对线性规划整点问题的探究(蒋政)

对线性规划整点问题的探究(蒋政)
对线性规划整点问题的探究(蒋政)

对线性规划整点问题的探究

一、精确图解法求整数最优解 ( 课本P88习题16 )

某运输公司有7辆载重量为6t 的A 型卡车与4辆载重量为10t 的B 型卡车,有9名驾驶员。在建筑某段高速公路中,此公司承包了每天至少搬运360t 沥青的任务。已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车6次,每辆卡车每天往返的成本费A 型车160元,B 型车252元。每天派出A 型车和B 型车各多少辆公司所花的成本费最低?

解:设每天派出A 型车x 辆、B 型车y 辆,公司所花的成本为z 元,则

0x 70y 4x y 9

68x 106y 360x,y Z ≤≤??≤≤??+≤????+??≥?∈??即0x 70y 4

x y 94x 5y 30x,y Z

≤≤??≤≤?

?

+≤??+≥?∈?? z=160x+252y. 如图可行域是ABCD 围成的区域,

作直线160x+252y=0,图形中两直线160x+252y=0和4x+5y=30接近平行, 比较直线斜率k=160252-

>-4

5

, 平移直线160x+252y=0,由图可知在A (7,

2

5

)处取到最小值,但A 不是整数解。 在可行域内共有(3,4),(4,3),(4,4),(5,2),(5,3),(6,2),(6,3),(7,1),(7,2)整数解,经检验只有(5,2)是最优解,此时z=160×5+252×2=1304元。

这种方法适用于区域是封闭区域,且区域内的整数点可数,坐标网络画出来容易在图上识别哪些整点在可行域内。

二、利用近似解估算整数最优解 (课本P63例4)

要将两种不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需的三种规格成品,且所使用钢板张数最少。 解:设需截取第一种钢板x 张,第

二种钢板y 张,则

2x y 15x 2y 18x 3y 27x,y 0,x,y N

+≥??+≥?

?

+≥??≥∈? 目标函数z=x+y,

如图可行域是阴影部分,目标函数在A 点取到最优解。解方程组

x 3y 272x y 15+=??

+=?

得A (185,39

5) 但不是整数解,

规格类型 钢板类型 A 规格 B 规格 C 规格 第一种钢板 2 1 1 第二种钢板 1 2 3 2018

16

14

12

10

8

6

4

2

-15-10-5

51015

x+y=12

x+3y=27

x+2y=18

2x+y=15

A

B

C

D

E

x

O

y

x+y=9 4x+5y=3

160x+252y=0 A

B

C D

此时,z=

185+395=575

, 则在可行域内取到整数解的z=12.

即经过可行域内的整点,且与原点距离最近的直线是 x+y=12,则整点一定在B 、C 之间。 解方程组x y 12

2x y 15+=??

+=?

,得B (3,9);

解方程组x y 12x 3y 27

+=??

+=?,得C (92,152);则整点的横坐标3≤x ≤9

2,

所以满足条件的最优解是(3,9),(4,8).

本来近似解z=

575,而57

5=11.4也不约等于12,学生不理解为什么z=12。这不是近似解约等于多少的问题,而是由于575不是可行域内的整数解,可行域内的整数解至少要大于57

5

这种方法先由图解法观察出最优解在哪个点处取到,再由精确值估算出整数解,一定注意整数解的估算不

是四舍五入取整,而是在可行域内的整数解。

三、利用解不定方程的原理求整数最优解

例2.求下列区域内整数点的个数x 0y 03x 4y 96.≥??

≥??+≤?

解:如图区域是阴影部分的直角三角形,把它补为矩形。则矩形区域内的整点有33×25=825个。 而线段AB 上的整点(含端点)是不定方程3x+4y=96的非负整数解。

又x=32-4y

3

,则y 一定被3整除,满足条件的y 有0,3,6…,24共9个,即线段AB 上的整点有9个。 则阴影部分区域内的整点有8259

92

-+=417个。

四、利用穷举法求整数最优解 课本P65习题7.4第4题

某人有楼房一幢,室内面积共180m 2,拟分隔成两类房间作为旅游客房,大房间每间面积为18m 2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元。如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益? 解:设隔出大房间x 间,小房间y

18x 15y 1801000x 600y 8000x,

y 0,x,y Z +≤??

