世界特高压交流输电技术工程一览(图

世界特高压交流输电技术工程一览(图
世界特高压交流输电技术工程一览(图

世界特高压交流输电技术工程一览(图)

关键词: 特高压交流输电输电工程

北极星智能电网在线讯:美国、前苏联、日本和意大利都曾建成交流特高压试验线路,进行了大量的交流特高压输电技术研究和试验,最终只有前苏联和日本建设了交流特高压线路。

一、前苏联1150kV工程

前苏联1000kV级交流系统的额定电压(标称电压)1150kV,最高电压1200kV,是世界上已有工程中最高者。

1、工程概况

20世纪70年代,前苏联开始1000kV特高压交流输变电技术的研究工作,1985年8月建成了埃基巴斯图兹—科克切塔夫线路(497km)以及2座1 150kV变电站(升压站),并按照系统额定电压1150kV投人工业运行。1988年8月建成了科克切塔夫~库斯坦奈线路(410km)以及1座1150kV变电站,该线路也按1150kV投入工业运行。一直到1990年为止,前苏联有907km长的1150kV输电线路和2座1150kV变电站、1座1150V升压站按1150kV电压运行了5年之久。

之后,前苏联又分别建设了库斯坦奈~恰尔连滨斯克线路(328km)以及1座1150kV变电

站;埃基巴斯图兹~巴尔纽尔~依塔特线路1115km和1座1150kV变电站。

综上所述,前苏联从1985年8月至今共建成2350km 1150kV输电线路和4座1150kV变电站(其中1座为升压站)。其中有907km线路和3座150kV变电站(其中1座为升压站)从1985年~1990年按系统额定电压1150kV运行了5年之久。之后由于前苏联经济上的解体和政治原因,卡札克斯坦中央调度局将全线降压为500kV电压等级运行,在整个运行期间,过电压保护系统的设计并不需要进行修改,至今运行情况良好。

2、1150kV变电站

(1)建设规模

前苏联已建成4座1150kV变电站,其中有代表性的是科克切塔夫1150kV变电站,包括1150kV和500kV两级电压等级,1150kV部分建规模为:2回1150kV出线、2回备用出线;2组1150/500kV 200MVA主变压器;2组900Mvar1150/kV并联电抗器。

该变电站1985年8月建成后按系统额定电压1150kV运行了5年之久,1990年以后降压为500kV运行至今,为以后建设的1150kV变电站积累了很多施工、设备调试以及运行的经验,并进行了大量的试验和测试工作。日常运行和紧急事故模拟试验研究结果表明,在绝大多数情况下电系统实际的操作过电压水平不会超过1.6p.u.,因此前苏联后期1150kV系统的过电压设计,从原来操作过电压1.8p.u.降到1.6p.u.。

(2)电气主接线

1150kV配电装置采用一种新型的双母线双断路器电气主接线,即每个出线回路采用双断路器,主变压进线回路不装断路器直接接人母线。这种主接线主要是考虑输电线路的故障率大于主变压器故障率,尽管主变压器回路不装断路器,如果主变压器故障相当于母线故障,但是苏联1150 kV主变压器十分可靠(查波罗什变压器厂生产19台单相667MVA 1150kV主变压器运行了185台年,故障率为0),发生上述这种情况的概率是很小的。而在故障率相对高一些的出线回路安装2台断路器分别接人两条主母线可以提高运行的灵活性和可靠性。同时由于2个主变压器进线回路不装断路器,应尽在出线回路安装2台断路器,但是整个1150kV配电装置的断路器数量并没有增加(本期工程)。因此前苏联通过技术经济比较在1150kV不采用一个半断路器接线,而要用新型的双母线双断路器接线,这种做法值得我们在国内1000kV 交流变电站设计时借鉴。

(3)主要电气设备

前苏联4个1150kV变电站的1150kV配电装置都采用屋外中型布置方案,安装了常规敞开瓷柱式1150kV电气设备,包括4柱8断口空气断路器、双柱垂直开启或隔离开关等各种电气设备。

1988年秋动工建设1000千伏特高压线路。1992年4月28日建成从西群马开关站到东山梨变电站的西群马干线138公里线路,1993年10月建成从柏崎刈羽核电站到西群马开关站的南新泻干线中49公里的特高压线路部分,两段特高压线路全长187公里,目前均以500千伏电压

降压运行。1999年完成东西走廊从南磐城开关站到东群马开关站的南磐城干线194公里和从东群马开关站到西群马开关站的东群马干线44公里的建设,两段特高压线路全长238公里。目前日本共建成特高压线路426公里,由于国土狭小,日本特高压线路全部采用双回同杆并架方式。

二、日本1000kV工程

1、工程概况

日本1000kV电力系统集中在东京电力公司,1988年开始建设1000kV输变电工程,1999年建成2条总长度430km的1 000 kV输电线路和1座1000 kV变电站,第1条是从北部日本海沿岸原子能发电厂到南部东京地区的1000kV输电线路,称为南北线(长度190km),南新泻干线、西群马干线;第2条是联接太平洋沿岸各发电厂的1000kV输电线路,称为东西线路(长度240 km),东群马干线、南磬城干线,如图所示。

此外日本还建成了1座新楱名1100kV变电站,所有的1000kV线路和变电站从建成后都一直降压为500kV电压等级运行,考虑配合太平洋沿岸和东北地区原子能发电厂的建设拟升压至额定电压1000kV运行,但是由负荷增长停止不前,电源建设和1000kV升压计划也大幅推迟,预计在21世纪10年代后期才能升压至1000kV运行。

2、1100kV变电站

(1)建设规模

日本已在东京电力公司建成1座新楱名1000kV变电站,其建设规模为:1000kV 4回出线,4台3000MCA 1000/500kV主变压器,不安装并联电抗器。

(2)电气主接线

1000kV配电装置采用日本在500kV变电站广泛使用的双母线双分段电气主接线(采用SF6断路器分段)。电气主接线中避雷器MOA配置原则经过详细的雷电侵入波过电压计算分析

