ ] A.没有使用联结词

B.使用了逻辑联结词“或”

C.使用了逻辑联结词“且”

D.使用了逻辑联结词“非”

分析注意到x=±2是x=2或x=-2.

答选B.

例3命题①梯形不是平行四边形;②等腰三角形的底角相等;③有两个内角互补的四边形是梯形或圆内接四边形或是平行四边形;④60是5或2的公倍数,其中复合命题有

[ ] A.①③④B.③④

C.③

D.①③

分析②是简单命题,其余的均为复合命题.

解选A.

5

4 3p p

例命题“的值不超过”看作非的形式,则为,看作是“p或q”形式,p为________,q为________.

分析“不超过”用“≤”表示,其否定是“>”,“≤”可以看作为“<”或“=”的复合形式.

555

333

答依次为“>”、“<”、“=”.

说明:对命题的否定要“全面”,比如“>”的否定不是“<”.

例5 分别指出下列复合命题的形式及构成它的简单命题:

(1)4既是8的约数,也是12的约数;

(2)张明是数学课代表或英语课代数;

(3)江苏省不是中国面积最大的省.

分析先寻找逻辑联结词,再确定被联结的简单命题.

解(1)p且q,p:4是8的约数,q:4是12的约数;

(2)p或q,p:张明是数学课代表,q:张明是英语课代表;

(3)非p、p:江苏省是中国面积最大的省.

例6以下判断正确的是

[ ]

A .若p 是真命题,则“p 且q ”一定是真命题

B .命题“p 且q ”是真命题,则命题p 一定是真命题

C .命题“p 且q ”是假命题时,命题p 一定是假命题

D .命题p 是假命题时,命题“p 且q ”不一定是假命题 解 根据真值表.选B .

说明:在记忆真值表的时候,要体会它的合理性.

例7 如果命题“p 或q ”与命题“非p ”都是真命题,那么

[ ]

A .命题p 不一定是假命题

B .命题q 一定是真命题

C .命题q 不一定是真命题

D .命题p 与命题q 的真值相同 分析 p 为假,从而q 为真. 解 选B .

例8 若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有

[ ]

A .p 真q 真

B .p 假q 假

C .p 真q 假

D .p 假q 真 分析 利用逆否命题与原命题的等价性,结合真值表确定结论. 解 ∵“p 或q ”的否定是“非p 且非q ”,这是一个真命题,所以由真值表.非p 、非q 都是真命题,那么p 假q 假.选B .

点击思维

例9 有下列五个命题 (1)40能被3或5整除;

(2)不存在实数x ,使x 2+x +1<0; (3)对任意实数x ,均有x +1>x ; (4)方程x 2-2x +3=0有两个不等的实根;

(5)0不等式<的解集为.x x x 21

1

-++?||

其中假命题为________.(只填序号) 分析 使用不同的方法分别验证. 答 填写(4).

例10 p :菱形的对角线互相垂直.q :菱形的对角线互相平分.求下列复合命题:

(1)p 或q (2)p 且q (3)非p

分析 一般的问题都是“拆”复合命题,这儿是“造”复合命题,关键在于“合”.

解 (1)菱形的对角线互相垂直或平分; (2)菱形的对角线互相垂直且平分; (3)菱形的对角线互相不垂直.

例11以1表示真,以0表示假,填写下面的真值表.

分析将q的可能取值与p对应,然后依真值表逐格填写.

说明:有时需要我们综合应用真值表.

例12 分别指出下列各组命题构成的“p或q”、“p且q”、“非p”形式的复合命题的真假.

33

(1)p q

:是无理数.:是实数.

(2)p:4>6.q:4+6≠10.

分析利用真值表.

解(1)p或q:真;p且q:真;非p:假.

(2)p或q:假;p且q:假;非p:真.

说明:本题是要求先“造”命题,然后判定其真假.

例13 如果命题“p或q”是真命题,“非p”是假命题,那么

[ ] A.命题p一定是假命题

B.命题q一定是假命题

C.命题q一定是真命题

D.命题q是真命题或者假命题

分析利用真值表回推.

答选D.

说明:解题过程中注意发挥逆向思维的作用.