+≤??≥∈?

z=200x+150y

如图可行域是阴影部分,

作直线L :200x+150y=0,即4x+3y=0, 将直线L 平移到A 点时与原点距离最大。 解方程组

6x 5y 605x 3y 40+=??

+=?

得A (2060

,77),但不是整数解。 此时z=200×

206015077+?=1300018577

≈。 又z=200x+150y=50(4x+3y ),则z 取到的最优解一定被50整除,则z 的最大值是1850。

即4x+3y=37,又4x+3y=37的所有整数解是(1,11),(4,7)(7,3), 而(1,11)不满足6x+5y ≤60,舍去; (4,7)不满足5x+3y ≤40,舍去; (7,3)不满足5x+3y ≤40,舍去。

所以z 的最大值不可能是1850。则z 的最大值可能是1800、1750、1700…,直到在可行域内找到满足条件的最优解。

若z=1800,即4x+3y=36,又4x+3y=36的所有整数解是(0,12),(3,8)(6,4),(9,0),经检验只有(0,12),(3,8)在可行域内,所以当x=0,y=12或x=3,y=8时,z 取到最大值1800。

这种方法就是穷举法,首先对z 的可能取到的整数解进行尝试,对所有可能的整数解验证它是否在可行域内,才能准确不漏的找到所有的最优解。

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

线性规划题型三线性规划中的求参数取值或取值范围问题

线性规划题型三 线性规划中的求参数取值或取值范围问题 一.已知含参数约束条件,求约束条件中参数的取值范围。 例1、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 例2.已知:不等式9)2(2<+-m y x 表示的平面区域包含点(0,0)和点(-1,1)则m 的取值范围是() A(-3,6)B.(0,6)C(0,3)D(-3,3) 二.已知含参约束条件及目标函数的最优解,求约束条件中的参数取值问题 已知z=3x+y ,x ,y 满足?? ? ??≥≤+≥m x y x x y 32,,且z 的最大值 是最小值的3倍,则m 的值是 A. 61B.51C.41D.3 1 2.设实数y x ,满足不等式组?? ? ??≤++≤≥020k y x x y x ,若y x z 3+= 的最大值为12,则实数k 的值为. 二.目标函数中设计参数,已知线性约束条件 求目标函数中的参数的取值或取值范围问题例4、已知x 、y 满足以下约束条件5 53x y x y x +≥?? -+≤??≤? 使z=x+ay(a>0)取得最小值的最优解有无数个则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 变式、已知x 、y 满足以下约束条件553x y x y x +≥?? -+≥??≤? 使z=x+ay(a>0)取得最小值的最优解有无数个则a 的值( ) A 、-3 B 、3 C 、-1 D 、1

若使z=x+ay(a<0)取得最小值的最优解有无数个,则a 的值( ) 若使z=x+ay 取得最小值的最优解有无数个,则a 的值( ) 例 2.已知:x 、y 满足约束条件?? ? ??≤-≤+-≥+-0 1033032y y x y x ,目标 处取得最大值,求实数a 的取值范围. 直线ax+by+c=0(a>0) b>0直线的斜率小于零,直线由左至右呈上升趋势 b<0直线的斜率大于零,直线由左至右呈下降趋势 若直线ax+by+c=0(a>0)则在ax+by+c=0(a>0)右侧的点P(x 0,y 0) 使ax 0+by 0+c>0,左侧的点P(x 0,y 0),使ax 0+by 0+c<0 若直线ax+by+c=0(a<0)则在ax+by+c=0(a>0)右侧的点P(x 0,y 0) 使ax 0+by 0+c<0,左侧的点P(x 0,y 0),使ax 0+by 0+c>0

6.2(问题)线性规划中的参数问题(原卷版)