后采用2+1+2的方案,即每个出线回路加2组MOA,每个主变进线回路加1组MOA,每四分之一段母线加2组MOA,其结论是虽然MOM总数量比常规1+1+1方案有所增加,增加了MOA部分的投资,但是采用本方案可以将电气设备绝缘水平从2900kV(雷电冲击)下降至2250kV,使电气设备的投资下降很多,其最后综合总投资比常规方案可以节省9%。

日本1000kV不采用一个半断路器接线,其独特的多避雷器配置设计值得我国在1000kV 变电站设计时参考。

(3)主变压器

日本由三大制造厂三菱、日立和东芝公司分别各生产一台单相1000MVA 1000kV主变压器,安装在新楱名1000kV变电站。

日本的1000千伏特高压交流输电技术研究始于1973年。引发特高压输电技术研究的原因主要有:上世纪70年代,日本经济高速增长,电力需求预测估计年增长率为6%~10%;将新泻、福岛等地核电输往以东京为中心的首都圈(远距离输电、输电走廊紧张);如果仍采用500千伏输电则首都圈的短路电流将超过63千安;解决未来远距离输送电力的稳定问题。

上世纪90年代,日本建设了427千米1000千伏特高压交流同杆并架输电线路(目前以500千伏电压运行)和新榛名特高压设备实证实验场(一直到今天还在通电状态)。曾计划于21世纪初升压到特高压输电,但至今仍未升压。

电力需求增长催生特高压

就日本特高压输电的前景问题,笔者与东京电力公司技术部长财满英一、日本电力中央研究所电力技术研究所所长藤波秀行、东芝公司电力事业部原特高压项目负责人村山康文、东芝公司浜川崎工厂(变压器、开关、避雷器等设备的主要制造点)总工程师池田九利、东芝公司电力事业部原避雷器部部长菅雅弘等专家进行过多次交流,他们一致认为:日本从未想过放弃特高压交流输电计划,推迟的原因主要是日本经济低迷、电力需求增长迟缓所致;在系统稳定性、输电线路及输变电设备技术等方面,所有技术问题已全部得到解决;1000千伏特高压交流输电不存在技术障碍,具有随时可以升压的技术储备。

东京电力公司是日本十家电力公司中最大的一家,其装机容量占日本全国的1/3左右。东京电力的供电面积约39000平方千米,供电区人口约4300万。东京电力公司也是日本唯一具有特高压输电线路及特高压输变电设备实证实验场的电力公司。

财满英一博士就东京电力公司何时实现1000千伏特高压交流输电的商业运行问题作了如下说明:这个问题主要取决于三点,一是电力需求的增长,二是新电源点的建设(新建电站因为系统稳定性和短路电流超标等问题,不考虑用500千伏输电电压输送大功率电力),三是即便只考虑潮流问题也需要特高压。最新数据表明:东京电力公司2000年以来年电力需求增长率为1%~2%,最高日尖峰负荷出现在2003年,为6400万千瓦。2005年东京电力公司自身的总装机容量为6184万千瓦,不足的电力目前由其他公司供电。以上事实说明,东京电力公司有新增装机的需求。财满英一博士还强调说,由此预计,约2015年前后有可能实现1000千伏特高压交流输电的商业运行,这也是东京电力公司的新榛名特高压设备实证实验场为何至今没有中断设备带电考核的缘故。

日本对特高压的研究

1973年,日本建成第一回500千伏交流输电线路。同年,正式开始了1000千伏级特高压交流输电技术研究工作。日本特高压输电特别委员会通过对输送1000万千瓦的输电模型系统进行了综合比较研究。经过800千伏/1100千伏/1200千伏/1500千伏等多个交流电压等级及直流±500千伏方案的综合技术经济比较,认为:

(1)800千伏与1500千伏的缺点:800千伏输电能力低、要求的输电线路回数多、输送电力的成本相对较高、环境及选址不利;1500千伏电压等级难以预测输电线路,变电设备的设计和制造、技术方面不合适。

(2)1100千伏与1200千伏的比较:输送能力方面,双回线路正常输送均满足1000万千瓦的输送能力,1200千伏方案稳定极限输送能力可以超过2000万千瓦;绝缘、静电感应和噪声抑制方面,1200千伏比1100千伏的导线数目增加,而且铁塔高度约增加10米,重量增加约30%左右;建设费用方面,1100千伏的建设费用比1200千伏低18%左右;雷击事故率和可靠性基本相同。

(3)交流输电与直流输电方式的比较:如果以直流构成外环系统,系统的结构不能满足可靠性要求。虽然有采用多端直流系统的可能性,但进行系统扩充时的灵活性低、多端直流

导致经济性下降、有时由于潮流的反转需要改变主电路接线,可能制约外环的运营。直流输电技术主要适合超远距离电源输电系统,而日本输电距离600千米左右不算是超远距离,直流的经济益处不显著。如果在交流事故时(也包括单相对地短路等频度高的事故)换流器会因失去电压支撑而停止,将对系统的稳定带来不利影响。由于上述原因,研究集中在不同等级的交流方案上。

综合以上研究,1980年1100千伏(额定电压:1000千伏)被选定作为日本的500千伏电压等级以上的更高一级电压。

日本的特高压建设

东京电力公司于1988年启动特高压工程建设。

在特高压立项过程中,公众担忧特高压对电磁环境的影响,尤其是对磁场的影响及景观的破坏表示担忧。为此,东京电力公司通过大量的试验数据向公众和社区解释并取得公众理解:如特高压电磁环境的影响限制在500千伏电压等级水平以内;虽对景观的影响是不可避免的,但是如果不建特高压线路,则要多建3~4回500千伏线路,困难更大;深入细致地进行输电线路对沿线生态环境影响及电磁场对动植物影响的研究,以大量研究结果消除公众的担忧等等。

东京电力的特高压输电线路采用同杆双回设计。特高压输电容量计划为:对于同杆架设的双回线,先期输送600万千瓦,最终达到1300万千瓦。

输电线路外绝缘和电磁环境研究由日本电力中央研究所负责。在输电线路电磁环境限值

上,日本要求地面场强不得大于3千伏/米(在山区10千伏/米),是全世界最严格的规定。输电线路的设计、施工由东京电力公司负责,从1988年开始到1999年结束,共建成1000千伏同杆并架线路427千米,相当于单回线路954千米。特高压线路采用8×810平方毫米导线结构,对地距离高,电气设计十分可靠。同杆并架线路塔高为100~140米,全部采用钢管塔。这条线路从1992年陆续建成以来,一直降压至500千伏运行,经受了14年的运行考核,证明了线路的机械性能是十分可靠的。

