溶解氧和造成溶氧不足地原因

溶解氧和造成溶氧不足地原因
溶解氧和造成溶氧不足地原因

溶解氧和造成溶氧不足的原因

内容摘要:水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。

一、养鱼先养水,好水养好鱼

俗话说:“养鱼先养水,好水养好鱼”。水是鱼、虾、蟹、鳖、龟、蛙等水产养殖动物的生活环境,水质的好坏直接影响到水产养殖生物的生长和发育,从而影响到产量和经济效益。每一种水产动物都需要有适合其生存的水质条件,水质若能满足要求,养殖动物就能顺利生长发育。如果水质的一些基本指标超出生物的适应和忍耐范围,轻者养殖动物生长速度缓慢,成活率降低,饲料系数提高,经济效益下降。重者可能造成养殖动物的大批死亡,引起严重的经济损失。

恶化的水质不仅有害于动物机体的健康,甚至还危及它们的生命。众所周知水是一种优良的溶剂和悬浮剂,它可溶解各种气体,如氧气、二氧化碳、氨和硫化氢等,也可溶解各种盐类,如亚硝酸盐、磷酸盐、碳酸盐、硫酸盐等,还可悬浮尘埃、有机碎屑、细菌、藻类、小型的原生动物以及各种虫卵等。水体中溶解和悬浮的种种有形或无形的物质和成分,其中一部分对水产动物的生长、发育是必需的,有一些是无益的,而另一部分则是有害的,或者在含量较多时有害,同样,它们对水体中的其他生物,也有有利和不利的方面,特别是某些成分对养殖动物生长和健康不利,而对一些病原体(如病原菌、寄生原生动物)的繁殖、滋生以及产生毒力等是必需的,就容易导致疾病的发生。

水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。

科学的检测的可得出正确的数据。这些数据可以告诉养殖者水质的状况,从而判断水质是否满足水产动物生长的要求,以及是否会引起动物发病。水质检测的另一个作用是为改善水质、鱼病用药提供依据,减少因施肥、投饵、用药等日常管理造成的鱼类死亡损失。因此,水质检测是保证水质健康的必要,也是水产健康养殖的基础。

二、溶解氧——水产动物生命要素

同人一样,水产动物也必须在有氧的条件下生存,不同的是人呼吸空气中的氧气,而水产动物呼吸的是水体中的溶解氧。水体缺氧可使其浮头,严重时泛塘致死。

1. 养殖(育苗)水体溶氧要求

一般来说,养殖(育苗)水体的溶解氧应保持在5~8mg/l(ppm),至少应保持3mg/l 以上。各种鱼、虾类的需要溶解氧条件如表1。

表1 各种鱼、虾类所需溶氧范围(mg/l)

轻度缺氧虽不致死,但鱼虾生长会变慢,饲料系数提高,生产成本上升;水中溶氧过高会引起鱼类气泡病。

2. 造成溶氧不足的原因

(1)高温。氧气在水中的溶解度随水温升高而降低,如在一个大气压下,水温由10℃上升到35℃时,空气中的氧在纯水中的溶解度可以由11.27mg/l降至6.93mg/l,高温会引起水体中溶氧降低。此外水产动物和其他生物在高温时耗氧增多也是一个重要原因。

(2)养殖密度过大。水体中众多生物的呼吸作用增加,生物耗氧量也增大。

(3)有机物的分解作用。有机物越多,细菌就越活跃,这种过程通常要消耗大量的氧才能进行,因此容易造成缺氧。

(4)无机物的氧化作用。水中存在如硫化氢、亚硝酸盐等无机物时,会发生氧化作用消耗大量的溶解氧。

3. 引起鱼、虾浮头的原因

(1)池塘或水库上、下水层温差产生急剧对流。在夏、秋高温季节,精养塘水质肥浓,白天上、下水层氧差很大,至午后,上层水溶氧饱和,下层水严重缺氧,由于水的热阻力,加之风平浪静,使上、下水层不易对流。傍晚以后,如果突然下雷阵雨或刮大风,使表层水温急剧下降,造成上、下水层急剧对流,上层溶氧量较高的水迅速对流至下层,很快被下层水中的有机物耗净,偿还“氧债”,从而使整个池塘的溶氧量迅速下降,造成缺氧浮头。

(2)水质过肥或败坏而引起。夏、秋高温季节,池塘或水库温度较高,加以大量投饵,使池水很肥。如果久晴不雨,又长期不加注新水,易使水质过肥(水色转黑)或败坏

(因浮游植物繁殖过度而导致大批死亡,水色转浑发臭),引起鱼类浮头。

(3)光合作用不强而引起。由于阴雨连绵或大雾,致使光照条件差,浮游植物的光合作用减弱,水中溶氧补给量少,而池水中各种生物呼吸和有机物分解又不断地消耗氧气,以致水中溶氧供不应求,引起鱼类缺氧浮头。

(4)浮游动物大量繁殖引起。由于水蚤、轮虫等浮游动物过度繁殖,大量滤食浮游植物,使池水转清,水中溶氧主要靠空气溶入来补充,远远不能满足耗氧需求,引起鱼类浮头。

4. 鱼虾缺氧时的反应

轻度缺氧时,鱼虾出现烦躁,水面明显看到鱼虾游动的波浪,个别鱼虾头部浮于水面,鱼虾呼吸加快;严重缺氧时,大量鱼虾会浮头,甚至死亡。如武昌鱼和白鲢在0.6mg/l溶氧时开始大量死亡。长期处于1.0-3.0mg/l溶解氧时,鱼虾摄食基本停止,生长速度极慢,抵抗力下降。这就是为什么经常浮头的高产池塘,饲料系数高、经常发病的原因。

5. 溶氧与其它有毒物质的关系

保持水中足够的溶氧,可抑制生成有毒物质的化学反应,转化和降低有毒物质(如氨、亚硝酸盐和硫化氢)的含量,例如:水中有机物腐烂后产生氨和硫化氢,在有充足氧存在的条件下,经微生物的耗氧分解作用,氨会转化成亚硝酸盐再转化成硝酸盐,硫化氢则被转化成硫酸盐,变成无毒的最终产物,并被浮游生物光合作用所吸收。因此水中保持足够的溶解氧对水产养殖非常重要。如果缺氧,这些有毒物极易迅速达到危害的程度。据测定,当水中溶氧由1.54mg/l提高到2.2mg/l时,NH3 的含量由0.4mg/l降到0.2mg/l,亚硝酸盐可由0.04mg/l降到0.01mg/l。

6. 如何增氧?

最好的办法是经常注入新水,晴天中午或后半夜经常使用增氧机,保持水质的“肥”、“活”、“嫩”、“爽”。为了保持水质的清新,经常泼洒微生物水质改良剂(如底改白+黑、特效底爽、粒粒活水菌//农村致富经网https://www.360docs.net/doc/5711972109.html, //、三效救星等)也是一个行之有效的增氧方法。缺氧浮头时泼洒活性氧水质改良剂(三效救星)是水体缺氧的应急措施,但化学增氧剂从根本上解决不了水体缺氧的问题。无论何种增氧剂固体含量不能超过13%,液体含量也不能超过18%。如1亩池塘(平均水深1米),泼洒1公斤增氧剂,其溶氧也不过增加0.25mg/l,而鱼开始浮头死亡到正常的溶氧之间的差距达2mg/l以上。因此,通过适当降低放养密度、平时多注水或开增氧机或使用微生物制剂(如粒粒活水菌、光合细菌等)等措施是水产养殖浮头或泛池的最根本的解决方法。

三、pH值——水质状况的晴雨表

pH值是水质的重要指标,这是因为pH值决定着水体中的很多化学和生物过程,如NH3 和H2S等有毒物质,由于pH值的不同,其毒性也不同。

1. 水质pH值的控制标准

海水养殖pH值一般应控制在7.5-8.5之间。水体中生物的光合作用、呼吸作用和各种化学变化均能引起pH值的变化,pH值的变化对水产养殖动物和水质均有很大影响。

2. pH值对水产养殖动物的直接影响

pH值过高或过低对水产养殖动物都有直接危害,甚至致死。酸性水中(pH值低于6.5)可使鱼虾血液的pH值下降,削弱其载氧能力。造成生理缺氧症,尽管水中不缺氧但仍可

使鱼虾浮头。由于耗氧降低,代谢急剧下降,尽管食物丰富,但鱼虾仍处于饥饿状态。pH 值过高的水则腐蚀鳃组织,引起鱼虾大批死亡。如鳗鱼在pH值低于5时,鳃变红褐色黏液分泌增多,呼吸衰竭而死亡。pH值在低于4或高于10.5时,鱼虾不能存活。