2018届学科网高三数学成功在我 专题六不等式 问题二:线性规划中的参数问题 一、考情分析 线性规划是高考必考问题,常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题.而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值. 二、经验分享 (1)求平面区域的面积: ①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域; ②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可. (2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解. (3)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.当目标函数是非线性的函数时,常利用目标函数的几何意义来解题. (4)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件,含参数的平面区域问题,要结合直线的各种情况进行分析,不能凭直觉解答,目标函数含参的线性规划问题,要根据z的几何意义确定最优解,切忌搞错符号. 三、知识拓展 常见代数式的几何意义: ①x2+y2表示点(x,y)与原点(0,0)的距离,x-a2+y-b2表示点(x,y)与点(a,b)的距离; ②y x表示点(x,y)与原点(0,0)连线的斜率, y-b x-a 表示点(x,y)与点(a,b)连线的斜率. 四、题型分析 (一) 目标函数中含参数 若目标函数中含有参数,则一般会知道最值,此时要结合可行域,确定目标函数取得最值时所经过的可行域内的点(即最优解),将点的坐标代入目标函数求得参数的值. 1.目标函数中x的系数为参数

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

线性规划题型三线性规划中的求参数取值或取值范围问题

线性规划题型三线性规划中的求参数取值或取 值范围问题 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

线性规划题型三 线性规划中的求参数取值或取值范围问题 一.已知含参数约束条件,求约束条件中参数的取值范围。 例1、已知|2x -y +m|<3表示的平面区域包含 点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 例2.已知:不等式9)2(2<+-m y x 表示的平面区域包含点(0,0)和点(-1,1)则m 的取值范围是() A(-3,6)B.(0,6)C(0,3)D(-3,3) 二.已知含参约束条件及目标函数的最优解,求约束条件中的参数取值问题 2.12,则实数k 的值为. 二.值或范围.

例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? 使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 变式、已知x 、y 满足以下约束条件5503x y x y x +≥??-+≥??≤?使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 若使z=x+ay(a<0)若使z=x+ay 取得最小值的最优解有无数个,则例2.已知:x 、y 满足约束条件?? ? ??≤-≤+-≥+-0 1033032y y x y x (-3,0)处取得最大值,求实数a 的取值范围.直线ax+by+c=0(a>0) b>0直线的斜率小于零,直线由左至右呈上升趋势 b<0直线的斜率大于零,直线由左至右呈下降趋势 若直线ax+by+c=0(a>0)则在ax+by+c=0(a>0)使ax 0+by 0+c>0,左侧的点P(x 0,y 0),使ax 0+by 0+c<0 若直线ax+by+c=0(a<0)则在ax+by+c=0(a>0)使ax 0+by 0+c<0,左侧的点P(x 0,y 0),使ax 0+by 0+c>0

高二数学简单线性规划知识点

高二数学简单线性规划知识点 导读:我根据大家的需要整理了一份关于《高二数学简单线性规划知识点》的内容,具体内容:数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。归纳1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-... 数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。 归纳 1.在同一坐标系上作出下列直线: 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域 上的最优解2y 问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值? 2.作出下列不等式组的所表示的平面区域3二.提出问题 把上面两个问题综合起来: 设z=2x+y,求满足 时,求z的最大值和最小值.4y 直线L越往右平移,t随之增大. 以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.

可以通过比较可行域边界顶点的目标函数值大小得到。 思考:还可以运用怎样的方法得到目标函数的最大、最小值?5线性规划问题:设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。 目标函数 (线性目标函数)线性约束条件 象这样关于x,y一次不等式组的约束条件称为线性约束条件 Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又称为线性目标函数6线性规划 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解:满足线性约束条件的解(x,y)叫可行解; 可行域:由所有可行解组成的集合叫做可行域; 最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)7 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的(x,y)可行解可行域所有的最优解 目标函数所表示的几何意义——在y轴上的截距或其相反数。8线性规划