特高压输变电设备(包括变压器及GIS)由东芝、三菱和日立公司分别制造。1995年,研制成功一组1050/525千伏、3×1000兆伏安的变压器、一组1100千伏气体绝缘金属封闭组合电器(GIS)设备,安装在500千伏新榛名变电站(海拔高度:603.8米),从500千伏侧加压,进行了10多年的加压试验,至今累计带电约50000小时,完成了一系列试验项目。

日本的特高压交流输变电设备的研制也不是一帆风顺的。起初,特高压避雷器的性能不尽如人意,经过技术改进才达到了高性能技术规范的要求。在变压器方面,东芝、三菱和日立公司三家都出现过问题,其中一家的变压器在现场安装两年后出现油流带电问题,经处理已得到解决。

日本1000千伏特高压交流系统的特点

日本1000千伏特高压交流系统具有鲜明的技术特点。

日本国土狭小,送电线路短,在全部427千米成“人”字形结构的特高压电网中共有4个变电站,2个开关站,最长的线路段长度也只有138千米。加上日本1000千伏交流特高压线路主要输送核电,通过改变送受端电网的联结方式,可以基本保持特高压电网输送电力恒定不变。因此,特高压系统不配置高抗,也不考虑其他的调相调压措施。

为了降低线路塔头尺寸,降低变压器等变电设备的绝缘水平,日本采取了一系列限制操

作过电压措施,主要包括:采用高性能避雷器,4柱并联,显著降低雷电和操作配合电流下的残压;在GIS断路器中采用合闸和分闸电阻,将投入和切除时线路中部的过电压水平限制到单相短路时健全相的过电压水平;采用带分闸电阻的隔离开关限制隔离开关电弧重燃在GIS腔体内引起的高频振荡过电压等。

为提高系统稳定性和可靠性,成功研制了高速接地开关,为短路点潜供电流提供强制通道,加速短路点电弧熄灭,与断路器配合实现同杆并架线路的快速单相重合闸,保证重合闸时间在1秒以内。

日本的实践表明:特高压输电技术已基本成熟,没有不可逾越的技术问题;特高压的电磁环境影响可以通过优化设计,降低至500千伏输电线路同样水平。

特高压带动电工制造业发展

日本通过特高压工程的实践,还使本国的电工装备制造业的技术得到了飞跃式发展。

第一,为优化特高压系统的绝缘性能,于1985年启动高性能氧化锌避雷器的研发,其关键目标是第三代氧化锌电阻片的研制,其结果是氧化锌电阻片的梯度和通流能力大幅提高,技术水平至今仍居世界第一(目前西门子公司等也从日本东芝购置一部分大容量氧化锌电阻片)。高性能氧化锌电阻片的研发成功,可为电力系统提供更好的过电压保护。东京电力公司自1991年以来,把特高压电网的过电压限制技术应用到500千伏设备电压等级上,将500千伏设备的绝缘水平由1550千伏降低二级至1300千伏。一般认为,每降低一级绝缘等级,设备成本相应降低3%~5%,降低二级则降10%以上,线路及杆塔的投资节省更为可观。

第二,日本结合特高压工程研发了1100千伏双断口六氟化硫罐式断路器,也是世界上唯一拥有这项技术的国家。目前,日本的GIS水平是国际公认的最高水平,500千伏普遍采用单断口断路器。

第三,因国土狭小,大件运输限制严格,加上规划中的特高压变电站都位于山区,道路交通运输条件很苛刻。为解决1000兆伏安/1000千伏变压器的运输问题,日本在世界上首次采用分体式结构,将运输重量控制在200吨,为解决今后高电压、大容量变压器的大件运输开了先河,并由此开发了分体运输、现场组合的变压器新技术。

第四,为更好地履行社会责任,进一步降低电磁环境影响,研发了降低风噪声的低噪声导线。

第五,结合特高压输电系统特点而研发的高速接地开关、断路器分闸电阻、带有分合闸电阻的隔离开关等,在解决降低操作过电压、单相重合闸、潜供电流、快速暂态过电压(VFTO)等技术问题方面呈现很好的推广应用前景。

总之,日本1000千伏特高压交流工程是成功的,极大地推动了日本输电技术和电工制造技术的进步,其应用前景十分乐观。

三、意大利1050kV试验工程

1、工程概况

20世纪70年代,意大利和法国受西欧国际发供电联合会的委托进行欧洲大陆选用交流800kV和1050kV输电方案的论证工作,之后意大利特高压交流输电项目在国家主持下进行了基础技术研究,设备制造等一系列的工作,并于1995年10月建成了1050kV试验工程,至1997年12月,在系统额定电压(标称电压)1050kV电压下进行了2年多时间,取得了一定的运行经验。

该试验工程位于意大利Suvereto1000kV试验站内,包括两部分:(1)1050/400kV变电站;(2)2.8km1050kV输电线路。1050kV试验工程单线示意图如图所示。

2、1050kV变电站

本变电站包括1050kV和400kV两级电压,1050kV部分包括3台单相400MVA主变压器,1套双母线接线、1个进线回路的金属封闭开关设备GIS,1段长0.6km充油电缆,1套架空出线隔离开关和快速接线开关。其主要技术特性分叙如下:

(1)主变压器

意大利制造商生产了3台单相1000kV主变压器。

(2)气体绝缘金属封闭开关设备GIS

在变电站内安装了1套1100kVGIS,采用双母线电气主接线,包括双母线、母线电压互感器、断路器、隔离开头在及接地开关、电流线感器和避雷器,所有设备封闭在金属外壳内,采用SF6气体绝缘。

