高考文科数列知识点总结

高考文科数列知识点总结
高考文科数列知识点总结

高考文科数列知识点

一.考纲要求

内容4

要求层次

A

B C 数列

数列的概念 数列的概念和表示法

√ 等差数列、 等比数列

等差数列的概念

√ 等比数列的概念 √ 等差数列的通项公式与前n 项和公式 √ 等比数列的通项公式与前n 项和公式

二.知识点

(一)数列的该概念和表示法、

(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ;

数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那

么这个公式就叫这个数列的通项公式

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。

③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示:

序号:1 2 3 4 5 6 项 :4 5 6 7 8 9

上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集

的映射。从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值

(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立

的点

(4)数列分类:

①按数列项数是有限还是无限分:有穷数列和无穷数列;

②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列

(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项

1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的

递推公式

(二)等差数列

1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );

2.等差数列通项公式:

*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m

n a a d m

n --=;

3.等差中项

(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:

2

b

a A +=或

b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a

4.等差数列的前n 项和公式:

1()2n n n a a S +=

1(1)2n n na d -=+211

()22

d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)

特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项

()()()12121

121212

n n n n a a S n a +++++==

+(项数为奇数的等差数列的各项和等于项数

乘以中间项)

5.等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*

∈N n )? {}n a 是等差数列.

(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法

定义法:若d a a n n =--1或d a a n n =-+1(常数*

∈N n )? {}n a 是等差数列.

7.等差数列的性质:

(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函

数,且斜率为公差d ;前n 和211(1)()222

n n n d d

S na d n a n -=+

=+-是关于n 的二次函数且常数项为0.

(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,

则为常数列。

(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有

2m n p a a a +=.

(4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列

(5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列

(6)数列{}n a 为等差数列,每隔k(k ∈*

N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等差数 列

(7)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是

前n 项的和

1.当项数为偶数n 2时,

()

121135212n n n n a a S a a a a na --+=+++???+=

=奇

()

22246212

n n n n a a S a a a a na ++=+++???+==偶

()11=n n n n S S na na n a a nd ++-=-=-偶奇

11

n n n n S na a S na a ++==奇偶

2、当项数为奇数12+n 时,则

21(21)(1)1n S S S n a S n a S n S S a S na S n +?=+=+=+?+????=??

-==????

n+1n+1

奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项).

(8)等差数列{}n a 的前n 项和m S n =,前m 项和n S m =,则前m+n 项和()m n S m n +=-+

(9)求n S 的最值

法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性*

n N ∈。

法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和

即当,,001<>d a 由??

?≤≥+0

1n n a a 可得n S 达到最大值时的n 值.

(2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

1n n a a 可得n S 达到最小值时的n 值.

或求{}n a 中正负分界项

法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。若S p = S q 则其对称轴

为2

p q

n +=

(三)等比数列

1. 等比数列的定义:()()*1

2,n

n a q q n n N a -=≠≥∈0且,q 称为公比 2. 通项公式:

()11110,0n n

n n a a a q q A B a q A B q

-==

=??≠?≠, 首项:1a ;公比:q 推广:n m n m a a q -=, 从而得n m

n m a q a -=

或n n m m

a q a -= 3. 等比中项

(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:

2

A ab =或A ab =± 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项

互为相反数)

(2)数列{}n a 是等比数列?211n n n a a a -+=?

4. 等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111n n n a q a a q

S q

q

--=

=

--

5. 等比数列的判定方法

(1)用定义:对任意的n,都有1

1(0)n n n n n

a a qa q q a a ++==≠或为常数,?{}n a 为等比数列

(2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)?{}n a 为等比数列 (3) 通项公式:()0n

n a A B

A B =??≠?{}n a 为等比数列

(4) 前n 项和公式:()