3. pH值对水质的影响

过高或过低的pH值均会使水中微生物活动受到抑制,有机物不易分解。pH值高于8,大量的铵(NH4)会转化成有毒的氨(NH3)。pH值低于6时,水中90%以上的硫化物以H2S 的形式存在,增大硫化物的毒性。总之,过高或过低的pH值均会增大水中有毒物质的毒性。

4. 如何调节水体pH值

水质偏酸:当pH值小于7时,可全池泼洒20ppm生石灰提高pH值0.5左右。

水质偏碱:当pH值在7-8.5之间时,适宜于鱼虾生存,当pH值大于9.0时,可采取措施降低pH值,降低pH值的最好方法是换水或注入新水。也可全池泼洒降碱灵来降低pH值。但每亩每次泼洒不得超过1公斤,宜采用少量多次的办法。

四、硫化氢(H

2

S)——水体中剧毒气体

1.硫化氢的来源

硫化氢(H

2

S)是一种可溶性的毒性气体,带有臭鸡蛋气味。有两个主要原因导致产生硫化氢:一是养殖池底中的硫酸盐还原菌在厌氧条件下分解硫酸盐;二是异养菌分解残饵或粪便中的有机硫化物。硫化氢与泥土中的金属盐结合形成金属硫化物,致使池底变黑,这是硫化氢存在的重要标志。

2.水体中的硫化氢的控制标准

水产养殖(特别是育苗)生产中,水体中硫化氢的浓度应该严格的控制在0.1ppm以下。

3.硫化氢的毒性

硫化氢对于水产动物是种剧毒物质。大约0.5ppm的硫化氢可使健康鱼急性中毒死亡。当水中的硫化氢浓度升高时,鱼虾的生长速度、体力和抗病能力都会减弱,严重时会损坏鱼虾的中枢神经。硫化氢与鱼虾血液中的铁离子结合使血红蛋白减少,降低血液载氧能力,导致鱼虾呼吸困难,造成鱼虾中毒死亡。

硫化物在水中能常以HS—和H

2S两种形式存在,S的量极微,HS—和H

2

S的比例受

pH值调节,转化形式如下:

H 2S→H++HS- H++HS-→ H

2

S

H 2S有毒,HS- 无毒。等量的H

2

S,pH值越低,毒性越大。按H

2

S的离解常数,当pH

值为9时,约有99%的硫化氢以HS- 形式存在,毒性小;当pH值为7时,HS- 和H

2

S各

占一半;当pH值为5时,则有99%的硫化氢以H

2

S的形式存在,毒性很大。由于海水的pH值较高,所以海水养殖受到硫化氢危害的机会比淡水养殖小。

4.维持池水硫化氢不超标的方法

(1)充分增氧,高溶解氧可氧化消耗H

2

S,并可抑制硫酸盐还原菌的生长与繁衍。通过泼洒高效增氧剂如三效救星,加开增氧机可达到增氧的目的。

(2)控制pH值:pH越低,发生H

2

S中毒的机会越大。一般应控制pH值在7.8-8.5之间,如果过低,可用生石灰提高pH值,但应注意水中氨氮的浓度,以防引起氨氮中毒。

(3)经常换水:使池水有机污染物浓度降低,同时向新水中添加Fe、Mn等金属离子能沉淀水中的H

2

S。

(4)干塘后彻底清除池底污泥,如不能清除,应将底泥翻耕曝晒,以促使硫化氢及其它硫化物氧化。

(5)合理投饵,尽量减少池内残饵量,定期施用浓缩光合细菌及粒粒活水菌和清水素等。

五、氨(NH

3

)——水产动物的隐形杀手

1.氨的来源

氨由水产动物排泄物(粪便)和底层有机物经氨化作用而产生。氨对水产动物是种剧毒物质,养殖池中由于有动物排泄物,必定存在氨,养殖密度越大,氨的浓度越高。

2.水中氨的控制标准

氨对各种水产养殖动物由于个体和品种差异而安全浓度有所不同,为保证鱼虾的安全,水产养殖(育苗)生产中,应将氨的浓度控制在0.02ppm以下。

3.氨的毒性

氨对水产动物的毒害依其浓度不同而不同。

(1)在0.01-0.02ppm的低浓度下,水产动物可能慢性中毒出现下列现象:一是干扰渗透压调节系统;二是易破坏鳃组织的黏膜层;三是会降低血红素携带氧的能力。鱼虾长期处于此浓度的水中,会抑制生长。

(2)在0.02-0.05ppm的次低浓度下,氨会和其它造成水生动物疾病的原因共同起迭加作用,加重病情并加速其死亡。

(3)在0.05-0.2ppm的次致死浓度下,会破坏鱼虾皮、胃肠道的黏膜,造成体表和内部器官出血。

(4)在0.2-0.5ppm的致死浓度之下,鱼虾类会急性中毒死亡。发生氨急性中毒时,鱼虾表现为急躁不安,由于碱性水质具较强刺激性,使鱼虾体表黏液增多,体表充血,鳃部及鳍条基部出血明显,鱼在水体表面游动,死亡前眼球突出,张大嘴挣扎。

4.氨的毒性与pH值的关系

对水产动物产生毒害作用的是氨(NH

3),而不是铵(NH

4

)。铵(NH

4

)对水产动物没有

毒性。在水中氨和铵存在如下转化:

NH

3+H

2

O→NH

4

OH→NH

4

++OH-

NH

3+H

2

O←NH

4

OH←NH

4

++OH-

表2 水体中有毒氨(NH

3

)在总氨氮中的比例(%)

从表中可以看出,pH值越高,氨的浓度将增加,而铵的浓度将减少;反之,pH值越低,氨的浓度将降低,而铵的浓度将增加。当pH值低于6.0时,水中的氨的含量将是0。在水质分析中,测定的氨氮是氨和铵的总量。根据水的pH值和温度,可以查出氨的浓度。

1.如何防止水中氨过高?

在养殖(育苗)生产中,要定期检测控制水中的氨氮指标,池塘氨氮含量一般要控制在标准值以下。具体应采取以下措施:

(1)及时排污,尤其是小水泥池养殖或虾蟹育苗时,应将池底污泥彻底排掉。

(2)选用高质量的饲料,尽量减少残饵。

(3)养鱼中使用铵态氮肥(硫铵、碳铵、硝铵)时,应避免pH值过高。铵态氮肥与生石灰不可同时使用,一般应相隔十天以上。

(4) 4-8月期间,使用微生物水质改良剂(如中仁清水素、浓缩光合细菌等)和底改白+黑及特效底爽,对降低氨氮效果显著。

2.水中氨氮偏高如何处理?

水中氨的浓度超过0.02ppm就属偏高,应设法改善。可采取以下措施:

(1)降低水体的pH值,减少氨的浓度,降低氨氮的毒性。

(2)定期冲注新水,稀释水中氨氮的浓度。

(3)使用微生物水质改良剂中仁清水素、光合细菌、粒粒活水菌及底改白+黑及特效底爽。

- )——水产动物致病根源

六、亚硝酸盐(NO

2

1.亚硝酸盐(NO

- )的来源

2

亚硝酸盐是氨转化成硝酸盐的过程中的中间产物,在这一过程中,一旦硝化过程受阻,亚硝酸盐就会在水体内积累。这种情况在对虾、河蟹育苗过程中经常发生,如河蟹1期蚤状幼体对NO

--N的要求含量必须控制在0.2mg/l以下,若超过此量将导致幼体大批死亡。

2

2.亚硝酸盐的控制标准

根据现有文献,亚硝酸盐的毒性依鱼、虾、蟹种类和个体不同而不同,因此,对各种鱼虾的安全浓度差异很大。为确保鱼虾蟹(尤其育苗期)的安全,建议将亚硝酸盐含量必须控制在0.2mg/l以下。

3.亚硝酸盐的毒性

当养殖水体中存在亚硝酸盐时,鱼虾类血液中的亚铁血红蛋白被其氧化成高铁血红蛋白,从而抑制血液的载氧能力。鱼类长期处于高浓度亚硝酸盐的水中,会发生黄血病或褐血病。亚硝酸盐在水产养殖中是诱发爆发性疾病的重要的环境因子。

当水中亚硝酸盐达到0.1ppm时,鱼虾红细胞数量和血红蛋白数量逐渐减少,血液载氧逐渐丧失,会造成鱼虾慢性中毒。此时鱼虾摄食量降低,鳃组织出现病变,呼吸困难,骚动不安。

当亚硝酸盐达到0.5ppm时,鱼虾某些代谢器官的功能失常,体力衰退,此时鱼虾很

容易患病,很多情况下鱼虾爆发疾病而死亡,就是由于亚硝酸盐过高造成的。亚硝酸盐过高可诱发草鱼出血病。鳗鱼亚硝酸盐中毒时鱼体发软,胸部、臀部带浅黄色,肝脏、鳃、血液呈深棕色。对虾中毒时,鳃受损变黑,导致死亡。

4.怎样防止亚硝酸盐过高?