对线性规划整点问题的探究

对线性规划整点问题的探究 厦门双十中学 郭俊芳 在人教版第二册(上)(2004年6月第一版,2006年4月第3次印刷)的高中数学教材第7.4节——简单线性规划。课本第61~62页给出两个线性规划的实际问题。分别代表两个类型:例3属于第一类:给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大;例4属于第二类:给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源最小。且例4还要求最优解是整数解。笔者在教学中发现,这个问题是学生的难点,学生仅靠阅读课本解答是不能完全理解怎样得到这个最优解的。笔者经过多次的教学实践和研究,试图找到解决这类问题的方法,以下是笔者认为行之有效的方法。 一、精确图解法求整数最优解 课本P88习题16 某运输公司有7辆载重量为6t 的A 型卡车与4辆载重量为10t 的B 型卡车,有9名驾驶员。在建筑某段高速公路中,此公司承包了每天至少搬运360t 沥青的任务。已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车6次,每辆卡车每天往返的成本费A 型车160元,B 型车252元。每天派出A 型车和B 型车各多少辆公司所花的成本费最低? 解:设每天派出A 型车x 辆、B 型车y 辆,公司所花的成本为z 元,则 0x 70y 4x y 9 68x 106y 360x,y Z ≤≤??≤≤?? +≤????+??≥?∈?? 即0x 70y 4x y 94x 5y 30x,y Z ≤≤??≤≤?? +≤??+≥?∈?? z=160x+252y. 如图可行域是ABCD 围成的区域, 作直线160x+252y=0,图形中两直线160x+252y=0和4x+5y=30接近平行, 比较直线斜率k=160252- >-4 5 , 平移直线160x+252y=0,由图可知在A (7, 2 5 )处取到最小值,但A 不是整数解。 在可行域内共有(3,4),(4,3),(4,4),(5,2),(5,3),(6,2),(6,3),(7,1),(7,2)整数解,经检验只有(5,2)是最优解,此时z=160×5+252×2=1304元。 这种方法适用于区域是封闭区域,且区域内的整数点可数,坐标网络画出来容易在图上识别哪些整点在可行域内。 二、利用近似解估算整数最优解 课本P63例4 要将两种不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: x+y=9 4x+5y=30 160x+252y=0 A B C D

简单的线性规划练习-附答案详解

简单的线性规划练习 附答案详解 一、选择题 1.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 2.若2m +2n <4,则点(m ,n )必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.不等式组???? ? x ≥0x +3y ≥4 3x +y ≤4 所表示的平面区域的面积等于( ) A.32 B.23 C.43 D.3 4 4.不等式组???? ? x +y ≥22x -y ≤4 x -y ≥0所围成的平面区域的面积为( )A .3 2 B .6 2 C .6 D .3 5.设变量x ,y 满足约束条件???? ? y ≤x x +y ≥2 y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2 B .3 C .5 D .7 6.已知A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值及最小值分别是( ) A .-1,-3 B .1,-3 C .3,-1 D .3,1 7.在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )A .95 B .91

C .88 D .75 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元 B .20万元 C .25万元 D .27万元 9.已知实数x ,y 满足???? ? x -y +6≥0x +y ≥0 x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( ) A .a ≥1 B .a ≤-1 C .-1≤a ≤1 D .a ≥1或a ≤-1 10.已知变量x ,y 满足约束条件???? ? x +4y -13≥02y -x +1≥0 x +y -4≤0,且有无穷多个点(x ,y )使目标函数 z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 11.当点M (x ,y )在如图所示的三角形ABC 区域内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2),则实数k 的取值范围是( ) A .(-∞,-1]∪[1,+∞) B .[-1,1] C .(-∞,-1)∪(1,+∞) D .(-1,1) 12.已知x 、y 满足不等式组???? ? y ≥x x +y ≤2 x ≥a ,且z =2x +y 的最大值是最小值的3倍,则a =( )

