平面向量习题整理

平面向量习题整理
平面向量习题整理

向量习题分类精选

类型1. 向量的模

点评:向量模的处理思路:几何法,平方,坐标 1. (2011·辽宁)若a ,b ,c 均为单位向量,且a·

b =0,(a -

c )·(b -c )≤0,则|a +b -c |的最大值为( B ) A.2-1 B .1 C. 2 D .2

2. 已知向量a ≠e ,|e |=1,满足:对任意t ∈R ,恒有|a -t e |≥|a -e |,则( C )

A .a ⊥e

B .a ⊥(a -e )

C .e ⊥(a -e )

D .(a +e )⊥(a -e )

3. (16上期中)若向量,a b r r 满足|||2|2a a b =+=r r r ,则a r 在b r

方向上的投影的最大值是________.

4. 设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,a ⊥c ,|a |=|c |,则|b ·c |的值一定等于( A )

A .以a ,b 为邻边的平行四边形的面积

B .以b ,c 为邻边的平行四边形的面积

C .以a ,b 为两边的三角形的面积

D .以b ,c 为两边的三角形的面积

5. 【2013,安徽理9】在平面直角坐标系中,o 是坐标原点,两定点,A B 满足2,OA OB OA OB ===u u u r u u u r u u u r u u u r

g

则点集,1,,|P OP OA OB R λμλμλμ==++≤∈u u u r u u u r u u u r

所表示的区域的面积是 ( D )

A .

B .

C .

D .6. 【 2013湖南6】已知,a b 是单位向量,0a b =r r

g .若向量c 满足1,c a b c --=则的取值范围是r r r ( A )

A .??

B .??

C .1????

D .1????

7. 【2015湖南理2】已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++u u u r u u u r u u u r

的最大值为( B )

A.6

B.7

C.8

D.9

8. 【2013重庆,理10】在平面上,12AB AB ⊥u u u r u u u u r ,121OB OB ==u u u r u u u u r ,12AP AB AB =+u u u r u u u r u u u u r

.若12

OP

取值范围是( D )

A 、? ?

B 、

C 、

D 、 9. 【 2014湖南16】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r

=1,则

OA OB OD ++u u u r u u u r u u u r

的最大值是_________.110. 【2015高考浙江,理15】已知12,e e r r 是空间单位向量,1212e e ?=r r ,若空间向量b r 满足125

2,2

b e b e ?=?=r r r r ,

且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈r u r u u r r u r u u r u u u u r

,则0x =___.0y =__.b =r __.

1,2,22.

11. 【2013高考重庆理第10题】在平面上,1AB u u u r ⊥2AB u u u u r ,

|1OB u u u r |=|2OB u u u u r |=1,AP u u u r =1AB u u u r +2AB u u u u r .若|OP u u u r |<1

2,则|OA u u u r

|的取值范围是( D ).

A .? ?

B .

C .

D .

12. 已知ABC ?中,||3,||4AB AC ==,点O 是ABC ?所在平面内一点.若||||||OA OB OC ==u u u r u u u r u u u r

,且

()

12

AO AB AC R λλλ-=+∈u u u r u u u r u u u r ,则cos BAC ∠= .

13. (2017届武汉市二月调考.理11)已知n m ,为两个非零向量,且2||=

m ,2|2|=+n m ,则

|||2|n n m ++的最大值为( D )

A .24

B .33

C .

237 D .3

3

8 类型2. 平面向量基本定理,基底转化,双参数问题

常见处理方法:线性运算(加、减、数乘)直接转化;待定系数法;方程组法。 14. 【2013年.浙江卷.理17】设21,e e 为单位向量,非零向量2

1e y e x b +=,x ,y ∈R.若21,e e 的夹角为

π

6

,则

|

|||b x 的最大值等于__________.2

15. 如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →

=mAM →,AC →=nAN →,则m +n 的值为________.2

点评:三点共线经常作为隐含信息出现,不容易察觉。

16. 在边长为1的正ABC ?中,向量,BA x BD =,CA y CE =0,0>>y x ,且,1=+y x 则BE CD ?的最大值为________.

点评:思路1.基底法.可选取,BC BA u u u r u u u r

为基底.

思路2.坐标法,关键是D,E 两点坐标表示.

17. 如图所示,平面内有三个向量OA →、OB →、OC →,其中OA →

与OB →

的夹角为120°,OA →

与OC →

的夹角为30°

.且|OA →

|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为______.λ+μ=6.