(1)定期换注新水。

(2)保持养殖池或育苗池长期不缺氧。

(3)少施无机氮肥,高温季节以施用中仁肥水宝、肥水膏为主。

(4)定期使用水质改良剂中仁清水素、光合细菌、粒粒活水菌及底改白+黑及特效底爽。

七、池水变坏的征兆、原因及改善方法

池水变坏多半发生在高温季节,由于腐殖质的发酵分解及水生植物繁殖过盛所致。其征兆有:

(1)水色呈黑褐色带混浊,是池中腐殖质过多,腐败分解过快所引起。这种水往往偏酸性,不利于天然饵料的繁殖和鱼的成长。

(2)水面出现棕红色或油绿色的浮沫或粒状物,一般是蓝绿藻大量繁殖所致,而蓝绿藻类又大多不能被鱼作为饵料利用,反而消耗养料,拖瘦水质,抑制可消化藻类的繁殖,影响鱼的生长。

(3)水面有浮膜(俗称“油皮”),是水体中生物死亡腐败后的脂肪体,粘附尘埃或污物后形成的。多呈灰黑色,鱼吞食后,不利于消化;同时,浮膜覆盖水面也影响了氧气溶于水中。

(4)水面上常有气泡上泛,水色逐渐转变,池水发涩带腥臭,是腐殖质分解过程中产生的碳酸、硫化氢、氨氮、沼气造成,这些气体都具有毒性,对水产养殖动物有一定的危害。

(5)鱼的活动反常,有时在水面旋转打团,久不下沉(某些鱼病也有此种现象);有时浮头起来后,迟迟不回沉,或吃食量逐渐减少。发生这些现象,如检查不出鱼病,则是池水转坏的征兆。

改善的办法,要根据具体情况,采取不同措施。一般采取加水或换水,再根据水质情况适当增施部分肥料。可用光合细菌等加以改善水质,也可用石灰拌塘泥泼洒,中和池水酸性,使塘水转肥变活,为鱼类及其饵料生物创造适宜的生活条件。

八、“肥、活、嫩、爽”水质的具体要求

水质的肥、活、嫩、爽是渔民在长期生产实践中对良好水质和水色在视觉上的一个概括。所谓水质肥,就是鱼饵的浮游生物种群多,数量大,繁殖量高。通常较好的水质,由于不同种类浮游生物在光照、温度等外界条件不断变化的影响下,其活动的水层和水区也随之经常变动,因而使池水呈现出多变的颜色,即所谓的“早淡晚浓”或“早红晚绿”,阳光下呈映云彩状,称之为活。水带绿豆色或浅褐带绿色,肥浓适度而不污浊,可谓嫩爽。因此,从水色可以判断水质的好坏,以下几种水质,可认为是较好的。

1.绿豆色:浮游植物主要种类为绿球藻类和隐藻、硅藻,有时有黄绿藻等,透明度约在25~30厘米。

2.浅褐带绿色:透明度较高,浮游植物主要种类为硅藻、绿球藻目一部分、金黄藻和

黄绿藻等。

3.油绿色:浮游植物主要种类为隐藻、硅藻、部分金黄藻和绿球藻目一部分。当隐藻和绿球藻特别多时候,透明度就低些。

这几种水色,天热时水面上均无任何颜色的浮泡或浮膜出现。

PH值的介绍

PH值是水质的重要指标,这是因为PH值决定着水体中的很多化学和生物过程,如氨氮和硫化氢等有毒物质,由于PH值的不同表现形式也不同,因而毒性不同。

一·水质PH值控制基准

海水7.5-8.5 淡水6.5-9.0

水中生物的光合(呼吸作用)和各种化学变化均能引起PH值的变化,PH值的变化对鱼虾和水质均有很大的影响。

二。PH值对鱼虾的直接影响

PH值过或过低对鱼虾都有直接的损害甚至致死。

酸性水(低于6.5)可使鱼虾血液的PH值下降,削弱其载氧能力,造成生理缺氧症,尽管水中不缺氧,但仍可以使鱼虾浮头;由于耗氧降低,代谢急剧下降,尽管食物丰富,但是鱼虾仍然处于饥饿状态。

PH值过高的水则腐蚀鳃组织,引起鱼虾大批死亡。

PH值低于4或高于10.6时,鱼虾则不能存活。

三。PH值对水质的影响

过高或过低均会使水中的微生物活动受到抑制,有机物不易分解。

PH值大于8,大量的NH4会转化为有毒的NH3

PH值小于6,水中百分之九十以上的硫化物以HS的形式存在,增大硫化物的毒性。四。如何调节PH值?

如果偏酸PH小于7。 1.用生石灰提高。用量5-30千克每亩。2.使用碱性肥料。如液态氮。

如果偏碱PH值大于9.5。 1.泼豆浆豆渣等。 2.降碱素或醋酸、盐酸等。 3.换水或加注新水。有的是由于底质或土质,如北方盐碱地;有的是因为藻类繁殖过密。 4.使用生物产品,调节并维持酸碱度。

氨的介绍

一。氨的来源

1.水产动物的排泄物:粪便、残饵等。

2.底层的有机物。

二。水中NH3的控制标准。

三。氨的毒性

氨对水产动物的毒性依其浓度的不同而不同:

1.在0.01-0.02PPM的低浓度下,动物可慢性中毒,出现下列现象:

(1)干扰鱼虾渗透压调节系统。

(2)容易破坏鱼虾鳃部的粘膜层。

(3)会降低血红素携带氧的能力。

鱼虾长期处于此浓度的水中,会抑制生长。

2.在0.02-0.05PPM的次低浓度下,氨会和其它造成疾病的病因共起加成作用,而加速其死亡。

3.在0.05-0.2PPM的次致死浓度下,会破坏鱼虾的皮、胃、肠道的粘膜,造成体表和内部器官出血。

4.在0.2-0.5PPM的致死浓度下,鱼虾会急性中毒死亡。

氨急性中毒的症状:

鱼虾严重不安,由于碱性水质具有较强刺激性,使鱼虾体表粘液增多,体表充血,鳃部及鳍条基部出血明显,鱼虾在水体表面游动,死亡前眼球突出,张大口挣扎。

亚硝酸盐的介绍

一。水中亚硝酸盐的来源

水体中氨氮在硝化过程中的中间产物积累而成。

二。水中亚硝酸盐的毒性

当水中存在亚硝酸盐时,鱼虾类的血液中的亚铁血红蛋白被其氧化成高铁血红蛋白,从而抑制血液的载氧能力。

鱼虾类等常期处在高浓度的水中,会发生出血病。

在水产养殖中是诱发暴发性疾病的重要环境因子。

溶解氧的采集方法

河水中溶解氧是衡量河流水质的最重要的综合性指标。用碘量法测定水中溶解氧,简单易行、准确可靠,是每个水质分析室常用的分析方法。要准确的了解水体中的溶解氧浓度,其关键步骤不仅仅在于滴定过程是否准确,样品的采集是一个重要的步骤,必须十分注意,否则,容易导致样品曝气而使溶解氧测 值增高,不能准确反映实际情况。 水中溶解氧主要来源有二:其一,在水体中溶解氧(DO)小于其溶解度时,大气中的氧溶入水体。在水体和大气之间的界面上经常进行气体交换,大气中的氧溶入水体,这个过程称为大气复氧过程,是水体中氧的主要来源。其二,是水生植物通过光合作用向水中放出的氧。 大气复氧过程是大气中氧分子在气-液两相之间的传质、扩散过程,受温度、海拔高度、水中溶解氧浓度、水中氧的饱和溶解度、水流表面运动状态和水质等因素的影响。一般需实施监测的水体中溶解氧浓度均可能低于其应有的饱和溶解度,此时,水体表面的运动状态将明显地改变水中溶解氧的含量(养鱼塘水中缺氧时,采用机械充氧,即利用此原理)。采集水中溶解氧样品的技术关键在于:被测水体由天然状态转移到容器的过程中,必须避免明显的表面扰动。 在网上及一般教材中讲述测定溶解氧水样的采集方法,有含糊不清或不严谨之处,摘录几则,供讨 论: 1、“用溶解氧瓶取水面下20—50cm的河水、池塘水、湖水或海水,使水样充满250ml的磨口瓶中, 用尖嘴塞慢慢盖上,不留气泡”; 2、“采集水样时,要注意不使水样曝气或气泡残存在采样瓶中。可用水样冲洗溶解氧瓶后,沿瓶壁直 接倾注水样或用虹吸法将细管插入溶解氧瓶底部,注入水样至溢流出瓶容积的1/3-1/2左右”; 3、“取自来水样:将水龙头接一段乳胶管。打开水龙头,放水10分钟之后,将乳胶管插入溶解氧瓶底部,收集水样,直至水样从瓶口溢流10分钟左右。取样时应注意水的流速不应过大,严禁气泡产生。若为其它水样,应在水样采集后,用虹吸法转移到溶解氧瓶内,同样要求水样从瓶口溢流。” 笔者认为,测定溶解氧所用的水样,必须用专用的采样器采集,不可用溶解氧瓶直接灌注。用一般的水桶水勺在采集水样时,由于扰动了水面,在采样人员不知不觉中已经改变的样品中溶解氧的浓度;在水样转移入溶解氧瓶时,直接倾注会使样品接触空气,液面扰动时氧气容易通过气-液界面溶入水中。