例14命题“非空集合A∩B中的元素既是A中的元素也是B中元素”是________形式.命题“非空集合A∪B中的元素是A的元素或是B的元素”是

________形式.

分析x∈A∩B则x∈A且x∈B,填p且q.

x∈A∪B则x∈A或x∈B.填p或q.

答填p且q;p或q.

说明:本题是集合问题与命题概念的结合.

例15分别指出下列各命题的形式及构

成它的简单命题,并指出复合命题的真假.

(1)8或6是30的约数;

(2)矩形的对角线垂直平分;

(3)方程x2-2x+3=0没有实数根.

分析分清形式结构,判断简单命题真假,利用真值表再判断原复合命题真假.

解(1)p或q,p:8是30的约数(假),q:6是30的约数(真).“q或q”为真.

(2)p且q,p:矩形的对角线互相垂直(假),q:矩形的对角线互相平分(真).“p 且q”为假.

(3)非p、p:x2-2x+3=0有实根(假).非p为真.

说明:将简易逻辑知识负载在其他知识之上

逻辑连接词习题

第一课时 1.4全称量词与存在量词(一) 基础检测 1.下列命题中,全称命题是( ) A .全部到校 B .还没有发现生病者 C .今天全天真热 D .今年高中一年级数学科采用的教材全是人民教育出版社出版的 2.下列命题中,不是全称命题的是( ) A .所有的平行四边形都不是矩形 B .所有的矩形都是平行四边形 C .所有的平行四边形都是矩形 D .有部分平行四边形是矩形 3.下列全称命题中,真命题有( ) A .任意实数可以做等比数列的公比 B .任意实数的绝对值可以做等比数列的首项 C .任意实数可以做等比数列的首项 D .任意非零实数可以做等比数列的公比 4.下列全称命题中,假命题是( ) A .对于?k ∈R ,方程022 2 =-+k kx x 有实根 B .对于?k ∈R ,方程022 2 =++k kx x 有实根 C .对于?k ∈R ,方程0522=-+k kx x 有实根 D .对于?k ∈R ,一元二次方程0222 2 =++kx x k 无实根

5. 下列特称命题是真命题的是( ) A .存在一个等差数列,其前n 项和=n S 1322 ++n n B .存在一个等差数列,其前n 项和=n S 13 -+bn an C .存在一个等比数列,其前n 项和=n S 32+n D .存在一个等比数列,其前n 项和=n S 12-n 拓展探究 6.下列特称命题中,真命题有 假命题有 (填序号) (1)0x ?∈R ,x ≤0; (2)至少有一个整数,它即不是合数也不是素数; (3)0x ?∈{x |x 是无理数},2 x 是无理数; (4)0x ?∈Q ,2 x =5. 7.命题(1)0x ?, x -2≤0; (2)矩形对角线互相平分; (3)凡三角形两边之和大于第三边; (4)有些质数是奇数. 中特称命题有 ;全称命题有 ;真命题有 .(只填序号) 8.设()x x x p >2 :,那么(1)当x =3时,()3p 是 (真,假)命题; (2)“()x x x p >2 :”是真命题,则x ∈ . 9.判断下列全称命题的真假。 (1) 任意m ≥0,关于x 的 二次方程()0522 =--+m x m x 有两个不相等的实数 根;

高中数学经典例题

高中数学经典例题讲解高中数学经典例题讲解典型例题一例1下列图形中,满足唯一性的是 (). A.过直线外一点作与该直线垂直的直线 B.过直线 外一点与该直线平行的平面C.过平面外一点与平面平行的直 线D.过一点作已知平面的垂线分析:本题考查的是空间线线 关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条..过一点作已知平面的垂线是有且仅有一条.假设空间点、平面,过点有两条直线、都垂直于,由于、为相交直线,不妨设、所确定的平面为 ,与的交线为,则必有,,又由于、、都在平面内,这样在内经过点就有两条直线和直线垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作

已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是(). A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系; - 1 - 高中数学经典例题讲解(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D.说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如E、FGBC在