SF6断路器为单相四断器结构,带合、分闸共用的500Ω并联电阻,同时为了使触头四周的电场更加均匀,在断口间加装了均压电容器。隔离开关带110Ω并联电阳。

(3)敞开瓷柱式电气设备

在变电站出线回路的线路侧加装了1套1100kV隔离开关和快速接地开关,以解决1000kV 系统单相重合闸的潜供电流和恢复电压的问题。

(4)金属氧化物避雷器

本变电站采用SF6气体绝缘的金属氧化物避雷器作为雷电侵入波的保护装置,具有较好的保护特性:

20kA,8/20μs波形的雷电冲击残压为1800kV;3kA,30/60μs波形的雷电冲击线压为1450kV。

(5)充油高压电缆

从变电站GIS的出线套管至架空线路之间约0.6km安装了3根单相充油1000kV高压电缆,每相电缆包括1个电缆接头和1个独立的冷却系统,电缆内部依靠油冷却,电缆外部采用水冷却方式。

1000kV充油式高压电缆包括所带的6套终端装置,运行2年多时间,情况良好。意大利1000kV高压电缆是世界上唯一投入工业试运行电压等级最高、在额定电压1050kV下运行时间最长的充油式电缆,具有一定的代表性。

四、中国第一条特高压交流输电线路

中国对特高压输电技术的研究始于上个世纪80年代,经过20多年的努力,取得了一批重要科研成果。研究表明,发展特高压输电是中国电力工业发展的必然选择。目前,国家电网已经和在建的特高压交流输变电工程:一是陕北-晋东南-南阳-荆门-武汉的中线工程,二是淮南-皖南-浙北-上海的东线工程。另外,中国第三条特高压输电工程——“四川—上海±800千伏特高压直流输电示范工程”,也于2007年12月21日在四川省宜宾县动工修建。到2020年,我国特高压电网将基本建成,输送电量将达到2亿千瓦时以上,占全国装机总容量的25%。

中国第一条特高压交流输电线路

晋东南—南阳—荆门1000千伏特高压交流试验示范工程

晋东南-南阳-荆门1000千伏特高压交流试验示范工程(图片欣赏)

2009年1月6日,我国自主研发、设计和建设的具有自主知识产权的1000千伏交流输变电工程——晋东南-南阳-荆门特高压交流试验示范工程顺利通过试运行。这标志着我国在远距离、大容量、低损耗的特高压(UHV)核心技术和设备国产化上取得重大突破,对优化能源资源配置,保障国家能源安全和电力可靠供应具有重要意义。

据介绍,这条世界上首次投入运营的特高压交流线路全长640公里,电压等级是世界最高的,达到1000千伏,输送的电能是现有的500千伏的5倍,输送过程的电能损耗和占地面积都可以节省一半以上,整个工程的投资比500千伏的线路节省三分之一。纵跨晋豫鄂三省,其中还包含黄河和汉江两个大跨越段。线路起自山西1000kV晋东南变电站,经河南1000kV 南阳开关站,止于湖北1000kV荆门变电站。

工程于2006年8月取得国家发展和改革委员会下达的项目核准批复文件,同年底开工建设,2008年12月全面竣工,12月30日完成系统调试投入试运行,2009年1月6日22时完成168小时试运行投入商业运行,目前运行情况良好。

中国第一条特高压交流输电线路

晋东南—南阳—荆门1000千伏特高压交流试验示范工程

晋东南-南阳-荆门1000千伏特高压交流试验示范工程(图片欣赏)

晋东南-南阳-荆门1000千伏特高压交流试验示范工程(图片欣赏)

2009年1月6日,我国自主研发、设计和建设的具有自主知识产权的1000千伏交流输变电工程——晋东南-南阳-荆门特高压交流试验示范工程顺利通过试运行。这标志着我国在远距离、大容量、低损耗的特高压(UHV)核心技术和设备国产化上取得重大突破,对优化能源资源配置,保障国家能源安全和电力可靠供应具有重要意义。

据介绍,这条世界上首次投入运营的特高压交流线路全长640公里,电压等级是世界最高的,达到1000千伏,输送的电能是现有的500千伏的5倍,输送过程的电能损耗和占地面积

都可以节省一半以上,整个工程的投资比500千伏的线路节省三分之一。纵跨晋豫鄂三省,其中还包含黄河和汉江两个大跨越段。线路起自山西1000kV晋东南变电站,经河南1000kV 南阳开关站,止于湖北1000kV荆门变电站。

工程于2006年8月取得国家发展和改革委员会下达的项目核准批复文件,同年底开工建设,2008年12月全面竣工,12月30日完成系统调试投入试运行,2009年1月6日22时完成168小时试运行投入商业运行,目前运行情况良好。

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

特高压输电技术知识

特高压输电技术知识 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。(4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 特高压输电与超高压输电经济性比较 特高压输电与超高压输电经济性比较,一般用输电成本进行比较,比较2个电压等级输送同样的功率和同样的距离所用的输电成本。有2种比较方法:一种是按相同的可靠性指标,比较它们的一次投资成本;另一种是比较它们的寿命周期成本。这2种比较方法都需要的基本数据是:构成2种电压等级输电工程的统计的设备价格及建筑费用。对于特高压输电和超高压输电工程规划和设计所进行的成本比较来说,设备价格及其建筑费用可采用统计的平均价格或价格指数。2种比较方法都需要进行可靠性分析计算,通过分析计算,提出输电工程的期望的可靠性指标。利用寿命周期成本方法进行经济性比较还需要有中断输电造成的统计的经济损失数据。 一回1 100 kV特高压输电线路的输电能力可达到500 kV 常规输电线路输电能力的4 倍以上,即4-5回500 kV输电线路的输电能力相当于一回1 100 kV输电线路的输电能力。显然,在线路和变电站的运行维护方面,特高压输电所需的成本将比超高压输电少得多。线路的功率和电能损耗,在运行成本方面占有相当的比重。在输送相同功率情况下,1 100 kV线路功率损耗约为500 kV线路的1/16左右。所以,特高压输电在运行成本方面具有更强的竞争优势。 特高压知识问答(17) 问:交流特高压电网电气设备的绝缘有什么特点,其影响因素是什么? 答:现代电网应具有安全不间断的基本功能。实践表明,在全部停电事故中,输电线路和变电站电气设备的绝缘闪络或击穿是最主要的原因。因此,为了保证电网具有一个可接受的可