18. 给定两个长度为1的平面向量OA →和OB →

,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变

动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.2

点评:思路1.利用||1OC =u u u r ,得22

1x y xy +=+,基本不等式求得(有漏洞:x 、y 可能为负数!).

思路2.坐标法,设(cos ,sin )C θθ,得2cos 3,[0,]3

x y π

θθθ+=+∈求解. 思路3.几何法,设AB 交OC 于T ,,[1,2]OC OT λλ=∈u u u r u u u r

,由A 、T 、B 三点共线得x y λ+=.

19. (2019届高一3月考16)在扇形中,,120,1ο=∠==AOB OB OA 点P 为弧AB 上的动点,点P 可与点A 或

B 重合,若y x +=,则y x 4+的最大值为 。72

20. (2017届武汉四月调考理科16)已知ABC ?的外接圆圆心为O ,且ο60=∠BAC ,若

),(R AC AB AO ∈+=βαβα,则βα+的最大值为 .3

2

21. 在ABC ?中,已知9AB AC ?=u u u r u u u r

,sin cos sin B A C =?,6?=ABC S ,P 为线段AB 上的一点,且

||||

=?+?u u u r u u u r

u u u r u u u r u u u u

r CA CB

CP x y CA CB 则xy 的最大值为( C ) A .1 B .2 C .3 D .4

点评:由条件可得,CA=3,CB=4.由三点共线可得0310434x x y

y ?≤≤??+=? ?≤≤???

,再消元或凑基本不等式求解.

22. 【2014天津,理8】已知菱形ABCD 的边长为2,120BAD

?o ,点,E F 分别在边,BC DC 上,

BE BC l =,DF DC m =.若1AE AF

?u u u r u u u r

,2

3

CE CF

?-

u u u r u u u r ,则l m +=( C ) (A )

12 (B )2

3 (C )56 (D )712

23. 【2013山东,理15】已知向量AB u u u r 与AC u u u r 的夹角为120°,且|AB u u u r |=3,|AC u u u r |=2,若AP u u u r =λAB u u u r +AC u u u

r ,

且AP u u u r ⊥BC u u u r ,则实数λ的值为__________.7

12

24. 如右图,//OM AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动,且OP xOA yOB =+u u u r u u u r u u u r ,则x 的取值范围是____0x <______,当1

2x =-时,y 的取值范围是____ 13(,)22

______.

类型3. 向量数量积、(三点)共线定理、投影

常见处理方法:定义,几何意义(投影),坐标,向量转化(基底)

25. 在△OAB 中,OA →=a ,OB →=b ,OD 是AB 边上的高,若AD →=λAB →

,则实数λ等于( B )

A.a ·(b -a )|a -b |2

B.a ·(a -b )|a -b |2

C.a ·(b -a )|a -b |

D.a ·(a -b )|a -b | 26. 正ABC ?边长等于3,点P 在其外接圆上运动,则AP PB u u u r u u u r

g 的取值范围是( )

A. ]23,23[-

B. ]2

1

,23[- O

A

B

P M

C.]23,21[-

D. ]2

1,21[-

27. 已知ABC ?中,,4,120,3AB AC BC BAC BE EC ==∠==o ,若P 是边BC 上的动点,求AP AE ?u u u r u u u r

的取值范围.210[,]33

-

点评:思路1.基底法.注意A 、B 、P 三点共线的运用以及所设未知数范围的确定. 思路2.坐标法,以BC 为x 轴. 28. 【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=o ,动点E 和

F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ

==u u u r u u u r u u u r u u u r 则AE AF ?u u u r u u u r 的最小值为__________.2918

29. 【2015高考福建,理9】已知1,,AB AC AB AC t t

⊥==u u u r u u u r u u u r u u u r

,若P 点是ABC ? 所在平面内一点,且

4AB AC AP AB AC

=+u u u r u u u r u u u r u u u r u u u r ,则PB PC ?u u u r u u u r 的最大值等于( A )

A .13

B .15

C .19

D .21

30. 【2014江苏,理12】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =?=u u u v u u u v u u u v u u u v

,则

AB AD ?u u u v u u u v

的值是 .22

31. (2012·江苏)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·

AF →

=2,则AE →·

BF →的值是________.2

32. 已知ABC ?中,,4,120,3AB AC BC BAC BE EC ==∠==o ,若P 是边BC 上的动点,求AP AE ?u u u r u u u r

的取值范围.210

[,]33

-

点评:思路1.基底法.注意A 、B 、P 三点共线的运用以及所设未知数范围的确定. 思路2.坐标法,以BC 为x 轴.