'',,','n

n

n n S A A B S A B A A B A B =-?=-或为常数?{}n a 为 等比数列

6. 等比数列的证明方法 依据定义:若

()()*1

2,n

n a q q n n N a -=≠≥∈0且或1n n a qa +=?{}n a 为等比数列

7. 等比数列的性质 (1) 当1q ≠时

①等比数列通项公式()1

110n n

n n a a a q q A B A B q

-==

=??≠是关于n 的带有系数的类指数函数,底数为公比q

②前n 项和()111111''1111n n n n n n a q a a q a a S q A A B A B A q

q q q

--=

=-=-?=-----,系数和

常数项是互为相反数的类指数函数,底数为公比q

(2) 对任何m,n ∈*N ,在等比数列{}n a 中,有n m n m a a q -=,特别的,当m=1时,便得到等比数列的通项公式.因此,此公式比等比数列的通项公式更具有一般性。 (3) 若m+n=s+t (m, n, s, t ∈*N ),则n m s t a a a a ?=?.特别的,当n+m=2k 时,得

2n m k a a a ?=

注:12132n n n a a a a a a --?=?=???

(4) 列{}n a ,{}n b 为等比数列,则数列{}n

k

a ,{}n k a ?,{}k n a ,{}n n k a

b ??{}n n a b (k 为非零

常数) 均为等比数列.

(5) 数列{}n a 为等比数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等比数列

(6) 如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7) 若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -???,成等比数列

(8) 若{}n a 为等比数列,则数列12n a a a ??????, 122n n n a a a ++??????,

21223n n n a a a ++???????成等比数列

(9) ①当1q >时, ②当1q <0<时,

110{}0{}{n n a a a a ><,则为递增数列

,则为递减数列, 110{}0{}{n n a a a a ><,则为递减数列,则为递增数列

③当q=1时,该数列为常数列(此时数列也为等差数列); ④当q<0时,该数列为摆动数列.

(10)在等比数列{}n a 中, 当项数为2n (n ∈*N )时,

1S S q

=奇偶,.

(11)若{}n a 是公比为q 的等比数列,则n n m n m S S q S +=+?

文科数学2010-2018高考真题分类专题六 数列 第十七讲 递推数列与数列求和答案

专题六数列 第十七讲 递推数列与数列求和 答案部分 1.C 【解析】∵113 n n a a +=-,∴{}n a 是等比数列 又243a =-,∴14a =,∴()1010101413313113 S -????-- ? ? ?????==-+ ,故选C . 2.D 【解析】【法1】有题设知 21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9, 76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=, …… ∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…, ∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,… 是首项为8,公差为16的等差数列, ∴{n a }的前60项和为1 1521581615142 ?+?+???=1830. 【法2】可证明: 14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 11234151514 1010151618302 b a a a a S ?=+++=?=?+ ?= 【法3】不妨设11a =,得23572,1a a a a ====???=,466,10a a ==,所以当n 为奇数时,1n a =,当n 为偶数时,构成以2a 为首项,以4为公差的等差数列,所以得 601830S = 3.A 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+=???=+=,故1210a a a ++???+=3515?=.故选A. 4.6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-) 2(,) 1(,11n S S n a a n n n 注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化(求通 项) 例2:已知数列}{n a 的前n 项和???≥+==2,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:定义法;函数单调性法 (2)最大(小)项问题: 单调性法;图像法 (3)数列的周期性:(注意与函数周期性的联系)

例3:已知数列}{n a 满足????? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)

例题: 例4(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1 a n -1 (n ≥2,n ∈N * ),数列{b n }满足b n =1a n -1 (n ∈N *). (1)求证:数列{b n }是等差数列; (2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 ∵a n =2-1 a n -1 (n ≥2,n ∈N * ),b n =1 a n -1 . ∴n ≥2时,b n -b n -1=1a n -1-1 a n -1-1 = 1? ?? ??2-1a n -1-1 -1 a n -1-1 =a n -1 a n -1-1-1a n -1-1 =1. ∴数列{b n }是以-5 2 为首项,1为公差的等差数列.