溶解氧和造成溶氧不足的原因

溶解氧和造成溶氧不足的原因 内容摘要:水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。 一、养鱼先养水,好水养好鱼 俗话说:“养鱼先养水,好水养好鱼”。水是鱼、虾、蟹、鳖、龟、蛙等水产养殖动物的生活环境,水质的好坏直接影响到水产养殖生物的生长和发育,从而影响到产量和经济效益。每一种水产动物都需要有适合其生存的水质条件,水质若能满足要求,养殖动物就能顺利生长发育。如果水质的一些基本指标超出生物的适应和忍耐范围,轻者养殖动物生长速度缓慢,成活率降低,饲料系数提高,经济效益下降。重者可能造成养殖动物的大批死亡,引起严重的经济损失。 恶化的水质不仅有害于动物机体的健康,甚至还危及它们的生命。众所周知水是一种优良的溶剂和悬浮剂,它可溶解各种气体,如氧气、二氧化碳、氨和硫化氢等,也可溶解各种盐类,如亚硝酸盐、磷酸盐、碳酸盐、硫酸盐等,还可悬浮尘埃、有机碎屑、细菌、藻类、小型的原生动物以及各种虫卵等。水体中溶解和悬浮的种种有形或无形的物质和成分,其中一部分对水产动物的生长、发育是必需的,有一些是无益的,而另一部分则是有害的,或者在含量较多时有害,同样,它们对水体中的其他生物,也有有利和不利的方面,特别是某些成分对养殖动物生长和健康不利,而对一些病原体(如病原菌、寄生原生动物)的繁殖、滋生以及产生毒力等是必需的,就容易导致疾病的发生。 水质对养殖的水生动物起着至关重要的作用。正常的养殖水体(未被工业污染),影响水质的主要指标是pH值(酸碱度)、溶解氧、氨氮、亚硝酸盐、硫化氢等5项指标。重金属、农药、化工污水等污染的水源,如超出《渔业水质标准》,则不能用于水产养殖生产。对养殖用水,必须定期进行全面科学检测。如果片面检测或仅凭经验主观判断,可能招致灾难性的后果。 科学的检测的可得出正确的数据。这些数据可以告诉养殖者水质的状况,从而判断水质是否满足水产动物生长的要求,以及是否会引起动物发病。水质检测的另一个作用是为改善水质、鱼病用药提供依据,减少因施肥、投饵、用药等日常管理造成的鱼类死亡损失。因此,水质检测是保证水质健康的必要,也是水产健康养殖的基础。 二、溶解氧——水产动物生命要素 同人一样,水产动物也必须在有氧的条件下生存,不同的是人呼吸空气中的氧气,而水产动物呼吸的是水体中的溶解氧。水体缺氧可使其浮头,严重时泛塘致死。 1. 养殖(育苗)水体溶氧要求 一般来说,养殖(育苗)水体的溶解氧应保持在5~8mg/l(ppm),至少应保持3mg/l 以上。各种鱼、虾类的需要溶解氧条件如表1。

溶解氧分析标准

锅炉给水溶解氧的测定 来源:大禹网发布日期:2012-01-17 氧腐蚀是锅炉系统中最常见又较为严重的腐蚀。由于给水一般都与大气接触,水中的溶解氧基本上呈饱和状态,因此给水流经的管路和设备均有发生氧腐蚀的可能。 为什么要化验锅炉给水溶解氧? 氧腐蚀是锅炉系统中最常见又较为严重的腐蚀。由于给水一般都与大气接触,水中的溶解氧基本上呈饱和状态,因此给水流经的管路和设备均有发生氧腐蚀的可能。 氧腐蚀经常发生的部位是给水管路和省煤器。由于省煤器内水温逐渐升高,给溶解氧的腐蚀提供了有利条件,如果给水中溶解氧含量较高时,腐蚀也可能延伸到省煤器的中部和尾部,甚至使锅炉的下降管也遭到腐蚀。 氧腐蚀的形态一般为溃疡型腐蚀和小孔型局部腐蚀,对金属构件强度的损坏十分严重。 为了消除溶解氧对锅炉水汽系统的腐蚀和危害,国家标准规定:对于蒸发量大于2t/h 的锅炉,其给水要采取除氧措施,并根据锅炉工作压力的不同,要求给水溶解氧控制在合格的范围内。 溶解氧(靛蓝二磺酸钠比色法)的测定原理是什么? 在pH:8.5左右时,氨性靛蓝二磺酸钠被锌汞齐还原成浅黄色化合物。当其与水中溶解氧相遇时,又被其氧化为蓝色,其色泽深浅与水中含氧量有关。其反应如下: 溶解氧(靛蓝二磺酸钠比色法)是如何进行测定的?

(1)标准色的配制 本法测定的范围为2~100μg/L,所以标准色阶中最大标准色所相当的溶解氧含量(C 最大)为100μg/L。为使测定时有过量的还原型靛蓝二磺酸钠同氧反应,所以采用还原型靛蓝二磺酸钠的加人量为C最大的1.3倍。据此,在配制色阶时,先配制酸性靛蓝二磺酸钠稀溶液(T=20μg/mL),然后按下式计算酸性靛蓝二磺酸钠溶液的加入体积‰(mL)和苦味酸溶液(T=20μg/mL)的加人体积瞻(mL)。 二磺酸钠(T=μg/L)和苦味酸(T=20μg/L)溶液所需要的用量。 将配制好的标准色溶液注入专用溶氧瓶中,注满后用蜡密封,此标准色使用期限为一周。

凝结水溶氧超标的原因及处理

凝结水溶氧超标的原因 及处理 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

凝结水溶氧超标的原因及处理1备用泵轴封失效引起凝结水溶氧超标 1.1取掉凝泵水封环埋下了隐患 2004-07-16,2号机凝结水溶氧达到40~60礸/L,现场多次查漏未果,最后查阅该泵检修记录时发现,盘根室内的水封环被取掉了(原因是当时凝泵盘根处甩水严重,试将水封环取掉换为盘根,以增强密封,减小盘根处漏量)。凝结水泵盘根密封水工作原理见图1。 从图1可以看出:在水封环换为盘根后,盘根密封水进水口就被盘根堵塞了,之所以一直未发生凝结水溶氧超标,是因为该处盘根与轴套紧密接触,隔绝了空气,而当轴套经长时间运行磨损后,盘根与轴套出现间隙,致使空气从压兰吸入泵体内,引起凝结水溶氧超标。

针对这一原因,分2步进行了处理。 第1步,为了满足机组稳定运行的要求,临时将B凝泵密封水回水门关小,以减少从凝泵压兰处漏入的空气。此方法取得了很好的效果,凝结水溶氧从50礸/L降至7礸/L。 第2步,利用机组小修机会,彻底更换盘根、轴套、水封环。此后,凝结水溶氧正常。 1.2备用泵盘根密封水压力不足

该公司凝结水系统正常运行时,备用凝泵盘根密封水取自外供除盐水,而其回水则回到凝泵入口,这样不断地给机组补水,超出机组需求的补水被排掉,造成浪费,不符合电厂节能降耗的要求,为此利用机组临停,对3号机凝结水管路进行了改造。改造前后凝泵盘根密封/冷却水系统见图2。 图2改造前、后凝泵盘根密封/冷却水系统 改造之后不再有浪费水的现象。2005年2月出现凝结水溶氧超标,达到80~90礸/L。对比凝泵密封水改造前后的系统布置,分析认为,由于改造后A凝泵(运行泵)自密封水同时供给2台泵的盘根密封/冷却用水,而导致供给B泵(备用泵)盘根密封水的压力下降,引起漏空溶氧。