准东—华东±1100kV特高压直流输电工程

准东—华东(皖南)±特高压直流输电工程(河南段)拟压覆省地勘基金项目勘查成本价值评估报告 摘要 编号:融矿矿评字()号 重要提示:“以下内容摘自本勘查成本价值评估报告,欲了解本评估项目的全部情况,请仔细阅读勘查成本价值评估报告全文”。 评估机构:重庆融矿资产评估房地产土地估价有限公司。 评估委托人:河南省地质勘查项目管理办公室。 评估对象:准东—华东(皖南)±特高压直流输电工程(河南段)拟压覆省地勘基金项目勘查成本价值。 评估目的:“准东—华东(皖南)±特高压直流输电工程(河南段)拟压覆省地勘基金项目核实报告”已经评审备案,按照河南省国土资源厅关于进一步加强建设项目压覆重要矿产资源管理工作通知的意见(豫国土资发【】号)及河南省国土资源厅办公室关于规范建设项目压覆省地勘基金项目有关工作的意见(豫国土资办函【】号)及国家现行法律法规规定,需要对该建设项目压覆区进行勘查成本价值评估,为确定准东—华东(皖南)±特高压直流输电工程(河南段)拟压覆省地勘基金项目区应当缴纳补偿费用提供依据。本次评估即为实现上述目的而为评估委托人提供该压覆区勘查成本在本评估报告中所述各种条件下及评估基准日时点上公平、合理的价值参考意见。 评估基准日:年月日。 评估方法:勘查成本效用法、地质要素评序法。 评估报告主要参数: (一)建设项目拟压覆“河南省西峡县大香沟金矿预查”主要实物工作量:激电中梯(长导线)测量(×);激电中梯(长导线)剖面测量(点距);;∶土壤测量(×)。重置直接勘查成本:万元;间接费用分摊:万元;重置勘查成本:万元,工程布置合理性系数:,勘查工作加权平均质量系数:,效用系数:。

(二)建设项目拟压覆“河南省内乡县大桥—淅川县上集一带钒矿普查”主要实物工作量:钻探工作(钻孔,孔深;钻孔,孔深);槽探();勘探线剖面测量,工程点测量个;地质填图约;地质测量约。重置直接勘查成本:万元;间接费用分摊:万元;重置勘查成本:万元,工程布置合理性系数:,勘查工作加权平均质量系数:,效用系数:,调整系数。 (三)建设项目拟压覆河南省唐河县常湾东塔院金多金属矿预查项目常湾重点工作区,该区目前仅施工钻孔,暂未开展其它勘查工作,建设项目距离钻孔约。建设项目未压覆河南省唐河县常湾东塔院金多金属矿预查项目任何实物工作量。 (四)建设项目拟压覆河南省桐柏县黄金冲金银多金属矿预查区主要实物工作量:地质简测,土壤地球化学测量,勘探线剖面测量。重置直接勘查成本:万元;间接费用分摊:万元;重置勘查成本:万元,工程布置合理性系数:,勘查工作加权平均质量系数:,效用系数:。 (五)建设项目拟压覆河南省桐柏县老湾金矿深部及外围普查区主要实物工作量;勘探线剖面测量,地质简测,地质修测。重置直接勘查成本:万元;间接费用分摊:万元;重置勘查成本:万元,工程布置合理性系数:,勘查工作加权平均质量系数:,效用系数:。 (六)建设项目拟压覆河南省桐柏县沙子岗一带萤石矿预查区主要实物工作量:∶地质简测,∶高精度磁法测量。重置直接勘查成本:万元;间接费用分摊:万元;重置勘查成本:万元,工程布置合理性系数:,勘查工作加权平均质量系数:;效用系数:。 评估结论:经评估人员现场调查和当地市场分析,按照矿业权评估的原则和程序,选取适当的评估方法和评估参数,经过仔细计算,确定准东—华东(皖南)±特高压直流输电工程(河南段)拟压覆省地勘基金项目勘查成本价值在评估基准日年月日所表现的价值为人民币万元,大写人民币壹佰肆拾万捌仟叁佰元整。 其中:“河南省西峡县大香沟金矿预查”项目压覆区勘查成本价值为人民币万元,大写人民币玖仟捌佰元整;

2020年经典的输电技术总结

2020年经典的输电技术总结 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术.下面是小 输电技术总结1 2019年10月12日,由中国高等学校电力系统及其自动化专业学术年会组织委员会主办,西华大学电气与电子信息学院承办,亚洲电能质量产业联盟、内蒙古工业大学协办的中国高等学校电力系统及其自动化专业第35届学术年会在四川成都隆重开幕。《电力自动化设备》杂志社是本次会议支持单位之一。 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术、电力工业 的原则。经过30多年的发展,该年会已成为全国高校电力系统及其自动化专业师生一年一度不可缺少的学术盛会,为培养我国

的贡献。 会上,华北电力大学赵成勇教授进行了《直流输电技术面临 输电技术总结2 特高压输电技术是中国实现能源大范围优化配置的战略途径,该技术是世界上最先进的输电技术之一。目前,在世界范围内只有我国全面掌握了这项技术,并开始了大规模的工程应用。我国从2004年底开始集中开展大规模研究论证、技术攻关以及工程实践,进行了特高压交流输电、特高压直流输电技术的研究,掌握了过电压抑制、外绝缘配置、电磁环境控制等关键技术,研制出变压器、开关、串补装置,和换流变、换流阀、平波电抗器、直流控制保护等核心设备,建立了包括研究、设计、制造在内完整的特高压输电技术体系,整个体系具有完全的自主性。 中国由于能源资源与电力需求存在远距离、逆向分布特点,以及经济快速发展带来的电力需求,需要开发和应用远距离、大容量、高效率的特高压输电技术。实践证明特高压输电在大范围内配置能源资源具有技术和经济优势。以特高压800千伏直流输电项目为例,相比较500千伏直流工程,它的输送容量提高到 2-3倍,经济输送距离提高到2-2.5倍,运行可靠性提高了8倍,