高考数学知识点总结(文科)

高中数学知识点总结(文科) 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30555 50 1539252 2∈--

数列知识点归纳及

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-)2(,) 1(,11n S S n a a n n n 注意:①强调2,1≥=n n 分开,注意下标;②n a 与n S 之间的互化(求通项) 例2:已知数列}{n a 的前n 项和???≥+==2 ,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:①定义法;②函数单调性法 (2)最大(小)项问题:①单调性法;②图像法 (3)数列的周期性:(注意与函数周期性的联系) 例3:已知数列}{n a 满足?? ??? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处) 等差数列 等比数列 定义 1n n a a d +-=(d 是常数1,2,3n =,…) 1 n n a q a +=(q 是常数,且0≠q ,1,2,3n =,…) 通项 公式 ()11n a a n d =+- ()n m a a n m d =+- 11n n a a q -= 推广:n m n m a a q -= 求和 公式 () 112 n n n S na d -=+=()12n n a a + ()111 (1)1(1)11n n n na q S a q a a q q q q =?? =-?-=≠? --? 中项 公式 2 n k n k a a A -++=(*,,0n k N n k ∈>>) k n k n a a G +-±=(*,,0n k N n k ∈>>)

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数列知识点总结

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 1()2n n n a a S +=na =中间项 1(1)2 n n na d -=+ 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次函数图像的分点表示形式。 四 性质结论 1.3或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2() +∈N n n ,则,奇偶nd S S =- 1 +=n n a a S S 偶奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -= 数列{a n }是等比数列的一个等价条件是: (1),(0,01n n S a b a b =-≠≠,) 当0q >且0q ≠时,n a 关于n 的图像是指数函数图像的分点表示形式。

高考文科数学知识点总结

原命题若p 则q 逆命题 若q 则p 互为逆否 互 逆否互 为逆 否否 互 集合与简易逻辑 知识回顾: (一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 3 ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸 1.含绝对值不等式的解法 (1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论. (3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 特例① 一元一次不等式ax>b 解的讨论; 2 (三)简易逻辑 1、命题的定义:可以判断真假的语句叫做命题。 2、逻辑联结词、简单命题与复合命题: “或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 3、“或”、 “且”、 “非”的真值判断 (1)“非p ”形式复合命题的真假与F 的真假相反;

(2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真. 4、四种命题的形式: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 函数 知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数 函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. (二)函数的性质 ⒈函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性 4. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如: 指数函数与对数函数 指数函数及其性质 2 212221212 2 2 22121) ()()(b x b x x x x x b x b x x f x f x ++++-= +- += -)(

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

高考文科数列知识点总结全整理版.doc

数列知识点 内容4 要求层次 A B C 数列 数列的概念 数列的概念和表示法 √ 等差数列、 等比数列 等差数列的概念 √ 等比数列的概念 √ 等差数列的通项公式与前n 项和公式 √ 等比数列的通项公式与前n 项和公式 √ 二.知识点 (一)数列的该概念和表示法、 (1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项记作n a ,在数列第一 个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个 数列的通项公式 说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。 ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点 看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤 立的点 (4)数列分类: ①按数列项数是有限还是无限分:有穷数列和无穷数列; ②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列 (5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间 的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 (二)等差数列

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

高考文科数学数列专题复习

高考文科数学数列专题 复习 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

高考文科数学 数列专题复习 一、选择题 1.(广东卷)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A. 2 1 B. 2 2 C. 2 2.(安徽卷)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 3.(江西卷)公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于 A. 18 B. 24 C. 60 D. 90 4(湖南卷)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于【 】 A .13 B .35 C .49 D . 635.(辽宁卷)已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d = (A )-2 (B )-12 (C )12 (D )2 6.(四川卷)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是 A. 90 B. 100 C. 145 D. 190

7.(湖北卷)设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{2 1 5+},[ 21 5+],2 15+ A.是等差数列但不是等比数列 B.是等比数列但不是等差数列 C.既是等差数列又是等比数列 D.既不是等差数列也不是等比数列 8.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如: 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的 数成为正方形数。下列数中及时三角形数又是正方形数的是 9.(宁夏海南卷)等差数列{}n a 的前n 项和为n S ,已知2 110m m m a a a -++-=,2138m S -=,则m = (A )38 (B )20 (C )10 (D )9 10.(重庆卷)设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则 {}n a 的前n 项和n S = A .2744 n n + B .2533n n + C .2324 n n + D .2n n + 11.(四川卷)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是 A. 90 B. 100 C. 145 D. 190