啤酒中溶解氧的控制解读

74 酿酒科技·2009年第2期(总第176期)LIQUOR -MAKING SCIENCE &TECHNOLOGY 2009No .2(Tol .176 啤酒中溶解氧的控制 王劲松 (南京金星啤酒有限公司技术质量部, 江苏 摘要:关键词: 南京 210039 啤酒生产过程中除发酵初期氧有利于酵母细胞合成外,其他工序均应严格控制氧的摄入量,防止啤酒中啤酒;溶解氧;控制 文献标识码:B 文章编号:1001-9286(2009)02-0074-03 的还原物质被氧化而影响啤酒质量。溶解氧含量的高低是决定啤酒非生物稳定性和风味稳定性的主要因素之一。中图分类号:TS262.5;TS261.4 Analysis of the Control of Dissolved Oxygen in Beer WANG Jin-song (Technique&Quality Department of Jinxing Beer Co.Ltd., Nanjing, Jiangsu 210039, China

Abstract :Oxygen is helpful for the synthesis of barm cells in early fermentation period in beer production. However, in other production proce-dures, oxygen absorption should be under strict control to prevent the oxidation of reducing substances in beer which would further damage beer quality. The content of dissolved oxygen is the main factor influencing non-biological stability and flavor stability of beer. (Tran.by YUE Yang Key words :beer; dissolved oxygen; control 成品啤酒中溶解氧的含量应控制在0.1mg/L左右,过高易导致啤酒产生类似脂肪氧化后的臭味,影响啤酒的爽快、醇厚性,且使啤酒的后苦味增强,甚至由于成品啤酒中过多氧的存在造成本已还原的双乙酰再次生成,使啤酒产生“生青味”,并氧化啤酒中的一些风味物质,使啤酒风味变差。氧能与蛋白质、多酚化合物反应形成永久性浑浊,降低啤酒的非生物稳定性。啤酒摄入氧主要在过滤与灌装工序,过滤工序中如果能够把清酒的溶解氧水平控制在0.1mg/L以下,就可以有效地提高啤酒的稳定性,延长啤酒贮藏。 发酵液中溶解氧含量很低,经过硅藻土过滤后,清酒溶解氧含量明显增高, 一般用CO 2背压,可达到0.3~ 0.5mg/L,如果用压缩空气背压,清酒中的溶解氧含量可 达1.0mg/L,由于氧的存在,使啤酒中残留的α-乙酰乳酸氧化脱羧而使双乙酰的含量增高。 1.3影响啤酒的风味 啤酒的风味组成包括双乙酰及其前体、醛类、酯类、 高级醇、含硫化合物、挥发性酒花组分等。这些风味组成成分所含有的醛基、羟基、巯基、烯或烯醇基等, 都可以被氧化或进行加氧反应, 结果可能会使啤酒中原来感觉不到的风味成分转化为能感觉到的风味成分, 或改变原有风味成分的呈味性质从而产生异杂味, 并且导致啤酒口感粗劣。例如,多酚物质受到氧化聚合会使啤酒产生涩味、后苦味、辛辣味;酒花中A2酸和不饱和萜烯化合物受到氧化, 会使

给水溶解氧

溶解氧:空气中的分子态氧溶解在水中称为溶解氧。 水中的溶解氧的含量与空气中氧的分压、水的温度都有密切关系。在自然情况下,空气中的含氧量变动不大,故水温是主要的因素,水温愈低,水中溶解氧的含量愈高。溶解于水中的分子态氧称为溶解氧,通常记作DO,用每升水里氧气的毫克数表示。 含氧量:在一定条件下,溶解于水中分子状态的氧的含量。 除氧器 给水回热系统中,使给水加热到饱和温度,能去除给水中溶解气体的混合式加热器。 饱和温度:液体和蒸气处于动态平衡状态即饱和状态时所具有的温度。 根据除氧器工作压力分为大气式除氧器、高压除氧器 根据除氧器构造分为:旋膜式除氧器、填料式除氧器、淋水盘除氧器等。 除氧器是锅炉及供热系统关键设备之一,如除氧器除氧能力差,将对锅炉给水管道、省煤器和其它附属设备的腐蚀造成的严重损失,引起的经济损失将是除氧器造价的几十或几百倍。 除氧定律,盖吕萨克定律 在压强不变时,一定质量的气体的温度每升高1℃,其体积的增加量等于它在0℃时体积的1/273;或在压强不变时,一定质量的气体的体积跟热力学温度成正比。由法国科学家盖吕萨克在实验中发现,故名。适用于理想气体,对高温、低压下的真实气体也近似适用。 亨利定律,在一定温度下,气相总压不高时,对于稀溶液,溶质在溶液中的浓度与它在气相中的分压成正;比道尔顿分压定律,在温度和体积恒定时,混合气体的总压力等于组分气体分压力之和,各组分气体的分压力等于该气体单独占有总体积时所表现的压力。 除氧器结构原理 除氧设备主要由除氧塔头、除氧水箱两大件以及接管和外接件组成,其主要部件除氧器(除氧塔头)是由外壳、新型旋膜器(起膜管)、淋水篦子、蓄热填料液汽网等部件组成. 1.外壳:是由筒身和冲压椭圆形封头焊制成.,中、小低压除氧器配有一对法兰联接上下部,供装配和检修时使用,高压除氧器留配有供检修的人孔. 2.旋膜器组:由水室、汽室、旋膜管、凝结水接管、补充水接管和一次进汽接管组成.凝结水、化学补水、经旋膜器呈螺旋状按一定的角度喷出,形成水膜裙,并与一次加热蒸汽接管引进的加热蒸汽进行热交换,形成了一次除氧,给水经过淋水篦子与上升的二次加热蒸汽接触被加热到接近除氧器工作压力下的饱和温度即低于饱和温度2-3℃,并进行粗除氧.一般经此旋膜段可除去给水中含氧量的90-95%左右. 3.淋水篦子:是由数层交错排列的角形钢制作组成,经旋膜段粗除氧的给水在这里进行二次分配,呈均匀淋雨状落到装在其下的液汽网上.

凝结水溶氧超标的原因分析及处理

凝结水溶氧超标的原因分析及处理 本文重点分析了火力发电厂机组常见的凝结水溶氧超标的原因,论述了凝结水溶氧超标的危害,并针对各种超标原因提出了处理办法,对各火力发电厂凝结水溶氧超标的问题提供了可行的方法,具有一定的借鉴作用。 标签:溶氧超标危害办法 Cause analysis and treatment for the dissolved oxygen in the feedwater deaerator exceed the standard Shen Zhibin (Inner Monglia Datang International Tuoketuo Power Generation Co.Ltd.,Tuoketuo 010206,China) Abstract:This paper focuses on the analysis of the thermal power plant unit common condensation of excessive dissolved oxygen in water,discusses the setting and the harm of excessive dissolved oxygen in water,and for a variety of causes of excessive solutions are proposed,for the thermal power plant condensate water dissolved oxygen overproof problems provides a feasible method,which has a certain reference. Key words:Dissolved oxygen Exceed the standard Harm method 引言 火电厂机组凝结水溶氧是电厂化学监督的的重要指标之一。凝结水溶氧大幅超标或长期不合格,会造成锅炉、管道、设备的高温腐蚀,降低回热设备的换热效率,缩短管道和设备的使用寿命,严重威胁机组安全经济运行,所以降低凝结水溶氧具有重要和深远的现实意义。火力发电厂水汽化学监督导则要求超高压发电机组在正常运行时,凝结水溶氧合格标准为小于30μg/l,小于20μg/l为期望值。机组正常运行时凝汽器处于真空状态,凝结水应该是合格的,但由于诸多原因导致国内许多供热机组普遍存在凝结水溶氧超标问题。 一、凝结水溶氧超标概况 某电厂2*300MW机组为湿冷纯凝汽轮发电机组,于2007年12月份投产,2012年01月开始转为自备电厂,开始对外供热,供热量200t/h。凝结水溶氧的控制方法主要采用凝汽器真空除氧及加联氨方式。2台300MW机组开始供热后,凝结水溶氧这个指标经常处于超标运行状态,超过50μg/l的次数达到15次/月。为了彻底消除溶氧超标,该厂从凝结水溶氧超标常见的原因进行分析,并针对各个原因进行查找并采取一定的措施,本文重点对该厂的查找过程及查找出溶氧超