数学百大经典例题

典型例题一 例1 三条直线两两相交,由这三条直线所确定平面的个数是( ). A .1 B .2 C .3 D .1或3 分析:本题显然是要应用推论2判断所能确定平面的个数,需要在空间想象出这三条直线所有不同位置的图形,有如下图的三种情况(如图): 答案:D . 说明:本题启发我们考虑问题不要只局限于平面图形,应养成在三维空间考虑问题的习惯. 典型例题二 例2 一条直线与三条平行直线都相交,求证这四条直线共面. 分析:先将已知和求证改写成符号语言.证明诸线共面,可先由其中的两条直线确定一个平面,然后证明其余的直线均在此平面内.也可先由其中两条确定一个平面α,另两条确定平面β,再证平面α,β重合. 已知:c b a ////,A a l = ,B b l = ,C c l = . 求证:直线a ,b ,c ,l 共面. 证明: ∵ b a //, ∴ a ,b 确定一个平面α. ∵ A a l = ,B b l = , ∴ α∈A ,α∈B ,故α?l . 又 ∵ c a //, ∴ a ,c 确定一个平面β. 同理可证β?l . ∴ a =βα ,且l =βα . ∵ 过两条相交直线a ,l 有且只有一个平面,故α与β重合 即直线a ,b ,c ,l 共面. 说明:本例是新教材第9页第9题的一个简单推广,还可推广到更一般的情形.本例证明既采用了归一法,同时又采用了同一法.这两种方法是证明线共面问题的常用方法.在证明α?c 时,也可以用如下反证法证明: 假设直线α?c ,则c 一定与α相交,此时直线c 与a 内的所有直线都不会平行,这显然

与c a //矛盾.故α?c . 典型例题三 例3 已知ABC ?在平面α外,它的三边所在的直线分别交平面α于P ,Q ,R 三点, 证明P ,Q ,R 三点在同一条直线上. 分析:如图所示,欲证P ,Q ,R 三点共线,只须证P , Q ,R 在平面α和平面ABC ?的交线上,由P ,Q ,R 都是 两平面的公共点而得证. 证明:∵ P AB =α ,Q BC =α , ∴ PQ 是平面α与平面ABC 的交线. 又 ∵ R AC =α , ∴ α∈R 且∈R 平面ABC , ∴ PQ R ∈, ∴ P ,Q ,R 三点共线. 说明:证明点共线的一般方法是证明这些点是某两个平面的公共点,由公理2,这些点都在这两平面的交线上. 典型例题四 例4 如图所示,ABC ?与111C B A ?不在同一个平面内,如果三直线1AA 、1BB 、1CC 两 两相交,证明:三直线1AA 、1BB 、1CC 交于一点. 分析:证明三线共点的一般思路是:先证明两条直线交于一点,再证明该点在第三条直线上即可. 证明:由推论2,可设1BB 与1CC ,1CC 与1AA ,1 AA 与1BB 分别确定平面α,β,γ. 取P BB AA =11 ,则1AA P ∈,1BB P ∈. 又因1CC =βα ,则1CC P ∈(公理2), 于是P CC BB AA =111 ,

逻辑连接词(高考题节选,附答案)

第3讲 简单的逻辑联结词、全称量词与存在量词 A 级 基础达标演练 (时间:40分钟 满分:60分) 一、选择题(每小题5分,共25分) 1.下列命题中的假命题是 ( ). A .?x 0∈R ,lg x 0=0 B .?x 0∈R ,tan x 0=1 C .?x ∈R ,x 3>0 D .?x ∈R,2x >0 解析 对于A ,当x 0=1时,lg x 0=0正确;对于B ,当x 0=π4 时,tan x 0=1,正确;对于 C ,当x <0时,x 3<0错误;对于D ,?x ∈R,2x >0,正确. 答案 C 2.(2012·杭州高级中学月考)命题“?x >0,x 2+x >0”的否定是 ( ). A .?x 0>0,x 20+x 0>0 B .?x 0>0,x 20+x 0≤0 C .?x >0,x 2+x ≤0 D .?x ≤0,x 2+x >0 解析 根据全称命题的否定是特称命题,可知该命题的否定是:?x 0>0,x 20+x 0 ≤0. 答案 B 3.(2012·郑州外国语中学月考)ax 2+2x +1=0至少有一个负的实根的充要条件是( ). A .0<a ≤1 B .a <1 C .a ≤1 D .0<a ≤1或a <0 解析 (排除法)当a =0时,原方程有一个负的实根,可以排除A 、D ;当a =1时,原方 程有两个相等的负实根,可以排除B ,故选C. 答案 C 4.(2012·合肥质检)已知p :|x -a |<4;q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则a 的取值 范围为 ( ). A .a <-1或a >6 B .a ≤-1或a ≥6 C .-1≤a ≤6 D .-1<a <6 解析 解不等式可得p :-4+a <x <4+a ,q :2<x <3,因此綈p :x ≤-4+a 或x ≥ 4+a ,綈q :x ≤2或x ≥3,于是由綈p 是綈q 的充分不必要条件,可知2≥-4+a 且4 +a ≥3,解得-1≤a ≤6. 答案 C