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题) Lesson6 数列 知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d . 3.等差中项 a +b 如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) . (2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列. 5.等差数列的前n 项和公式 n (a 1+a n )n (n -1) 设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22. 6.等差数列的前n 项和公式与函数的关系 d d 2? S n 2+ a 1-2n . 数列{a n }是等差数列?S n =An 2+Bn ,(A 、B 为常数) . ?? 7.等差数列的最值 在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值. [难点正本疑点清源] 1.等差数列的判定 (1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.

高考数学数列知识点及题型大总结

20XX 年高考数学数列知识点及题型大总结 等差数列 知识要点 1.递推关系与通项公式 m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --= --= --=-+=-+==-+1; )1()()1(1111变式:推广:通项公式:递推关系: 为常数) 即:特征:m k m kn n f a d a dn a n n ,(,)(), (1+==-+= ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 2.等差中项: 若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 3.前n 项和公式 2 )(1n a a S n n += ; 2)1(1d n n na S n -+= ) ,()(,)2(22212为常数即特征:B A Bn An S Bn An n f S n d a n d S n n n +=+==-+= 是数列 {}n a 成等差数列的充要条件。 4.等差数列 {}n a 的基本性质),,,(*∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。 ⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2

⑷n n n n n S S S S S 232,,--仍成等差数列。 5.判断或证明一个数列是等差数列的方法: ①定义法: )常数)(*+∈=-N n d a a n n (1?{}n a 是等差数列 ②中项法: )22 1*++∈+=N n a a a n n n (?{}n a 是等差数列 ③通项公式法: ),(为常数b k b kn a n +=?{}n a 是等差数列 ④前n 项和公式法: ),(2为常数B A Bn An S n +=?{}n a 是等差数列 练习:1.等差数列 {}n a 中, ) (3 1 ,1201191210864C a a a a a a a 的值为则-=++++ A .14 B .15 C .16 D .17 165 1203232)(32) 2(3 1 318999119=?==-=+-=-a d a d a a a a 2.等差数列 {}n a 中,12910S S a =>,,则前10或11项的和最大。 解:0912129 =-=S S S S , 003011111121110>=∴=∴=++∴a a a a a a ,又,, ∴ {}n a 为递减等差数列∴1110S S =为最大。 3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵ ,,,,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为 10010=S ,前10项的和为10100=S 解

数列知识点总结及题型归纳总结

数列知识点总结及题型归纳总结

高三总复习----数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数 列; 数列中的每个数都叫这个数列的项。记作n a ,在数 列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 1 4131211,,,,… 数列①的通项公式是n a = n (n ≤7,n N + ∈), 数列②的通项公式是n a = 1n (n N + ∈)。 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表 示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; ③不是每个数列都有通项公式。例如,1,1.4,

1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一 个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N + (或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分: 有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常 数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系: 1 1(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和3 22+=n s n ,求数列}{n a 的通

数列文科专题复习

数列文科专题复习

高三数学(文科)第一 轮复习专题之数列 二、方法技巧 1.判断和证明数列是等差(等比)数列常有三种方法: (1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。 (2)通项公式法: ①若 = +(n-1)d= +(n-k )d ,则{}n a 为等差数列; ②若 ,则{}n a 为等比数列。 (3)中项公式法:验证中项公式成立。 2. 在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当1a >0,d<0时,满足100m m a a +≥??≤?的项数m 使得m S 取最大值. (2)当1a <0,d>0时,满足10 m m a a +≤??≥?的项数m 使得 取最小值。 在解含绝对值的数列最值问题时,注意转化思想的应用。 3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。 三、注意事项 1.证明数列{}n a 是等差或等比数列常用定义,即通过证明 11-+-=-n n n n a a a a 或 1 1-+=n n n n a a a a 而得。 2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,