分析凝结水溶解氧偏高的原因

摘要 在火电厂机组运行正常情况下,凝结水溶解氧量是合格的,但是因为许多原因,导致凝结水溶解氧偏高,使机组不能安全稳定的运行,所以必须对凝结水溶解氧偏高的原因进行分析并且使其溶氧量达到标准值。 本文从凝结水系统入手,通过介绍该系统的组成,得出凝结水在整个系统中的流程。而凝结水在循环使用中,不可避免地含有腐蚀物和杂质,而随着电厂机组容量的增大,对水质要求提高,又必须对凝结水进行精处理。然后通过介绍凝结水精处理系统,分析凝结水受污染的原因以及精处理系统需经过过滤和除盐两部分,去除金属腐蚀产物和悬浮杂质以及溶解盐类,但是凝结水溶解氧量偏高所产生的危害却未能消除。接着介绍凝结水溶解氧量偏高所带来的危害,以及可能引起溶解氧量偏高的原因和解决措施,最后以蒙达发电公司和山西武乡和信发电公司为例,根据这两个电厂溶解氧偏高原因的分析以后,都采取相应的有效措施,来降低溶解氧以达到标准值,使机组可以正常运行,这样既提高了资源的利用率,也减少了生产运行成本。 关键词:凝结水;精处理;溶解氧;

Abstract Coal-fired power plants operation in normal circumstances,condensate dissolved oxygen is qualified, because of many reasons, resulting in condensate dissolved oxygen is high , so that units can not be a safe and stable operation, it must be reasons for the high condensate analysis of dissolved oxygen and let dissolved oxygen reach standard value. This paper introduces condensed water from the system ,according to introducing the composition of the system obtained in the condensate flow in the system.The condensation of water recycling, inevitably contain corrosive and impurities, and with the power unit capacity increases, improve water quality requirements, but also must be polishing condensate.Then by introducing the condensate polishing system, the analysis of the causes of contaminated condensate polishing system, and should be filtered and the desalination of two parts, the removal of metal corrosion products and suspended impurities and dissolved salts, but high levels of dissolved oxygen of the harm in the condensate is not removed.Then introduced the high levels of dissolved oxygen in the condensate harm, and may cause high levels of dissolved oxygen causes and solutions,. Finally,Mengda power generation companies and power companies and Xinhe of Shanxi Wuxiang example, according to these two causes of the high dissolved oxygen plant, after they take appropriate and effective measures to reduce the dissolved oxygen to meet the standard value, the unit can be Normal operation, this not only improves the resource utilization, but also reduce the operating costs of production. Keywords: Condensate; polishing; dissolved oxygen;

养鱼池水中的溶解氧作用及增氧方法

养鱼池水中的溶解氧作用及增氧方法 养鱼池塘水中的溶解氧高低是水质好坏的主要指标,所有地球陆生动物、海洋水产动物都必须在有氧的条件下才能生存繁衍,如果缺氧就要死亡。在池塘养鱼中水体缺氧可使鱼虾浮头,严重时泛池窒息死亡,造成重大经济损失。 养鱼水体溶氧要求标准 经水产科技工作者在长期的养殖实践中总结,一般养殖(育苗)池塘水体的溶解氧应保持在5毫克/升~8毫克/升,最低也要保持3毫克/升,低于此值就会发生鱼虾泛塘死亡。养鱼水体溶氧量要求标准(见下表)。 在养殖中,水质轻度缺氧虽不致鱼虾死亡,但也严重影响其生长速度,使饵料系数提高,生产成本增加,养殖效益下降。以草鱼为例,草鱼在主要生长期内要求水中溶氧量5毫克/升以上或饱和度大于70%为正常范围,最低为2毫克/升,0.4毫克/升为致死点。2毫克/升时草鱼开始浮头。草鱼在溶氧量为2.72毫克/升的情况下比在5.56毫克/升的情况下,其生长速度降低98%,饲料系数提高4倍。其它鱼虾也大致一样。 引起养殖水质中溶氧不足的原因 气温高氧气在水中溶解度随温度升高而降低,如在一个大气压下,水温由10℃上升到35℃时,空气中的氧在纯水中的溶解度可以由11.27

毫克/升降至6.93毫克/升,高温会引起溶氧降低。此外,鱼类和其它生物在高温时因摄食运动量加大耗氧多也是一个重要原因。 养殖密废过大养鱼户一味追求高产量,亩放养常规品种4000尾~5000尾,甚至更多,超出正常放养量的一倍多。这样,鱼类和水中生物活动呼吸作用加大,耗氧量当然也加大。 有机物的分解大量的有机物(如塘头配套饲养大量的生猪、鸭、鸡、白鸽等禽畜牲口的排泄物)的分解作用,造成细菌活动大,消耗了水中大量的氧气,因此容易造成缺氧。 无机物的氧化作用造成缺氧养殖池塘水中和池塘淤泥存在的硫化氢、亚硝酸盐等会发生氧化作用,导致消耗大量溶解氧。 鱼类缺氧反应症状 轻度缺氧时,鱼虾出现烦躁,从水面明显看出鱼虾游动的波浪,个别鱼虾头部浮出水面,呼吸加快;重度缺氧时,大量鱼虾会浮头,甚至死亡。例如鲢鱼在溶氧0.6毫克/升时开始大批死亡。鱼类长期处于溶氧1毫克/升~3毫克/升时,基本停止摄食,生长速度减慢,抗病能力下降,发生鱼病和死亡。这就是经常浮头的池塘饲料系数升高的原因之所在。 溶氧量高低对有毒物质的影响 保持水中足够的溶氧量,可抑制生成有毒物质的化学反应,转化或降低有毒物质(如氨、亚硝酸朴和硫化氢)的含量。例如:水中有机物(粪便、残饵、尸体等)产生的氨和硫化氢,在充足的溶氧条件下,经微生物的分解作用下,氨会转化为亚硝酸盐,再转化成硝酸盐;硫化氢则被转化成硫酸盐,均产生无毒的最终产品,并被浮游植物光合作用所吸收。

溶解氧测定仪简明原理

溶解氧测定仪简明原理 常见的溶氧仪多采用隔膜电极作换能器,将溶氧浓度(实际上是氧分压)转换成电信号,再经放大、调整(包括盐度、温度补偿),由模数转换显示。 溶氧仪实用的膜电极有两种类型:极谱型(Polarography)和原电池型(Galvanic Cell)。极谱型(Polarography):电极中,由黄金(Au)环或铂(Pt)金环作阴极;银-氯化银(或汞-氯化亚汞)作阳极。电解液为氯化钾溶液。阴极外表面覆盖一层透氧薄膜。薄膜可采用聚四氟乙烯、聚氯乙烯、聚乙烯、硅橡胶等透气材料。阴阳两电极之间外加0.5~1.5伏的极化电压。有的极化电压为0.7伏。当溶解氧透过薄膜到达黄金阴极表面,在电极上发生如下反应。 阴极被还原:O2+2H2O+4e→4OHˉ 同时,阳极被氧化:4Clˉ+4Ag-4e→4AgCl 在正常情况下,上述还原-氧化反应产生的扩散电流i∞之值与溶氧浓度成正比。可用下式表示: i∞=nFA(Pm/L)Cs 式中:i∞-稳定状态的扩散电流 n-得失电子数 F-法拉第常数(96500 库仑) A-阴极表面积(平方厘米) Pm-薄膜的渗透系数(厘米2/秒) L-薄膜的厚度(厘米) Cs-溶解氧浓度(ppm) 当电极结构和薄膜确定之后,式中A、Pm、L、n等均为常数。令K= nFA (Pm/L),则上 式中:i∞=KCs。 因此可见,只要测得扩散电流i∞,即可测得溶解氧浓度。为消除温度、盐度和气压因素影响,各型号产品采用各自技术进行补偿。 原电池型(Galvanic Cell):当外界氧分子透过薄膜进入电极内相到达阴极的三相界面时,产生下式反应。 银阴极被还原:O2+2H2O+4e→4OHˉ 同时,铅阳极被氧化:2Pb+2KOH+4OHˉ-4e→2KHPbO2+2H2O 即:氧在银阴极上被还原为氢氧根离子,并同时向外电路获得电子;铅阳极被氢氧化钾溶液腐蚀,生成铅酸氢钾,同时向外电路输出电子。接通外电路之后,便有信号电流通过,其值与溶氧浓度成正比。 溶解氧仪分类

溶解氧对发酵的影响及其控制

溶解氧对发酵的影响及其控制 1 溶解氧对发酵的影响 溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。 1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的 改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。如继续补糖,又会继续下降,甚至引起生产受到限制。发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。 1.2 溶氧对发酵产物的影响 对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。 在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。