33. 在边长为1的正ABC ?中,向量,x =,y =0,0>>y x ,且,1=+y x 则BE CD ?的最大值为________.

点评:思路1.基底法.可选取,BC BA u u u r u u u r

为基底.

思路2.坐标法,关键是D,E 两点坐标表示.

34. (16上期中)如图所示,在ABC ?中,AD AB ⊥,且3,||1BC AD ==u u u r u u r u u u r ,则AC AD ?=u u u r u u u r

3

点评:思路1.基底法.可选取,AB AD u u u r u u u r

为基底.

思路2.坐标法,关键是C 点坐标表示.

A

D

C

B

P

思路3.几何法,过C 作AD 的垂线,运用投影意义.

类型4. 三角形形状、面积问题

35. 【2015高考安徽,理8】C ?AB 是边长为2的等边三角形,已知向量a r

,b r 满足2a AB =u u u r

r

,C 2a b A =+u u u r

r

r

,则下列结论正确的是( D )

(A )1b =r (B )a b ⊥r r (C )1a b ?=r r (D )()

4C a b +⊥B u u u r r r

36. 已知ABC

?中,22,AC AB BC ===,P 是ABC ?内部一点,且PBC PCA PAB

S S S PA PB PB PC PC PA

???==???u u

u r u u u r u u u r u u u r u u u r u u u r ,则PA PB PC +

+=(余弦定理,面积公式,面积和,三项和平方公式)

37. 已知ABC ?的面积为S ,α是三角形的某个内角,O 是平面ABC 内一点,且

满足

sin cos 0OB OC αα++=u u r u u u r u u u r r

,则下列判断正确的是( )

A. AOC S ?的最小值为1

2

S B. AOB

S ?的最小值为1)S -

C. AOC AOB S S ??+的最大值为1

2

S D. BOC

S ?的最小值为1)S

38. 【2014山东.理12】 在ABC ?中,已知tan AB AC A ?=u u u r u u u r ,当6A π=时,ABC ?的面积为________.1

6

39. (2013辽宁,理9)已知点O(0,0),A(0,b),B(a ,a3).若△OAB 为直角三角形,则必有( C ).

A .b =a3

B .3

1b a a =+

C .331()0b a b a a ??---= ??

? D .33

10b a b a a -+--=

40. 在四边形ABCD 中,(1,1)AB DC ==u u u r u u u r

,||||BA BC BA BC +=u u u r u u u r u u u

r u u u r ,则四边形

ABCD 的面积为41. ABC ?的三边,,a b c 满足a b c ≥≥且sin sin sin log sin log sin 2log sin A B C B C A +=,则ABC ?的形状是

( D )

A.锐角三角形

B. 直角三角形

C.等腰三角形

D.等边三角形

42. 设P 是ΔABC 所在平面内的一点,且5AP 2AB AC=0--u u u r u u u r u u u r r

,则ΔPAB 与ΔABC 的面积之比为( C )

A.

13 B. 1

4

C. 15

D. 16 43. 【2013年.浙江卷.理7】设△ABC ,P0是边AB 上一定点,满足P0B =1

4AB ,且对于边AB 上任一点P ,

恒有PB u u u r ·PC u u u

r ≥0P B u u u r ·

0P C u u u r ,则( D ). A .∠ABC =90° B .∠BAC =90°

C .AB =AC

D .AC =BC

44. 设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=S △PBC S △ABC ,λ2=S △PCA S △ABC ,λ3=S △P AB

S △ABC ,定义f (P )=(λ1,λ2,

λ3).若G 是△ABC 的重心,f (Q )=(12,13,1

6),则( A )

A .点Q 在△GA

B 内 B .点Q 在△GB

C 内 C .点Q 在△GCA 内

D .点Q 与点G 重合

类型5. 三角形“三线”、“四心”

45. 在ABC ?中,1

5,6,cos ,O 5

AB AC A ===是ABC ?的内心,若OP xOA yOB =+u u u r u u u r u u u r ,其中,[0,1]x y ∈,

则动点P 的轨迹所覆盖的图形的面积为( A )

B.

C.

D.

46. 已知A ,B ,C 是平面上不共线上三点,动点P 满足??