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

破解线性规划中的整点问题

破解线性规划中的整点问题 河南省三门峡市卢氏一高(472200)赵建文 Email:zhaojw1968@https://www.360docs.net/doc/559838517.html, 线性规划中的整点问题是高中数学线性规划中的重要一类问题,是高中数学的一个难点,本文将整数线性规划问题解法作以简单介绍供同学们学习时参考. 例 某商店计划同时销售某品牌电热水器和太阳能热水器,由于市场需求旺盛,这两种产品供不应求,因该商店根据具体情况(如成本、员工工资)确定产品的月采购量,具体数据如下,问这两种产品各采购多少时,才能使总利润最大?最大利润是多少? 分析:本题是整数规划问题,设采购电热水器x 台、太阳能热水器y 台,列出约束条件和目标函数,用图解法解之. 解析:设月采购电热水器x 台、太阳能热水器y 台,月总利润为z 元,则 1000300030000100050011000 ,x y x y x y N +≤??+≤??∈? ,即330222 ,x y x y x y N +≤??+≤??∈?,目标函数为 z =800600x y + 作出可行域如图所示, 作直线l :86x y +=0, 平移直线z =800600x y +知过M 3638( ,)55时,max z =10320,但x =365,y =385不是整数,所以可行域内点M 3638( ,)55不是整点最优解. 求整点最优解 解法一 网格平移法 首先在可行域内打网格,其次描出M 3638(,)55 附近的所有整点,接着平移直线l :86x y +=0,会发现当移至(8,6)时,直线在y 轴上截距最大,即max z =10000元. 解法二 特值检验法 由图可知目标函数取得最大值的整点应分布在可行域右上侧靠近边界的区域,一次取得满足条件的整点,(0,10),(1,9),(2,9),(3,9)(4,8),(5,8),(6,8),(7,7),(8,6),(8,5),(9,4),(10,2),(10,1),(11,0).将这些点分别代入z =800600x y +,求出各点对应的值,经验证可知,在整点(8,6)处max z =10000元. 解法三 调整最优法 单位产品所需资金 月资金供应量(百元) 电热水器 太阳能热水器 成本 10 30 300 工资 10 5 110 单位利润 8 6

简单的线性规划问题附答案

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b , 当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,

可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

高中数学含参数的线性规划题目及答案

线性含参经典小题 1.已知0>a ,y x ,满足约束条件,()?? ? ??-≥≤+≥.3,3,1x a y y x x 若y x z +=2的最小值为1,则=a () A.41 B.2 1 C.1 D.2 2.已知变量y x ,满足约束条件,?? ? ??≤-≤+-≥+-.01,033,032y y x y x 若目标函数ax y z -=仅在点()03, -处取得最大值,则实数a 的取值范围为( ) A. (3,5) B .(∞+,2 1) C.(-1,2) D.(13 1, ) 3.若y x ,满足?? ? ??≤--≥-≥+.22,1, 1y x y x y x 且y ax z 2+=仅在点(1,0)处取得最小值,则a 的取值范围是( ) A.(-1,2) B.(-2,4) C.(-4,0) D .(-4,2) 4.若直线x y 2=上存在()y x ,满足约束条件?? ? ??≥≤--≤-+.,032, 03m x y x y x 则实数m 的最大值为( ) A.-1 B .1 C.2 3 D.2 5.若不等式组? ??? ??? ≤+≥≤+≥-a y x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.34≤a B.10≤

6.若实数y x ,满足不等式组,?? ? ??≥-+≤-≤-.02,01,02a y x y x 目标函数y x t 2-=的最大值为2,则实数a的 值是( ) A.-2 B.0 C.1 D.2 7.设1>m ,在约束条件?? ? ??≤+≤≥1y x mx y x y 下,目标函数my x z +=的最大值小于2,则m 的取值范 围为() A.()211+, B.()+∞+,21 C.(1,3) D.()∞+, 3 8.已知,x y 满足约束条件10,230,x y x y --≤??--≥? 当目标函数(0,0)z ax by a b =+>>在该约束条件下 取到最小值22a b +的最小值为( ) A、5 B 、4 D、2 9.y x ,满足约束条件?? ? ??≥+-≤--≤-+0220220 2y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值 为 A,12 1 -或 B.2 12或 C.2或1 D.12-或 10、当实数x ,y 满足?? ? ??≥≤--≤-+.1,01,042x y x y x 时,41≤+≤y ax 恒成立,则实数a 的取值范围是_____ ___. 11.已知a >0,x,y 满足约束条件()1 33x x y y a x ?≥?+≤??≥-? 若z=2x+y 的最小值为1,则a=