需氧微生物酶的活性对氧有着很强的依赖性。谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。 DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。 2 溶氧量的控制 对溶解氧进行控制的目的是把溶解氧浓度值稳定控制在一定的期望值或范围内。在微生物发酵过程中,溶解氧浓度与其它过程参数的关系极为复杂,受到生物反应器中多种物理、化学和微生物因素的影响和制约。从氧的传递速率方程也可看出,对DO值的控制主要集中在氧的溶解和传递两个方面。 2.1 控制溶氧量(C*-CL)是氧溶解的推动力,控制溶氧量首要因素是控制氧分压(C*)。高密度培养往往采用通入纯氧的方式提高氧分压,而厌氧发酵则采用各种方式将氧分压控制在较低水平。如啤酒发酵,麦汁充氧和酵母接种阶段,一般要求氧含量达到8~10PPM;而啤酒发酵阶段,一般啤酒中的含氧量不得超过2PPM。 2.2控制氧传递速率氧传递速率主要考虑KLa的影响因素。从一定意义上讲,KLa愈大,好氧生物反应器的传质性能愈好。控制KLa的途径可分为操作变量、反应液的理化性质和反应器的

各种温度下饱和溶解氧值

各种温度下饱和溶解氧值 温度(℃)溶解氧(mg/L)温度(℃)溶解氧(mg/L) 0 14.6418 9.46 1 14.2219 9.27 2 13.8220 9.08 3 13.4421 8.90 4 13.0922 8.73 5 12.7423 8.57 6 12.4224 8.41 7 12.1125 8.25 8 11.8126 8.11 9 11.5327 7.96 10 11.2628 7.82 11 11.0129 7.69 12 10.7730 7.56 13 10.5331 7.43 14 10.3032 7.30 15 10.0833 7.18

16 9.8634 7.07 17 9.6635 6.95 1溶解氧指溶解在水中的氧含量。又称氧饱和值(dissolved oxygen saturation concentrtaion),指水体与大气中氧交换处于平衡时,水体中溶解氧的浓度。在通常的大气压力条件下,饱和溶解氧OS只随水温T而变化,饱和溶解氧还随大气压力而变化,大气压力越低,OS值则越小。饱和溶解氧也随水中的盐度而变化,盐度增高,OS值减小。 2其含量与空气中的氧分压、水温有关。氧分压变化甚微,故水温是主要的影响因素,水温愈低,水中溶解氧愈高。清洁地面水的溶解氧含量接近饱和状态。水中有大量藻类植物生长时,其光合作用释出的氧,可使水中溶解氧呈过饱和状态。 3当存在有机物污染水体或藻类大量死亡时,则溶解氧不断消耗而下降,甚至使水体处于厌氧状态,此时水中厌氧微生物繁殖,有机物发生腐败分解,使水发黑发臭。因此,水中溶解氧可作为有机物污染及其自净程度的间接指标。

1 溶解氧对发酵的影响

1 溶解氧对发酵的影响 溶氧是需氧发酵控制最重要的参数之一。由于氧在水中的溶解度很小,在发酵液中的溶解度亦如此,因此,需要不断通风和搅拌,才能满足不同发酵过程对氧的需求。溶氧的大小对菌体生长和产物的形成及产量都会产生不同的影响。如谷氨酸发酵,供氧不足时,谷氨酸积累就会明显降低,产生大量乳酸和琥珀酸。 1.1 溶氧量在发酵的各个过程中对微生物的生长的影响是不同的 改变通气速率发酵前期菌丝体大量繁殖,需氧量大于供氧,溶氧出现一个低峰。在生长阶段,产物合成期,需氧量减少,溶氧稳定,但受补料、加油等条件大影响。补糖后,摄氧率就会增加,引起溶氧浓度的下降,经过一段时间以后又逐步回升并接近原来的溶解氧浓度。如继续补糖,又会继续下降,甚至引起生产受到限制。发酵后期,由于菌体衰老,呼吸减弱,溶氧浓度上升,一旦菌体自溶,溶氧浓度会明显上升。 1.2 溶氧对发酵产物的影响 对于好氧发酵来说,溶解氧通常既是营养因素,又是环境因素。特别是对于具有一定氧化还原性质的代谢产物的生产来说,DO的改变势必会影响到菌株培养体系的氧化还原电位,同时也会对细胞生长和产物的形成产生影响。[1] 在黄原胶发酵中,虽然发酵液中的溶氧浓度对菌体生长速率影响不大,但是对菌体浓度达到最大之后的菌体的稳定期的长短及产品质量却有着明显的影响。 [2] 需氧微生物酶的活性对氧有着很强的依赖性。谷氨酸发酵中,高溶氧条件下乳酸脱氢酶(LDH)活性明显比低溶氧条件下的LDH酶活要低,产酸中后期谷氨酸脱氢酶(GDH)的酶活下降很快,这可能是由于在高溶氧条件下,剧烈的通气和搅拌加剧了菌体的死亡速度和发酵活性的衰减。[3] DO值的高低还会改变微生物代谢途径,以致改变发酵环境甚至使目标产物发生偏离。研究表明,L-异亮氨酸的代谢流量与溶氧浓度有密切关系,可以通过控制不同时期的溶氧来改变发酵过程中的代谢流分布,从而改变Ile等氨基酸合成的代谢流量。[4] 2 溶氧量的控制

汽轮机凝结水溶解氧量高的原因分析及对策

汽轮机凝结水溶解氧量高的原因分析及对策 【关键词】凝结水,溶解氧,空气漏入,过冷度 【论文摘要】本文提出空气的漏入和凝结水过冷是凝结水溶解氧的原因,凝结水溶解氧影响机组经济性和安全性,并且是缓慢的过程,对此提出了对策,供运行和有关部门参考。 大机组随着参数、自动化程度的提高,对热力循环的工作介质的品质要求也越来越高,对汽轮机凝结水的水质要求的标准逐步提高,凝结水溶解氧量是表征凝结水水质的重要指标之一,下面对凝结水溶解氧量的机理、因素及技术发展进行分析,提出了采取的措施,供设计和运行维护参考。 凝汽器内除氧技术的发展:早先的中低压汽轮机的凝汽器热水井无除氧淋水装置和凝汽器冷却水管束布置不合理,蒸汽直接加热热水井凝结水效果不好等,随着对凝结水水质的要求越来越高,高压机组、超高压机组、亚临界机组凝汽器开始设置有淋水装置和汽轮机排汽直接加热凝结水的设计,来减少凝结水过冷,前苏联和美国电站广泛采用凝汽器鼓泡装置,并且近几十年来,研制了凝汽器加热凝结水的除氧装置和扫气式除氧装置。凝汽器内鼓泡装置,在热水井的凝结水被蒸汽鼓泡搅动而混合加热,凝结水被加热到饱和温度时,释放出非凝结气体,这种装置在低负荷启动和非正常工况下投运。加热凝结水的除氧装置是1984年2月Katsumoto ohtake等人提出快速去除凝汽器内凝结水中氧气的除氧装置,凝汽器内设有用隔板分割成明渠和暗渠,明渠中设有加热装置,凝结水先进入明渠被蒸汽加热,对凝结水除氧后流向暗渠,这种设施对全部凝结水加热,使除氧效果更好,除氧时间更短。扫气式除氧装置是日本Keizo ishida等人于1983年2月提出热水井除氧效果好和阻止氧气重新溶于凝结水的除氧装置,此结构是热水井和冷却水管之间安装两块倾斜上下错开的隔板,隔板固定凝汽器前后壁,凝结水沿此隔板曲折流动,热水井底部引入辅助蒸汽与凝结水流向相反,这样改善凝汽器除氧性能,并且除氧时间短。 1凝结水溶解氧原因分析 凝结水溶解氧的机理:由于凝汽器内空气进入和凝结水存在过冷,使凝结水中溶解氧,这就是凝结水溶解氧的机理。空气漏入量增加,凝结水溶解氧量增加,凝结水过冷度增加,凝结水溶解氧量也随之增加,如果空气不进入和过冷度为零,氧气在液体里的溶解度趋于零,因此凝汽器被设计成象除氧器那样,并且在满负荷时效果最佳,这是理想状态,影响凝结水溶解氧的两个因素是凝结水存在过冷度和空气的进入。 1.1 过冷的原因 凝结水过冷度表征凝汽器热水井中凝结水的过冷却程度,凝结水热水井出口凝结水温度与凝汽器在排汽压力下对应的饱和温度之差称为过冷度。现代装置对凝汽器要求其过冷度不超过0.5—1℃。过冷度增加,凝结水溶解氧量也随之增加,因此过冷度不仅影响低压给水系统的腐蚀,而且也影响凝汽器空气漏入量的估算,机组的经济性和安全性。 过冷的原因:由于蒸汽从排汽口向下部流动时产生阻力,造成下部蒸汽压力低于上部压力,下部凝结水温度较上部低,从而产生过冷,此外蒸汽被冷却成液滴时,在凝汽器冷却水管间流动,因液滴的温度比冷却水管管壁温度高,凝结水降温从而低于其饱和温度,产生过冷,以及空气漏入,空气分压力增大,蒸汽的分压力相对降低,蒸汽仍在自己的分压力下凝结,使凝结水温度低于排汽温度,产生过冷,如果抽气器不能及时抽出,增大了传热阻力,