但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。 3.注意n s 与n a 之间关系的转化。如: n a =1100n n S S S -≤??-≥? 21≥=n n , n a =∑=--+n k k k a a a 211)(. 一、选择题: 1.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是( A ) A.15 B.30 C.31 D.64 2.等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( B ) A.81 B.120 C.168 D.192 3.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上 是“}{n a 为等差数列”的 ( A ) A.必要而不充分条件 B.充分而不必要条件 C.充要条件 D.既不充分也不必要条件 4.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( B ) A .122n +- B . 3n C . 2n D .31n - 5.数列ΛΛ,43211 ,3211,211++++++的前n 项和为( A ) A.12+n n B. 1+n n C. 222++n n D. 2+n n 6.在等差数列}{n a 中,24)(3)(2119741=++++a a a a a ,则此数列的前13项之和等于( B ) A.13 B.26 C.52 D. 156

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

高三复习数列知识点总结

数列专题解析方法 解题策略一:有比较有鉴别才有收获,弄清每种方法好的地方,掌握这一点,就能解决很多问题。 解题策略二:具体做题时有三个步骤:想一想,做一做,看一看。 解题策略三:拿到题就动手做题的习惯不好,很盲目,时间浪费了,还做不出来;想好了再动手,不管能不能做完,能不能做对,都要做.回头看一看,还有没有更好的方法,书上怎么讲的,老师怎么做的,回想联想再猜想,这样一比较,就能领悟到很多东西.数学题靠做,但是在做题的过程中,还要学会总结分析,并建立错题集,时常翻阅,这样我们的解题能力才会得到提高. 一、数列通项公式的求解 类型一:观察法 例1:写出下列数列的一个通项公式 (1)3,5,9,17,33, ; (2);,5 44,4 33,3 22,2 11 (3)7,77.777.7777. ; (4);,11 26,917,710,1,32 -- (5);,16 65,825,49,23 类型二:公式法 (1)1(1)()n m a a n d a n m d =+-=+- 例2:已知等差数列{}n a 中,,3,131-==a a 求{}n a 的通项公式 (2)11n n m n m a a q a q --== 例3:已知等比数列{}n a 中,,306,6312=+=a a a 求{}n a 的通项公式 类型三:利用“n S ”求解 (1)???≥-==-)2() 1(,11n S S n S a n n n 例4:已知数列{}n a 的前n 项和)(24*2N n n n S n ∈+-=,求{}n a 的通项公

式 例5:已知数列{}n a 的前n 项和为n S ,且有,464,3111--+-==n n n n S a a S a 求 {}n a 的通项公式 例6:已知数列{}n a 的前n 项和为n S ,且有),1(12,111≥+==+n S a a n n 求{}n a 的通项公式 例7:已知正数数列{}n a 的前n 项和为n S ,且对任意的正整数n 满 足,12 +=n n a S 求{}n a 的通项公式 (2)1--n n S S 的推广 例8:设数列{}n a 满足*13221,3 333N n n a a a a n n ∈=++++- 求{}n a 的通项公式 类型四:累加法 形如)(1n f a a n n =-+或)(1n f a a n n =--型的递推数列(其中)(n f 是关于n 的函数) (1)若()f n 是关于n 的一次函数,累加后可转化为等差数列求和 例9:,2,1211=++=+a n a a n n 求{}n a 的通项公式 (2)若()f n 是关于n 的指数函数,累加后可转化为等比数列求和 例10:,2,211=+=+a a a n n n 求{}n a 的通项公式 (3)若()f n 是关于n 的二次函数,累加后可分组求和 例11:,1,1121=+++=+a n n a a n n 求{}n a 的通项公式 (4)若()f n 是关于n 的分式函数,累加后可裂项求和 例12:,1,21 121=++ =+a n n a a n n 求{}n a 的通项公式 类型五:累乘法

相关文档
最新文档