?

???++-+-=→→→→

OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R .

则P 的轨迹一定通过ABC ?的( C )

A .内心 B. 垂心 C.重心 D.A

B 边的中点

47. 在△OAB 中,OA →=a ,OB →=b ,OD 是AB 边上的高,若AD →=λAB →

,则实数λ等于( B )

A.a ·(b -a )|a -b |2

B.a ·(a -b )|a -b |2

C.a ·(b -a )|a -b |

D.a ·(a -b )|a -b |

48. 已知C 为线段AB 上一点,P 为直线AB 外一点,I 为PC 上一点,满足||||PA PB -u u u r u u u r

4=,

10||=-PB PA ,

|

||

|PB PA =

,且)0)(||||>+

+=λλAP AC BA BI ,|

|BA ( B )

A. 2

B.3

C. 4

D. 5

类型6. 创新题、知识点综合

49. (2012·安徽)在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →

绕点O 按逆时针方向旋转3π

4后得向量

OQ →,则点Q 的坐标是( A )

A .(-72,-2)

B .(-72,2)

C .(-46,-2)

D .(-46,2) 点评:思路1.三角函数的一般定义及和差公式. 思路2.向量夹角公式.

50. 【2014年.浙江卷.理8】记,max{,},x x y x y y x y ≥?=?

x y x x y

≥?=?

( D )

A.min{||,||}min{||,||}a b a b a b +-≤

B.min{||,||}min{||,||}a b a b a b +-≥

C.222

2min{||,||}||||a b a b a b +-≥+

D.2222min{||,||}||||a b a b a b +-≤+

51. 【2014上海,理16】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=?→

i AP AB i

的不同值的个数为( A )

(A )1 (B)2 (C)4 (D)8 52. 【2014上海,理17】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y

的方程组112211a x b y a x b y +=??+=?的解的情况是( B )

(A)无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解

53. 【2013上海,理18】在边长为1的正六边形ABCDEF 中,记为A 为起点,其余顶点为终点的向量分别为a 1、

a 2、a 3、a 4、a 5;以D 为起点,其余顶点为终点的向量分别为d 1、d 2、d 3、d 4、d 5.若m 、M 份别为(a i +a j +a k )·

(d r +d s +d t )的最小值、最大值,其中{i ,j ,k }?{1,2,3,4,5},{r ,s ,t }?{1,2,3,4,5},则m 、M 满足( D )

A .m =0,M >0

B .m <0,M >0

C .m <0,M =0

D .m <0,M <0

54. 【2015江苏高考,14】设向量a k (cos ,sin cos )(0,1,2,,12)666k k k k πππ=+=L ,则11

k =∑(a k g a k +1)的值为 3

55. 【2014,安徽理15】已知两个不相等的非零向量,,两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均

由2个a 和3个排列而成.记5544332211y x y x y x y x y x S

?+?+?+?+?=,min S 表示S 所有可能取值中

的最小值.则下列命题的是_________(写出所有正确命题的编号).②④.

①S 有5个不同的值.

②若,⊥则min S 与a 无关. ③若,b a ∥则min S 与b 无关. ④若a b 4>,则0min >S .

C

⑤若2min

||2||,8||b a S

a ==r r r ,则与的夹角为4π

56. 平面向量的集合A 到B 的映射由()2()f x x x a a =-r r r r r g 确定,其中a r

为常向量.若映射f 满足()()f x f y x y =r u r r u r g g 对,x y A ∈r u r 恒成立,则a r

的坐标不可能是( )

A.(0,0)

B.

C.

D. 1(2- 57. 设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若13121412(),()A A A A R A A A A R λλμμ=∈=∈u u u u r

u u u u r

u u u u r u u u u r

,且1

1

2λμ

+=,则称34,A A 调和分割12,A A .已知点(,0),(,0)(,)C c D d c d R ∈调和分割点(0,0),(1,0)A B ,则下面说法正确

的是( )

A.C 可能是线段AB 的中点

B.D 可能是线段AB 的中点

C.,C D 可能同时在线段AB 上

D.,C D 不可能同时在线段AB 的延长线上 58. 如图,四边形ABCD 的对角线AC 和BD 交于O 点,AO OC =,BO OD =,又以DC 边的中点P 为圆心,DP 长为半径作圆P ,用向量知识解答下列问题:

(1)证明:四边形ABCD 是平行四边形;

(2)若圆P 的一直径MN 两端可在圆周上滑动,问:当直径MN 在什么位置时,AM BN ?u u u u r u u u r 与值最大.