溶解氧测定方法-国标

水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由 于考虑到某些干扰而采用改进的温克勒(Winkler)法 1 范围 碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧 浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸 腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消 耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法 亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉 如存在氧化物质或还原物质需改进测定方法见第8 条. 如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用 2 原理 在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰 中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠 滴定法测定游离碘量 3 试剂 分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水 3.1 硫酸溶液 小心地把500mL 浓硫酸(ρ= 1.84g/mL)在不停搅动下加入到500mL 水 注:若怀疑有三价铁的存在则采用磷酸(H3PO4 ρ=1.70g/mL) 3.2 硫酸溶液c(1/2H2SO4) =2mol/L 3.3 碱性碘化物叠氮化物试剂 注:当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去 此试剂 a. 操作过程中严防中毒 b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾 将35g的氢氧化钠(NaOH)[或50g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)] 溶解在大约50mL 水中,单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧的细口棕色瓶子里,经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色. 3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液) 可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液 3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液 在180℃干燥数克碘酸钾(KIO3) 称量3.567±0.003g 溶解在水中并稀释到1000mL。将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线。 3.6 硫代硫酸钠标准滴定液c(Na2S2O3) ≈10mmol/L 3.6.1 配制 将2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000m。溶液贮存于深色玻璃瓶中。 3.6.2 标定 在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL 2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL 标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色

养殖池塘水溶解氧作用及增氧方法

养殖池塘水溶解氧作用及增氧方法 养鱼池塘水中的溶解氧高低是水质好坏的主要指标,水产动物都必须在有氧的条件下才能生存,如果缺氧就要死亡。在池塘养鱼中水体缺氧可使鱼虾浮头,严重时泛池窒息死亡,造成重大经济损失。 养鱼水体溶氧要求标准 经水产科技工作者在长期的养殖实践中总结,一般养殖(育苗)池塘水体的溶解氧应保持在 5毫克/升~8 毫克/升,最低也要保持3 毫克/升,低于此值就会发生鱼虾泛塘死亡。养鱼水体溶氧量要求标准(见下表)。 在养殖中,水质轻度缺氧虽不致鱼虾死亡,但也严重影响其生长速度,使饵料系数提高,生产成本增加,养殖效益下降。以

草鱼为例,草鱼在主要生长期内要求水中溶氧量5 毫克/升以上或饱和度大于70%为正常范围,最低为 2 毫克/升,0.4 毫克/升为致死点。2毫克/升时草鱼开始浮头。草鱼在溶氧量为2.72 毫克/升的情况下比在5.56 毫克/升的情况下,其生长速度降低98%,饲料系数提高4 倍。其它鱼虾也大致一样。 引起养殖水质中溶氧不足的原因 气温高 氧气在水中溶解度随温度升高而降低,如在一个大气压下,水温由10℃上升到35℃时,空气中的氧在纯水中的溶解度可以由11.27 毫克/升降至6.93 毫克/升,高温会引起溶氧降低。此外,鱼类和其它生物在高温时因摄食运动量加大耗氧多也是一个重要原因。 养殖密废过大 养鱼户一味追求高产量,亩放养常规品种4000 尾~5000 尾,甚至更多,超出正常放养量的一倍多。这样,鱼类和水中生物活动呼吸作用加大,耗氧量当然也加大。 有机物的分解 大量的有机物(如塘头配套饲养大量的生猪、鸭、鸡、白鸽等禽畜牲口的排泄物)的分解作用,造成细菌活动大,消耗了水中大量的氧气,因此容易造成缺氧。 无机物的氧化作用造成缺氧 养殖池塘水中和池塘淤泥存在的硫化氢、亚硝酸盐等会发生

溶解氧腐蚀

溶解氧的腐蚀: 锅炉水中的溶解氧,和炉体金属铁组成腐蚀电池,铁的电极电位,比氧的电极电位低,在铁氧腐蚀电池中,铁是阳极,失去电子成为亚铁离子,氧为阴极进行还原,溶解氧的这种阴极去极化的作用,造成对锅炉铁的腐蚀,此外氧还会把溶于水的氢氧化铁沉淀,使亚铁离子浓度降低,从而使腐蚀加剧。 当水中含有溶解氧时,造成对炉体的腐蚀,随着含氧浓度的增加,腐蚀速度加快,一般会在金属表面形成许多小型鼓包,其直径1-25毫米不等。它最容易发生在给水管道,和锅炉省煤器中,其次也会发生在下降管中。 【HS-606除氧防腐剂】「概述」在锅炉用水和某些热力系统中,溶解有多种气体,其中氧是引起锅炉及其附属设备发生腐蚀的主要介质。因此,除去水中溶解氧等有害气体是防止设备腐蚀的有效措施。「腐蚀的现象和特征」1、溃疡腐蚀2、点状腐蚀3、晶间腐蚀4、穿晶腐蚀现象是:一般会在金属表面形成许多小型鼓疤,腐蚀鼓疤颜色由黄褐色到砖红色再到黑色,直径约为1-25毫米。「物理性能」本药剂为白色结晶粉末,无毒无味,密度为2.633,易溶于水,水溶液呈碱性(1%水溶液PH值为(8.3-9.4),在空气中容易被氧化,所以必须密封保存于干燥阴凉库房中,不可与氧化剂、强酸等化学品共存混运。「化学性质」本剂是由铬酸盐、硅酸盐、硫氧、缓蚀剂等多种化学成分,按一定比例复合配制而成,它和水中的溶解氧发生化学反应,从而使锅炉水的含量降低到0.00毫克/升以下,游离二氧化碳含量降到0.2毫克/升以下,完全达到国家劳动总局规定的锅炉用水标准。本品还添加了少量的缓蚀预膜剂,它能诱导金属表面生成不透性保护薄膜,增加阳极的的单位,在金属表面起到抑制腐蚀的作用,因此本品是集除氧保护,防腐蚀为一体的新型科技产品。「用法和用量」使用本剂时应先把药剂配成6-9%浓度,通过加药罐或加压的方法,注入锅炉给水或补充水管道内。用药量要根据水中含氧量而定,一般情况下,每耗一吨水首次加药为100克左右,以后每耗一吨水加药20-50克。 HS-606B液体除氧防腐剂概况:在锅炉用水和某些热力系统中,溶解有多种气体,其中氧是引起锅炉及其附属设备发生腐蚀的主要介质。因此,除去水中溶解氧等有害气体是防止设备腐蚀的有效措施。腐蚀的现象与特征:1:溃疡腐蚀;2点状腐蚀;3晶间腐蚀;4穿晶腐蚀。现象是:一般会在金属表面形成许多小型鼓疤,腐蚀鼓疤颜色由黄褐色到砖红色再到小黑点,直径约为1-25毫米。除氧剂原理应用: 本剂是由抗氧剂,肟类化合物,缓蚀剂等多种化学成分,按一定比例复合配制而成,它和水中的溶解氧发生化学反应,从而使锅炉水的含氧量降低到0.00毫克/升,游离二氧化碳含量降到0.2毫克/升以下,完全达到国家劳动局规定的锅炉用水标准。本品还添加了少量的缓蚀预膜剂,它能诱导金属表面生成不锈钢氧化物保护薄膜,增加阳极的电位,在金属表面起到抑制腐蚀的作用,因此本品是集除氧保护,防腐蚀为一体的新型科技产品。除氧剂在给水除氧工艺中应用,从1994年以来在各大型石油化工厂,电厂及化肥厂等,中高压锅炉一直使用除氧器除氧,而近几年各大型企业全采用化学除氧,如除氧剂。除氧剂经实验研究和投入运行后,结果表明新型除氧剂使用情况良好,对水气质量无不良影响,完全能满足生产工艺的要求,对系统金属有抑制腐蚀作用。现将新型的低毒和无毒的除氧剂的实际应用介绍如下:自从投加除氧剂以来,给水溶解氧的含量均小于0毫克/升,达到国家标准要求。对锅炉水系统中有关物质测定结果表明;铁离子含量为0,阴离

相关文档
最新文档