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

国内外特高压输电技术发展情况综述

国内外特高压输电技术发展情况综述 (一) 调研题目:关于特高压输电技术国内外发展情况的调研报告 调研目的:通过认真分析和研判从检索、查询、索取等多渠道获得大量的技术文献,掌握了特高压输电技术国内外的发展情况,据此完成本调研 报告,为我省未来特高压的规划发展提出相关建议。 编写人员:何旭东、王瑗、刘斌蓉 调研时间:2005.4. ~2005.9 调研地点:成都 1.背景 自从电能作为人们生活中廉价而又清洁的能源以来,随着电网的不断发展壮大,输电电压经历高压、超高压两个发展阶段,目前又跨入了特高压输电的新的历史时期。这种发展标志着我国综合实力的不断提高,电力行业技术水平的提高。近来,由于石油价格的暴涨,1993年11月在宜昌召开的中国电机工程学会电力系统与电网技术综合学术年会上发表《关于着手开展特高压输电前期科研的建议》以来,各方面的人士对特高压输电技术给予了高度的关注。 那么何谓特高压输电呢?特高压输电系指比交流500kV输电能量更大、输电距离更远的新的输电方式。它包括两个不同的内涵:一是交流特高压(UHC),二是高压直流(HVDC)。具有输电成本经济、电网结构简化、短路电流小、输电走廊占用少以及可以提高供电质量等优点。根据国际电工委员会的定义:交流特高压是指1000kV以上的电压等级。在我国,常规性是指1000kV以上的交流,800kV以上的直流。 我们国家是在何种情形下进行特高压研究的呢?不妨从如下几个方面来看: 从能源利用上来说,看国际上常以能源人均占有量、能源构成、能源使用效率和对环境的影响,来衡量一个国家的现代化程度。目前我国人均年消耗的能源水平很低,如果在21世纪中叶赶上国际中等发达水平,能源工业将要有大的发展。据最近召开的世界能源第十七次会议预测,世界能源工业还要进一步发展,到2030年,世界的能源产量将翻一番;到21世纪末再翻一番,其中主要集中在中国、印度、印尼等发展中国家。我国电力将在未来15~20年内保持快速增长,根据我国电力发展规划,到2003年、2010年、2020

特高压直流输电技术研究

特高压直流输电技术研究 发表时间:2017-07-04T11:23:41.107Z 来源:《电力设备》2017年第7期作者:杨帅 [导读] 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 (国网河北省电力公司检修分公司河北省石家庄 050000) 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 关键词:特高压;直流输电;应用 引言 随着国民经济的持续快速发展,我国电力工业呈现加速发展态势,近几年发展更加迅猛。按照在建规模和合理开工计划,全国装机容量 2010 年达到 9.5 亿千瓦,2020 年达到 14.7 亿千瓦;用电量 2010 年达到 4.5 万亿千瓦时,2020 年达到 7.4 万亿千瓦时。电力需求和电源建设空间巨大,电网面临持续增加输送能力的艰巨任务。同时我国资源分布不均匀,全国四分之三的可开发水资源在西南地区,三分之二的煤炭资源分布在西北地区,而经济发达的东部地区集中了三分之二的用电负荷。大容量、远距离输电成为我国电网发展的必然趋势。 同时,特高压输电具有明显的经济效益。特高压输电线路可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价约 10%-15%。特高压线路输电走廊仅为同等输送能力的 500k V 线路所需走廊的四分之一,这对人口稠密、土地宝贵或走廊困难的国家和地区带来重大的经济社会效益。 1特高压直流输电原理 高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将 220k V 及以下的电压等级称为高压,330 ~ 750k V 的称为超高压 ,1000k V 及以上的称为特高压。直流输电把 ±500k V 和 ±660k V 称为超高压;±800k V 及以上电压等级称为特高压。 直流输电工程是以直流电的方式实现电能传输的工程。直流电必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系统连接。 两端直流输电系统可分为单极系统(正极和负极)、双极系统(正、负两极)和背靠背直流系统(无直流输电系统)三种类型。 2特高压直流输电优点 我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。 在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。 在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。 交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。 长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。 3特高压直流技术存在的不足 (1)直流输电换流站比交流变电所结构复杂、造价高、运行费用高,换流站造价比同等规模交流变电所要高出数倍。(2)为降低换流器运行时在交流侧和直流侧产生的一系列谐波,需在两侧需分别装设交流滤波器和直流滤波器,使得换电站的占地面积、造价和运行费用均大幅度提高。(3)直流断路器没有电流过零点可利用,灭弧问题难以解决。(4)由于直流电的静电吸附作用,使直流输电线路和换电站设备的污秽问题比交流输电严重,给外绝缘问题带来困难。 4特高压直流输电技术的应用分析 4.1拓扑结构 在近些年来,特高压直流输电的拓扑结构主要有多端直流和公用接地极两种,其中,多端直流是通过连接多个换流站来共同组成直流系统,在电压源换流器发展背景下,出现了混合型多端直流和极联式多端直流,前者是将合理分配同一极换流器组的位置,电源端与用户端都是分散分布。公用接地极是通过几个工程公用接地极的方式,来降低工程整体造价成本,提升接地极利用水平,提高工程经济效益、社会效益;但也存在接地电流容易过大、检修较为复杂等不足。 4.2换流技术 在特高压直流输电的换流技术方面,主要有电容换相直流输电技术和柔性直流输电技术两种,其中,电容换相直流输电技术是通过将换相电容器串接到直流换流器与换流变压器中,利用串联电容来对换流器无功消耗进行补偿,减少换流站的向设备,能够有效降低换相失