59. 如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问PQ BC u u u r u u u r 与的夹角θ取何值时BP CQ ?u u u r u u u r

的值最大?并求出这个最大值.

A B

C

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

平面向量题型全归纳,平面向量知识点和题型总结

第五章 平面向量 题型57 平面向量的概念及线性运算 ? 知识点摘要: 1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如AB (其中A 为起点,B 为终点)。 2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||AB 。 3. 零向量:长度为0的向量,记作0,其方向是不确定的。我们规定零向量与任何向量a 共线(平行),即a ∥0。 4. 单位向量:模长为1个单位的向量叫做单位向量。当≠||a 0时,很明显| |a a ± 是与向量a 共线(平行)的单位向量。 5. 相等向量:大小相等,方向相同的向量,记为b a =。 6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。 7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。 一、向量的线性运算 1. 向量的加法: 1.1. 求两个向量和的运算叫做向量的加法。已知向量b a ,,在平面内任取一点A ,作b BC a AB ==,,则向量AC 叫做向量a 和b 的和(或和向量),即AC BC AB b a =+=+。 1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图: 1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。 1.4. 三角形法则可推广至若干个向量的和,如图:

2. 向量的减法: 2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。 2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图: 3. 向量的数乘运算: 3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ= ②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。 3.2. 向量数乘运算的运算律:设μλ,为实数,则 ①a a a μλμλ+=+)(; ②a a )()(λμμλ=; ③b a b a λλλ+=+)(。 二、重要定理和性质 1. 共线向量基本定理:如果)(R b a ∈=λλ,则b a ∥;反之,如果b a ∥且0≠b 时,一定存在唯一实数λ,使b a λ=。 2. 三点共线定理:平面内三点A,B,C 共线的充要条件是,存在实数μλ,,使μλ+=,其中 1=+μλ,O 为平面内任一点。即A,B,C 三点共线?OC OB OA μλ+=(1=+μλ) ? 典型例题精讲精练: 57.1平面向量相关概念 1. 给出下列命题:①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→ 是四 边形ABCD 为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ;④若a ∥b ,b ∥c ,则a ∥c ;其中正确命题的序号是________.[答案] ①② 2. 给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零;③λ, μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( )D A .0 B .1 C .2 D .3

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

平面向量知识点归纳

平面向量知识点归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 平面向量 2.1向量的基本概念和基本运算 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律: a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则 ()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. b a C B A a b C C -=A -AB =B

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

平面向量题型归纳总结

平面向量题型归纳 一。向量有关概念:【任何时候写向量时都要带箭头】 1。向量得概念:既有大小又有方向得量,记作:或。注意向量与数量得区别.向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。 例:已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到得向量就是 2、向量得模:向量得大小(或长度),记作:或. 3。零向量:长度为0得向量叫零向量,记作:,注意零向量得方向就是任意得; 4.单位向量:单位向量:长度为1得向量。若就是单位向量,则。(与共线得单位向量就是); 5。相等向量:长度相等且方向相同得两个向量叫相等向量,相等向量有传递性; 6。平行向量(也叫共线向量):方向相同或相反得非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行。 提醒:①相等向量一定就是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行就是不同得两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有); ④三点共线共线; 如图,在平行四边形中,下列结论中正确得就是( ) A、B、 C、D、 7.相反向量:长度相等方向相反得向量叫做相反向量.得相反向量就是-、。例:下列命题:(1)若,则。(2)若,则。(6)若,则。(3)若,则就是平行四边形。(4)若就是平行四边形,则。其中正确得就是_______ 题型1、基本概念 1:给出下列命题: ①若||=||,则=;②向量可以比较大小;③方向不相同得两个向量一定不平行; ④若=,=,则=;⑤若//,//,则//;⑥;⑦; 其中正确得序号就是。 2、基本概念判断正误:(1)共线向量就就是在同一条直线上得向量。 (2)若两个向量不相等,则它们得终点不可能就是同一点. (3)与已知向量共线得单位向量就是唯一得。 (4)四边形ABCD就是平行四边形得条件就是。

平面向量经典习题-提高篇61861

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-1 3 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .-3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116 C.611 D.116 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ),

∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B. (理)向量a,b满足|a|=1,|a-b|= 3 2 ,a与b的夹角为60°,则|b|=( ) A.1 2 B. 1 3 C.1 4 D. 1 5 [答案] A [解析] ∵|a-b|= 3 2 ,∴|a|2+|b|2-2a·b= 3 4 ,

平面向量题型归纳

平面向量题型归纳 题型一 平面向量的线性运算 例 1:记 N ?? ?,y = ?t ? ≤ y t N i !{?,y }= y t ? ≤ y 设 a t b 为平面向量,则( ) yt ? ? y ?t ? ? y A .N i !{ a + b t |a -b |} ≤ N i !{ a t |b |} B .N i !{ a + b t |a -b |} ≤ N i !{ a t |b |} C .N ?? a + b 2t a -b 2 ≤ a 2 + b 2 D .N ?? a + b 2t a -b 2 ≤ a 2 + b 2 【答案】:D 【解析】 方法一:对于平面向量 a t b t |a + b |与|a -b |表示以 a t b 为邻边的平行四边形的两条对角线的长度,而根据平面几何知识可得,平行四边形两对角线长度的较小者与相邻两边长度的较小者,没有确定的大小关系,故选项A ,B 均错;又 a + b t |a -b |中的较大者与 a t |b |一定构成非锐角三角形的三条边,由余弦定理知,必有 N ?? a + b 2t a -b 2 ≤ a 2 + b 2 ,故选项 D 正确,选项 C 错误. 方法二:若 a t b 同向,令 a =2t |b |=3,这时 |a + b |=5,|a -b |=1,N i !{|a + b |,|a -b |}=1,N i !{|a |,|b |}=2;若令|a |=2,|b |=6,这时 a + b =8t a -b =4t N i !{ a + b t |a -b |}=4 , 而 N i !{ a t |b |}=2 , 显然对任意 a t b , N i !{|a + b |,|a -b |} 与 N i !{ a t |b |}的大小关系不确定, 即选项 A 、B 均错. 同理, 若 a t b 同向, 取|a |=1t |b |=2, 则 a + b =3t |a -b |=1,这时 N ?? a + b 2 t a -b 2 = ?,而 a 2 + b 2 =5,不可能有 N ?? a + b 2t a -b 2 ≤ a 2 + b 2,故选 C 项错. 【易错点】平面向量加减法线性运算性质。 【思维点拨】解题的关键是结合向量模的几何意义,加减运算的几何意义,通过图形分析得到正确选项; 也可从选择题的特点入手,通过对 a t b 特殊化,从而得到 a + b t |a -b |的值,通过比较大小关系排除错误选项,得出正确答案. 题型二 共线向量定理、平面向量基本定理的应用 例 1.O A B C 中,A B 边的高为 C ?,若ˉC ˉˉB ˉ˙=a t ˉC ˉˉA ˙=b t a ·b =O t a =1t b =2t 则ˉA ˉˉ?ˉ˙=( ) A.1 a -1 b B.2 a -2 b C.3 a -3 b D.4 a -4 b 3 3 3 3 5 5 5 5 【答案】 D 【解析】方法一: a ·b =0t ?A C B =?0°t A B = 5t C ?= 2 5 . 5 B ?= 5 t A ?= 4 5 t A ? : B ?=4 : 1. ˉA ˉˉ?ˉ˙=4 ˉA ˉˉB ˉ˙=4 (ˉC ˉˉB ˉ˙ — ˉC ˉˉA ˙)= 4 a -4 b .

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区 别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同) ,(),(2211y x y x 2121y y x x 2.向量的运算 (1)向量加法:求两个向量和的运算叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A a b b b a A A B C C ) 2() 3( 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。

②向量减法: 同一个图中画出a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则” (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点. (3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a b a 则, (3)单位向量都相等 (4) 向量就是有向线段 (5)两相等向量若共起点,则终点也相同 (6)若b a ,c b ,则c a ; (7)若b a //,c b //,则c a // (8) b a 的充要条件是||||b a 且b a //; (9) 若四边形ABCD 是平行四边形,则DA BC CD B ,A 练习. (四川省成都市一诊)在四边形ABCD 中,“AB →=2DC →”是“四边形ABCD 为梯形”的 A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件 题型二: 考查加法、减法运算及相关运算律 例2 化简)()(BD AC CD AB = 练习1.下列命题中正确的是 A .OA O B AB u u u r u u u r u u u r B .0AB BA u u u r u u u r C .00AB r u u u r r D .AB BC CD AD u u u r u u u r u u u r u u u r 2.化简AC u u u r BD u u u r CD u u u r AB u u u r 得 A .A B u u u r B .DA C .BC D .0r 3.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则