高考中含参数线性规划问题专题(学生版)

高考中含参数线性规划问题专题(学生版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考中线性规划专题 纵观近几年高考试题,线性规划问题是每年的必考内容。题型多以选择题、填空题出现,它是直线方程在解决实际问题中的运用,特别是含参数线性规划问题,与数学中的其它知识结合较多,题目灵活多变,要引起高度重视. 近三年全国卷是这样考 1.(2015·新课标全国卷Ⅰ理科·T15)若x,y 满足约束条件?? ? ??≤-+≤-≥-0400 1y x y x x 则y x 的最 大值为 . 2.(2015·新课标全国卷Ⅰ文科·T15)若x,y 满足约束条件20210220x y x y x y +-≤?? -+≤??-+≥?则 z=3x+y 的最大值为 . 3.(2015·新课标全国卷Ⅱ理科·T14)若x,y 满足约束条件则z=x+y 的最大值为 . 4.(2015·新课标全国卷Ⅱ文科·T4)若x,y 满足约束条件50210210x y x y x y +-≤?? --≥??-+≤?则z=2x+y 的最大值为 . 5. (2014·新课标全国卷Ⅱ高考文科数学·T9) 设x,y 满足约束条件1010330x y x y x y +-≥?? --≤??-+≥? 则 z=x+2y 的最大值为( ) A.8 B.7 C.2 D.1

6. (2014·新课标全国卷Ⅱ高考理科数学·T9)设x,y 满足约束条件70310350x y x y x y +-≤?? -+≤??--≥? 则 z=2x-y 的最大值为 ( ) A.10 B.8 C.3 D.2 7.(2013·新课标全国Ⅱ高考理科·T9)已知a>0,x,y 满足约束条件 ()133x x y y a x ?≥? +≤??≥-? 若z=2x+y 的最小值为1,则a= ( ) A.14 B. 1 2 C.1 D.2 8.(2013·新课标全国Ⅱ高考文科·T3)设,x y 满足约束条件 10,10,3,x y x y x -+≥?? +-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 9.(2013·新课标Ⅰ高考文科·T14)设x ,y 满足约束条件 ? ? ?≤-≤-≤≤013 1y x x ,则y x z -=2的最大值为______. 10. (2013·大纲版全国卷高考文科·T15)若x y 、满足约束条件 0,34,34,x x y x y ≥?? +≥??+≤? 则z x y =-+的最小值为 . 11.(2013·大纲版全国卷高考理科·T15)记不等式组0,34,34,x x y x y ≥?? +≥??+≤? 所表 示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .

《简单的线性规划》知识点及题型归总

二元一次不等式(组)与简单的线性规划问题 一、考点、热点回顾 1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线. (2)对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域. 2.线性规划相关概念 名称意义 约束条件由变量x,y组成的一次不等式 线性约束条件由x,y的一次不等式(或方程)组成的不等式组 目标函数欲求最大值或最小值的函数 线性目标函数关于x,y的一次解析式 可行解满足线性约束条件的解 可行域所有可行解组成的集合 最优解使目标函数取得最大值或最小值的可行解 线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题 3.重要结论 画二元一次不等式表示的平面区域的直线定界,特殊点定域: (1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线. (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 知识拓展 1.利用“同号上,异号下”判断二元一次不等式表示的平面区域 对于Ax+By+C>0或Ax+By+C<0,则有 (1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方; (2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方. 2.最优解和可行解的关系 最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 二、典型例题 例1、(1)分别画出不等式x+2y-4>0和y≥x+3所表示的平面区域;

高考线性规划必考题型(非常全)