我国特高压直流输电发展规划与研究成果

我国特高压直流输电发展规划与研究成果 摘要:本篇文章在对一次性能源具有的分布特点进行分析之后,对我国特高压直流输电技术的必要性进行了分析,并通过对技术研究设备进行研究之后,分析了实施特高压直流输电技术的可行性。与此同时,并结合当下雾霾给环境和人们生活带来的影响,对下一步特高压直流输电技术的发展方向做出了相应的规划。 关键词:特高压直流;输电发展;规划;研究成果 近年来,雾霾对环境和人们生活带来的影响越来越大,在今年,李克强总理在召开国务院会议时,对这一问题进行了探讨,认为解决雾霾问题的首要措施就是要实施跨区域的送电项目。有关人员认为,这一举措实质上就是预示着特高压提速的信息。直流输电技术是世界上目前解决高电压以及远距离输送的重要措施。直流输电是把交流电通过电流转换器变换成直流电,再由直流输送电路将电流送至受电的一端,并在最后通过换流器再将其变为交流电的过程 1.我国实施特高压直流输电技术的必要性分析 据有关调查结果显示,已经发现的煤炭有2/3部分在我国北部地区,有2/3的水电在我国西南地区,但是我国能源需求量最大的地区既不是西南地区也不是北部地区,而是在东南部的经济较为发达的地区。据测量,能源产地和需求地区间的距离大约在1000km~2500km 之间。一次能源的分布情况和能源需求明显存在很大的差异性,正因为这样,一定要探索出一种新型的能源需求方式,进而不断提高对能源的输送效率。于此同时,随着近年来雾霾给人们生活带来的影响越来越大的情况下,加快特高压输电技术是解决雾霾问题的首要措施。 2.我国实施特高压直流输电技术的可行性分析 为了找到对这一问题进行解决的良好措施,中国的电力企业正在积极规划对电网和电源的有关建设,并随着能源以及需求中心距离不断加大的趋势影响下,这种安全性高、节能环保的特高压直流输电技术逐渐走进了人们的视野之中。在我国特高压技术研究的不断推动之下,特高压输电技术在20世纪80年代的时候研究的热度又一次进行了升温,受到了越来越多人的关注。 20世纪80年代的时候,在我国对±800kV直流输电设备的研究基础之上,国内外的一些研究机构逐渐在特高压直流输电技术领域内的研究内容越来越深入化和科技化,经一些研究成果表明,目前已有一些制造的厂家研究成功了特高压直流输电设备。 3.我国特高压直流输电工程中的建设 依据我国特高压直流输电设备市场的需求分析,我国在未来要建设有以下

特高压输电工程发展状况

特高压输电工程发展状况 特高压输电分为:特高压交流输电和特高压直流输电,这两种输电方式各有各的优缺点。 特高压输电技术具有以下优越性: 1.1够提高电网的安全性、可靠性。 采用l 000kV电压长远距离输,可以降低电网的短路电流。比如若长运距离输送l 000万kw电力,可以减少相当于本地装机17台60万kW的机组。每台60万kW的机组对其附近区域500 kV电网的短路电流将增加1.8 kA。而采用特高压输电技术的分层、分区布局电网,则可以优化电网结构,从根本上解决短路电流超标,从而提高电网的安全性、可靠性。 1.2够更为经济地提高大容量、远距离送电能力。 研究表明:1条l 000 kV线路的输送客量相当于5条500 kV线路的输送容量,这样能够使包括变电站在内的电网建设成本降低10%~15%。我国的电站建设多集中于煤矿资源丰富的华北和水资源丰富的两南,用电负荷又集中在华东、华中。这种状况客观上要求西电东送。据预测,到2020年,我国的发电装机容量有可能达到ll 亿kW。依靠目前的500 kV电网无论是输送距离还是输送容量,都

无法承受,只能依靠技术进步,通过特高压输电技术及特高压输电电网建设,将大型水电、煤电基地的电能输送到所需目的地。 1.3够大量节约电网建设用地。 我国环境保护标准程定,邻近民居的地面电场强度不能大于4 kV /m,500 kV的输电线路走廊宽度要为10~48 m,而l 000 kV线路走廊要为8l一97 m。通过理论计算得知,输送同样的功率(如500万kW),采用l 000 kV特高压输电线路比采用500 kV高压输电线路节约60%的建设用地。所以说.特高压输电技术能够大量节约电网建设用地.是资源节约型建设丁程。 特高压输电技术主要的技术难关: 2 .1 过电压与绝缘配合。 在特高压输电系统运行过程中,将承受操作冲击、故障冲击、雷电冲击等引起的过电压。由于目前我国尚无特高压过电压标准,因此,对过电压与绝缘配合进行研究,选择正确和经济的方式降低设备的过电压水平和绝缘水平,对系统安全运行是十分重要的。由于特高压输电工程的特殊性,导线的布置方式有多种选择,绝缘子串型和塔头间隙种类较超高压线路多,如同杆并架,导线水平排列、垂直排列,绝缘子I 串、v 串甚至Y 串等。我国特高压输电线路跨越高海拔地区的国情还决定必需对不同海拔条件下的空气间隙放电电压特性进行研究。因此,在常规研究项目基础上,研究不同条

我国特高压输电技术的现状与前景

我国特高压输电技术的现状与前景 作者:刘蒙蒙 (陕西理工学院物理与电气工程学院物理学专业2011级2班,陕西汉中723000) 指导教师:陈德胜 [摘要]高压输电技术是指在输电过程中提高输电电压,减小输电电流,从而减少输电过程中电能损耗的技术。输电电压越高,电能损耗减少的越多,目前输电电压等级最高的是特高压输电。本文阐述了特高压输电技术的原理,分析了特高压输电的主要方式和分类,研究了我国特高压输电的现状,探讨了我国特高压输电技术的发展前景。 [关键词]特高压输电;现状;前景;高压电网;智能电网 引言 随着电力系统的不断发展,为了适应大容量远距离输电的需要,如意大利、美国、日本、俄罗斯、中国等国家都在致力于特高压输电技术的研究。所谓特高压是指交流1000kV、直流±800kV及以上的电压等级。特高压输电具有非常明显的经济性和可靠性,为当今世界输电技术的发展指明了方向。我国已经进入了大电网、大机组、高电压、高自动化的发展时期。随着经济的快速发展,电力需求也在快速增长,特高压输电逐渐进入到我国电力的建设当中。特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。 1特高压输电技术及其原理 1.1特高压输电概述 特高压是世界上最先进的输电技术。交流输电电压一般分为高压、超高压和特高压。国际上,高压(HV)通常指35—220kV电压;超高压(EHV)通常指330kV及以上、1000kV以下的电压;特高压(UHV)定义为1000kV及以上电压。而对于直流输电而言,高压直流(HVDC)通常是指±600kV 及以下的直流输电电压,±800kV(±750kV)以上的电压则称为特高压直流(UHVDC)。表1所示为交、直流输电电压分类表。 表1 交、直流输电电压分类表 我国发展特高压输电指的是在现有500kV交流和±500kV直流之上采用更高一级的电压等级输电技术,包括1000kV级交流特高压和±800kV级直流特高压两部分,简称国家特高压骨干电网。特高压输电是在超高压输电的基础上发展的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。为了适应我国国民经济和电力需求的快速发展,国家电网公司在2004年底明确提出了加快建设以百万伏级交流和±800千伏级直流系统特高压电网为核心的坚强国家电网的战略目标。 特高压输电具有明显的经济效益。据估计,1条1150千伏输电线路的输电能力可代替5~6条500千伏线路,或3条750千伏线路;可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价10~15%。1150千伏特高压线路走廊约仅为同等输送能力的500千伏线路所需走廊的四分之一,这对于人口稠密、土地宝贵或走廊困难的国家和地区会带来重大的经济和社会效益。1.2 特高压输电的原理