平面向量题型归纳归纳

平面向量题型归纳 一.向量有关概念:【任何时候写向量时都要带箭头】 1.向量的概念:既有大小又有方向的量,记作:AB 或a 。注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 例:已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 4.单位向量:单位向量:长度为1的向量。若e 是单位向量,则||1e =。(与AB 共线的单位向量是|| AB AB ±); 5.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 6.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。 提醒:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0); ④三点A B C 、、共线? AB AC 、 共线; 如图,在平行四边形ABCD 中,下列结论中正确的是 ( ) A.AB CD = B.AB AD BD -= C.AD AB AC += D.AD BC +=0 7.相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 、AB BA =-。例:下列命题:(1)若a b =,则a b =。(2)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则 AB DC =。其中正确的是_______ 题型1、基本概念 1:给出下列命题: ①若|a |=|b |,则a =b ;②向量可以比较大小;③方向不相同的两个向量一定不平行; ④若a =b ,b =c ,则a =c ;⑤若a //b ,b //c ,则a //c ;⑥00a ?=;⑦00a ?=; 其中正确的序号是 。

平面向量知识点及方法总结总结

平面向量知识点及方法总结总结 一、平面向量两个定理 1、平面向量的基本定理 2、共线向量定理。 二、平面向量的数量积 1、向量在向量上的投影:,它是一个实数,但不一定大于0、 2、的几何意义:数量积等于的模与在上的投影的积、三坐标运算:设,,则(1)向量的加减法运算:,、(2)实数与向量的积:、(3)若,,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标、(4)平面向量数量积:、(5)向量的模:、 四、向量平行(共线)的充要条件、 五、向量垂直的充要条件、六、七、向量中一些常用的结论 1、三角形重心公式在中,若,,,则重心坐标为、 2、三角形“三心”的向量表示(1)为△的重心、(2)为△的垂心、(3)为△的内心; 3、向量中三终点共线存在实数,使得且、 4、在中若D为BC边中点则 5、与共线的单位向量是七、向量问题中常用的方法 (一)基本结论的应用

1、设点M是线段BC的中点,点A在直线BC外,则(A)8 (B)4 (C)2 (D) 12、已知和点M满足、若存在实数m使得成立,则m= A、2 B、3 C、4 D、 53、设、都是非零向量,下列四个条件中,能使成立的条件是() A、 B、 C、 D、且 4、已知点____________ 5、平面向量,,(),且与的夹角等于与的夹角,则() A、 B、 C、 D、6、中,P是BN上一点若则m=__________ 7、o为平面内一点,若则o是____心 8、(xx课标I理)已知向量的夹角为,则、 (二)利用投影定义

9、如图,在ΔABC中,,,,则= (A)(B)(C)(D 10、已知点、、、,则向量在方向上的投影为 A、 B、 C、 D、11设是边上一定点,满足,且对于边上任一点,恒有则 A、 B、 C、 D、 (二)利用坐标法 12、已知直角梯形中,//,,,是腰上的动点,则的最小值为____________、 13、(xx课标II理)已知是边长为的等边三角形,为平面内一点,的最小值是() (三)向量问题基底化 14、在边长为1的正三角形ABC中, 设则____________、 15、(xx天津理)在中,,,、若,,且,则的值为 ___________、 16、见上第11题 (四)数形结合代数问题几何化,几何问题代数化例题 1、中,P是BN上一点若则m=__________

平面向量知识点易错点归纳

§平面向量的概念及线性运算1.向量的有关概念 2.向量的线性运算

3.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa. 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB→∥CD→且AB与CD不共线,则AB∥CD; 若AB→∥BC→,则A、B、C三点共线. 失误与防范 1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.

§平面向量基本定理及坐标表示 1.平面向量基本定理 如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2. 其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a=(x1,y1),b=(x2,y2),则 a+b=(x +x2,y1+y2),a-b=(x1-x2,y1-y2), 1 λa=(λx ,λy1),|a|=x21+y21. 1 (2)向量坐标的求法 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=?x2-x1?2+?y2-y1?2. 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠∥b?x1y2-x2y1=0. 方法与技巧 1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件

相关文档
最新文档