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

数学百大经典例题

例若<<,则不等式-- <的解是1 0a 1(x a)(x )01a [ ] A a x B x a .<<. <<11a a C x a D x x a .>或<.< 或>x a a 11 分析比较与 的大小后写出答案. a 1a 解∵<<,∴<,解应当在“两根之间”,得<< . 选. 0a 1a a x A 11a a 例有意义,则的取值范围是 .2 x x 2 --x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-???????b a a ()()121 1122 ×得 a b = =-12 12 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2 -+--+-3132 5113 12 2x x x x x x >> ()()

分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤ 32 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 11-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1或x = 0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得 >,即 >, 1x 0001111 2 2 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解. 例与不等式 ≥同解的不等式是6 0x x --32 [ ] A .(x -3)(2-x)≥0 B .0<x -2≤1 C . ≥23 0--x x D .(x -3)(2-x)≤0 解法一原不等式的同解不等式组为≥, ≠. ()()x x x ---???32020 故排除A 、C 、D ,选B . 解法二≥化为=或-->即<≤ x 320x 3(x 3)(2x)02x 3--x 两边同减去2得0<x -2≤1.选B . 说明:注意“零”. 例不等式 <的解为<或>,则的值为7 1{x|x 1x 2}a ax x -1 [ ]

人教版(理)高考数学《大一轮复习讲义》题库 1.2 命题与量词、基本逻辑联结词

1.2 命题与量词、基本逻辑联结词 一、选择题 1.下列命题中的假命题是( ). A .?x 0∈R ,lg x 0=0 B .?x 0∈R ,tan x 0=1 C .?x ∈R ,x 3>0 D .?x ∈R,2x >0 解析 对于A ,当x 0=1时,lg x 0=0正确;对于B ,当x 0= π 4 时,tan x 0=1,正确;对于C ,当x <0时,x 3<0错误;对于D ,?x ∈R,2x >0,正确. 答案 C 2. 已知命题p :函数f (x )=? ????12x -log 13x 在区间? ? ???0,13内存在零点,命题q :存 在负数x 使得? ????12x >? ?? ?? 13x .给出下列四个命题:①p 或q ;②p 且q ;③p 的否定;④ q 的否定.其中真命题的个数是( ) A .1 B .2 C .3 D .4 解析 命题p 为假命题,命题q 也为假命题.利用真值表判断. 答案 B 3.命题“?x >0,x 2+x >0”的否定是( ). A .?x 0>0,x 20+x 0>0 B .?x 0>0,x 20+x 0≤0 C .?x >0,x 2+x ≤0 D .?x ≤0,x 2+x >0 解析 根据全称命题的否定是特称命题,可知该命题的否定是:?x 0>0,x 20+ x 0≤0. 答案 B 4.已知p :|x -a |<4;q :(x -2)(3-x )>0,若非p 是非q 的充分不必要条件,则a 的取值范围为( ). A .a <-1或a >6 B .a ≤-1或a ≥6 C .-1≤a ≤6 D .-1<a <6 解析 解不等式可得p :-4+a <x <4+a ,q :2<x <3,因此非p :x ≤-4+a 或x ≥4+a ,非q :x ≤2或x ≥3,于是由非p 是非q 的充分不必要条件,可知2≥-4+a 且4+a ≥3,解得-1≤a ≤6. 答案 C 5.若函数f (x )=-x e x ,则下列命题正确的是( )