线性规划专题 一、命题规律讲解 1、 求线性(非线性)目标函数最值题 2、 求可行域的面积题 3、 求目标函数中参数取值范围题 4、 求约束条件中参数取值范围题 5、 利用线性规划解答应用题 一、线性约束条件下线性函数的最值问题 线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。 例1 已知43 35251x y x y x -≤-?? +≤??≥? ,2z x y =+,求z 的最大值和最小值 例2已知,x y 满足124126x y x y x y +=?? +≥??-≥-? ,求z=5x y -的最大值和最小值 二、非线性约束条件下线性函数的最值问题 高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标 (),x y 即最优解。 例3 已知,x y 满足,2 2 4x y +=,求32x y +的最大值和最小值 例4 求函数4 y x x =+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题 这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例5 已知实数,x y 满足不等式组10101x y x y y +-≤??-+≥??≥-? ,求22 448x y x y +--+的最小值。 例6 实数,x y 满足不等式组0 0220 y x y x y ≥?? -≥??--≥? ,求11y x -+的最小值 四、非线性约束条件下非线性函数的最值问题 在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例7 已知,x y 满足y 2 y x +的最大值和最小值

二元一次方程简单的线性规划要点

§3.3.1二元一次不等式(组)与 平面区域(1) 1.了解二元一次不等式的几何意义和什么是边界,会用二元一次不等式组表示平面区域; 2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力. 一、课前准备 复习1:一元二次不等式的定义_______________二元一次不等式定义________________________二元一次不等式组的定义_____________________ 复习2:解下列不等式: (1)210x -+>; (2)22320 41590 x x x x ?+-≥??-+>?? . 二、新课导学 ※ 学习探究 探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,30 40x x +>??-

并思考: 当点A 与点P 有相同的横坐标时,它们的纵坐标有什么关系?_______________ 根据此说说,直线x-y=6左上方的坐标与不等式6x y -<有什么关系?______________ 直线x-y=6右下方点的坐标呢? 在平面直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线x-y=6的_____;反过来,直线x-y=6左上方的点的坐标都满足不等式6x y -<. 因此,在平面直角坐标系中,不等式6x y -<表示直线x-y=6左上 方的平面区域;如图: 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图: 直线叫做这两个区域的边界 结论: 1. 二元一次不等式0Ax By c ++>在平面直角坐标系中表示直线0Ax By c ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2. 不等式中仅>或<不包括 ;但含“≤”“≥”包括 ; 同侧同号,异侧异号. ※ 典型例题 例1画出不等式44x y +<表示的平面区域. 分析:先画 ___________(用 线表示),再取 _______判断区域,即可画出. 归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0C ≠时,常把原点作为此特殊点. 变式:画出不等式240x y -+-≤表示的平面区域. 例2用平面区域表示不等式组312 2y x x y <-+??

高中数学含参数的线性规划题目及答案

高中数学含参数的线性规 划题目及答案 The Standardization Office was revised on the afternoon of December 13, 2020

线性含参经典小题 1.已知0>a ,y x ,满足约束条件,()?? ? ??-≥≤+≥.3,3,1x a y y x x 若y x z +=2的最小值为1,则=a () A.41 B.2 1 2.已知变量y x ,满足约束条件,?? ? ??≤-≤+-≥+-.01,033,032y y x y x 若目标函数ax y z -=仅在点()03, -处取得最大值,则实数a 的取值范围为( ) A. (3,5) B.(∞+, 21) C.(-1,2) D.(13 1,) 3.若y x ,满足?? ? ??≤--≥-≥+.22,1, 1y x y x y x 且y ax z 2+=仅在点(1,0)处取得最小值,则a 的取值范围是 ( ) A.(-1,2) B.(-2,4) C.(-4,0) D.(-4,2) 4.若直线x y 2=上存在()y x ,满足约束条件?? ? ??≥≤--≤-+.,032,03m x y x y x 则实数m 的最大值为( ) C.2 3 5.若不等式组? ??? ??? ≤+≥≤+≥-a y x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.34≤a B.10≤

相关文档
最新文档