简单地逻辑联结词地练习题与答案

简单的逻辑联结词x2ax 5、已知a0,设命题p:函数 y a在R上单调递增;命题q:不等式ax10对x R 恒成立,若p q为假命题,p q为真命题,求a的取值范围。 1、分别写出由下列命题构成的“p q”、“p q”、“p”式的心命题。 (1)、p:是无理数,q:e不是无理数; 2x2x (2)、p:方程x210有两个相等的实数根,q:方程x210两根的绝对值相等。 (3)、p:正ABC三内角相等,q:正ABC有一个内角是直角。 6、写出下列命题的否定和否命题 (1)、若abc0,则a,b,c中至少有一个为零; 2、指出下列命题的构成形式及构成它的简单命题 2 x x2 (1)、向量a b0;(2)、分式0 x1; (2)、等腰三角形有两个内角相等; (3)、1是偶数或奇数; 2x (3)、不等式x20的解集是x x2或x1 (4)、自然数的平方是正数; 3、判断下列符合命题的真假: (1)、菱形的对角线互相垂直平分; 2mx2m x 7、已知p:方程x10有两个不等的负根;q:方程4x4210无实根,若 22x (2)、若x1,则x310; p q为真,p q为假,求m的取值范围。 (3)、A A B; 2a x 4、设有两个命题。命题p:不等式x110的解集是;命题q:函数 x f x a1在 2x2x a 8、设命题p:a y y x28,命题q:关于x的方程x0的一根大 定义域内是增函数,如果p q为假命题,p q为真命题,求a的取值范围。 于1,另一根小于1,命题p q为假,p q为真,求a的取值范围。

简单的逻辑联结词的答案(2)、否定:等腰三角形不存在两个相等的内角; 否命题:不等腰的三角形不存在两个相等的内角; (3)、否定:1不是偶数且不是奇数; 1、(1)、p q:是无理数或e不是无理数;p q:是无理数且e不是无理数; 否命题:若一个数不是1,则它不是偶数也不是奇数;p:不是无理数; 2x (2)、p q:方程x210有两个相等的实数根或两根的绝对值相等; (4)、否定:自然数的平方不是正数; 2x p q:方程x210有两个相等的实数根且两根的绝对值相等; 否命题:不是自然数的平方不是正数; 2x p:方程x210没有两个相等的实数根;(3)、p q:正ABC三内角相等,或有一个内角是直角; 2mx 7、p:方程x10有两个不等的负根 p q:正ABC三内角相等,且有一个内角是直角; p:正ABC三内角不全相等;2m 40 解得:m2,即p:m 2 m 2、(1)、是p q的形式:其中p:a b0;q:a b0 2x q x (2)、是p q的形式:其中p:x20;:10; 2x2x (3)、是p q的形式:其中p:不等式x20的解集是x x2;q:不等式x20的解集是x x1 2m x q:方程4x4210无实根 3、(1)、这个命题是“p q”的形式,p:菱形的对角线互相垂直;q:菱形的对角线互相平分,162 m2160;解得1m3,即q:1m3 因“p真q真”,则“p且q真”,所以该命题是真命题 p q p q p q p q为真; 至少有一个为真;为假;至少有一个为 假;、、 2x2x (2)、这个命题是“p q”的形式,p:x1时x310;q:x1时,x310, p、q两命题一真一假;p为真、q为假或p为假、q为真; 因“p假q假”,则“p或q假”,所以该命题是假命题 (3)、这个命题是“p”形式,p:A A B,因p真,则“p假”,所以该命题是真命题 2 2a x 4、对于p:x110的解集是;a140;3a1 x 对于q:f1在定义域内是增函数,a11;a0 x a p q为假命题,p q为真命题;p、q必是一真一假 m 2 m 2 ,或 ;解得:m31m2m3, 1,2或; m 1 或 m 3 1 m 3

高考数学百大经典例题不等式证明

典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---= 0)1lg(lg 1 2>--= x a , 所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴ .0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步 骤是:判断符号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( )2 a b +,展开后很复杂。若使用综合法,从重要不等式:2 2 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+, 即: 44222 ()22 a b a b ++≥ (1) 又:∵ 22 2a b ab +≥(当且仅当a b =时取等号) 两边同加2 2 2 2 2 ():2()()a b a b a b ++≥+

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

数学百大经典例题-曲线和方程

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹.

逻辑连接词

一、表示列举、增补关系的信号词句(Addition) also and and…as well and then as well as besides besides this/that both…and either even for example for instance furthermore in addition in addition to that in particular just as like likewise moreover namely not only…but one more thing similarly such as together to illustrate too what's more 二、表示顺序或序列关系的信号词句(Sequence & Time)after after this/that afterwards as as soon as at the moment before between earlier/later finally first first of all

following this/that for a start for one thing…for another in the first place in the middle in the second place initially just as last but not least meanwhile next on the (your)right/left previously second second (ly) since subsequently then third to begin with turn right/left until when whenever 三、表示解释或强调关系的信号词句(Definition & Emphasis)actually another way of saying consist of equally I mean in other words is means namely refer to that is that is to say especially in particular more importantly most importantly specially

高考数学 百大经典例题 充分条件与必要条件

充分条件与必要条件 例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p 是q的 [ ] A.充分但不必要条件B.必要但不充分条件 C.充要条件D.既不充分也不必要条件 分析利用韦达定理转换. 解∵x1,x2是方程x2+5x-6=0的两根, ∴x1,x2的值分别为1,-6, ∴x1+x2=1-6=-5. 因此选A. 说明:判断命题为假命题可以通过举反例. 例2 p是q的充要条件的是 [ ] A.p:3x+2>5,q:-2x-3>-5 B.p:a>2,b<2,q:a>b C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形 D.p:a≠0,q:关于x的方程ax=1有惟一解 分析逐个验证命题是否等价. 解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件; 对B.p q但q p,p是q的充分非必要条件; 对C.p q且q p,p是q的必要非充分条件; ??? D p q q p p q p q D 对.且,即,是的充要条件.选. 说明:当a=0时,ax=0有无数个解. 例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的 [ ] A.充分条件B.必要条件 C.充要条件D.既不充分也不必要条件 分析通过B、C作为桥梁联系A、D. 解∵A是B的充分条件,∴A B① ∵D是C成立的必要条件,∴C D② ? C B C B ∵是成立的充要条件,∴③ 由①③得A C④

由②④得A D . ∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性. 例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的 [ ] A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 分析 先解不等式再判定. 解 解不等式|x -2|<3得-1<x <5. ∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A . 说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B . 当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件; A B A B ?? 当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A (B ∪C),条件A B 是 [ ] A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图. ∴A (B ∪C). 但是,当B =N ,C =R ,A =Z 时, 显然A (B ∪C),但A B 不成立, 综上所述:“A B ”“A (B ∪C)”,而 “A (B ∪C)” “A B ”. 即“A B ”是“A (B ∪C)”的充分条件(不必要).选A . 说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|; (3) p : m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有

(完整版)逻辑连接词教案

§1.6逻辑联结词(一) 教学目标 理解逻辑联结词“或”、“且”、“非”的含义及理解复合命题的结构. 教学重点 逻辑联结词“或”、“且”、“非”的含义及复合命题的构成. 教学难点 对“或”、“且”、“非”的含义的理解. 教学手段 粉笔、黑板 授课类型 新授课 课时安排 1课时 教学方法 讲授法 教学过程 一.情境设置 歌德是18世纪德国的一位著名文艺大师,一天,他与一位文艺批评家“狭路相逢”。这位批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此尴尬局面,但见歌德笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰恰相反。”结果故作聪明的批评家,反倒自讨个没趣。 在这个故事里,批评家用他的语言和行动表明了这样几句语句: (1)我不给傻子让路(2)你歌德是傻子(3)我不给你让路。 歌德用语言和行动反击: (1)我给傻子让路(2)你批评家是傻子(3)我给你让路。 二、复习引入: 命题的概念:可以判断真假的语句叫命题 正确的命题叫真命题,错误的命题叫假命题 例如:①12>5 ②3是15的约数③0.5是整数 ①②是真命题,③是假命题 反例:④3是15的约数吗?⑤ x>8 都不是命题。 注:不涉及真假和无法判断真假的语句不是命题。 又如: “这是一棵大树”;“x<2”.都不能叫命题.由于“大树”没有界定,就不能判断“这是一棵大树”的真假.由于x是未知数,也不能判断“x<2”是否成立. 注:疑问句、祈使句、感叹句都不是命题。 注意: ①初中教材中命题的定义是:判断一件事情的句子叫做命题;这里的定义是:可以判断真假的语句叫做命题.说法不同,实质是一样的 ②判断命题的关键在于能不能判断其真假,即能不能判断其是否成立;不能

简单的逻辑联结词的练习题及答案

简单的逻辑联结词 1、分别写出由下列命题构成的“q p ∨”、“q p ∧”、“p ?”式的心命题。 (1)、π:p 是无理数,e q :不是无理数; (2)、:p 方程0122=++x x 有两个相等的实数根,:q 方程0122=++x x 两根的绝对值相等。 (3)、:p 正ABC ?三内角相等,:q 正ABC ?有一个内角是直角。 2、指出下列命题的构成形式及构成它的简单命题 (1)、向量0≥?b a ;(2)、分式01 22=--+x x x ; (3)、不等式022>+-x x 的解集是{} 12-<>x x x 或 3、判断下列符合命题的真假: (1)、菱形的对角线互相垂直平分; (2)、若12=x ,则0132=++x x ; (3)、()B A A ?/; 4、设有两个命题。命题:p 不等式()0112 ≤++-x a x 的解集是?;命题:q 函数()()x a x f 1+=在 定义域内是增函数,如果q p ∧为假命题,q p ∨为真命题,求a 的取值范围。 5、已知0>a ,设命题:p 函数x a y =在R 上单调递增;命题:q 不等式012>+-ax ax 对R x ∈?恒成立,若q p ∧为假命题,q p ∨为真命题,求a 的取值范围。 6、写出下列命题的否定和否命题 (1)、若0=abc ,则c b a ,,中至少有一个为零; (2)、等腰三角形有两个内角相等; (3)、1-是偶数或奇数; (4)、自然数的平方是正数; 7、已知:p 方程012=++mx x 有两个不等的负根;:q 方程()012442=+-+x m x 无实根,若 q p ∨为真,q p ∧为假,求m 的取值范围。 8、设命题? ?? ? ??++-= ∈82:2x x y y a p ,命题:q 关于x 的方程02=-+a x x 的一根大 于1,另一根小于1,命题q p ∧为假,q p ∨为真,求a 的取值范围。

数学百大经典例题

例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q 的 [ ] A.充分但不必要条件B.必要但不充分条件 C.充要条件D.既不充分也不必要条件 分析利用韦达定理转换. 解∵x1,x2是方程x2+5x-6=0的两根, ∴x1,x2的值分别为1,-6, ∴x1+x2=1-6=-5. 因此选A. 说明:判断命题为假命题可以通过举反例. 例2 p是q的充要条件的是 [ ] A.p:3x+2>5,q:-2x-3>-5 B.p:a>2,b<2,q:a>b C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形 D.p:a≠0,q:关于x的方程ax=1有惟一解 分析逐个验证命题是否等价. 解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件; 对B.p q但q p,p是q的充分非必要条件; 对C.p q且q p,p是q的必要非充分条件; D p q q p p q p q D ??? 对.且,即,是的充要条件.选. 说明:当a=0时,ax=0有无数个解. 例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的 [ ] A.充分条件B.必要条件 C.充要条件D.既不充分也不必要条件 分析通过B、C作为桥梁联系A、D. 解∵A是B的充分条件,∴A B① ∵D是C成立的必要条件,∴C D② ? ∵是成立的充要条件,∴③ C B C B 由①③得A C④ 由②④得A D.

∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性. 例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的 [ ] A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 分析 先解不等式再判定. 解 解不等式|x -2|<3得-1<x <5. ∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A . 说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B . 当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件; A B A B ?? 当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A (B ∪C),条件A B 是 [ ] A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图. ∴A (B ∪C). 但是,当B =N ,C =R ,A =Z 时, 显然A (B ∪C),但A B 不成立, 综上所述:“A B ”“A (B ∪C)”,而 “A (B ∪C)” “A B ”. 即“A B ”是“A (B ∪C)”的充分条件(不必要).选A . 说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|; (3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有 [ ] A .1组 B .2组 C .3组 D .4组

相关文档
最新文档