特高压输电技术简介

特高压输电技术简介 一.特高压输电技术 特高压(ultra high voltage) 电网是指交流1000kV、直流正负800kV及以上电压等级的输电网络。 特高压交流输电技术的研究始于60年代后半期。当时西方工业国家的电力工业处在快速增长时期,美国、前苏联、意大利、加拿大、德国、日本、瑞典等国家根据本国的经济增长和电力需求预测,都制定了本国发展特高压的计划。美国、前苏联、日本、意大利均建设了特高压试验站和试验线段,专门研究特高压输变电技术及相关输变电设备。 前苏联从70年代末开始进行1150kV输电工程的建设。1985年建成埃基巴斯图兹-科克切塔夫-库斯坦奈特高压线路,全长900km,按1150kV电压投入运行,至1994年已建成特高压线路全长2634km。运行情况表明:所采用的线路和变电站的结构基本合理。特高压变压器、电抗器、断路器等重大设备经受了各种运行条件的考验,自投运后一直运行正常。在1991年,由于前苏联解体和经济衰退,电力需求明显不足,导致特高压线路降压至500kV运行。 日本是世界上第二个采用交流百万伏级电压等级输电的国家。为满足沿海大型原子能电站送电到负荷中心的需要并最大程度地节省线路走廊,日本从1973年开始特高压输电的研究,不仅因为特高压系统的输电能力是500kV系统的4~5倍,而且可解决500kV系统短路电流过大难以开断的问题。对于输电电压的选择,日本在800kV至1500kV之间进行了技术比较研究,通过各方面的综合比较,选定1000kV作为特高压系统的标称电压。目前已建成全长426km的东京外环特高压输电线路。为保证特高压系统的可靠运行,日本建设了盐原、赤城两个特高压试验研究基地,运行情况良好,证明特高压输变电设备可满足系统的可靠运行。 国外的试验及实际工程运行结果表明:在特高压输电技术上不存在难以解决的技术难题,输电技术和输电设备的科研成果可满足和适应工程需要。只要有市场需要,特高压输电工程可随时启动。 我国是从1986年开始立项研究交流特高压输电技术。前期研究包括国内外特高压输电的资料收集与分析,内容涉及特高压电压等级的论证、特高压输电系统、外绝缘特性、电磁环境、特高压输变电设备及特高压输电工程概况等。八五

中国特高压及下一代电压等级设想

中国特高压及设想下一代电压等级 2009年1月,世界上第一个商业运行的特高压工程——我国自主研发、设计和建设的1000千伏晋东南—南阳—荆门特高压交流示范工程竣工。紧接着,2010 年7月,向家坝—上海±800千伏特高压直流输电示范工程完工并正式投入商业运行。 如图1是中国电力企业联合会在2016年公布的资料,数据显示:我国1000kV 交流电网的建设距离已经达到了7366千米,±800kV直流电网建设距离已经达到了12300千米。十余年辛苦不寻常,中国电网从最初建设的特高压示范工程到如今辽阔的特高压交直流工程网络,技术方面持续提升、理念方面不断突破、视野方面越来越开阔,已经展现出强大的生命力和创造力,实现了“中国创造”与“中国引领”的战略思想。 在领先世界的重大自主创新上,中国的特高压输电技术应当算一个。中国的特高压技术在不断地克服着世界难题,建立了系统的特高压标准体系,引领着世界电力行业的发展,称为中国走向世界舞台的一张名片。中国特高压输电技术将继续负重前行。2016年5月11日,作为目前世界上电压等级最高、输送容量最大、输送距离最远、技术水平最先进的特高压输电工程,昌吉—古泉±1100千伏特高压直流输电线路的开工动员大会在乌鲁木齐召开。这项工程刷新了世界电网技术的新高度,开启了特高压输电技术发展的新纪元,不仅可以满足地方经济发展的需要,还可以缓解华北电力的紧缺问题,同时对全球能源互联网的发展也具有重大的示范作用。 图1 2012-2016年中国特高压电网建设情况 “雄关漫道真如铁,而今迈步从头越”,中国特高压已经取得了令世界瞩目的成就,但是国家电网绝不会止步于眼前的成绩,而是将会在稳定运行的基础上

我国特高压输电线路的现状与展望

我国特高压输电线路的现状与展望 摘要:我国特高压输电线路工业刚刚兴起;本文从可观需求上对特高压输电技术进行了分析;提出了目前特高压技术的难点、重点;对特高压输电技术的应用予以了展望;对特高压输电线路的研究分析有一定的参考价值。 关键词:特高压输电;难点;展望 特高压电网在我国家电网中是指由特高压骨干网架包括1000kV级交流输电系统和600kV级以上直流输电网组成的超巨型电网。从1960年开始,特高压输电的研究和应用开始在世界各地广泛开展起来,掀起了一股研究特高压输电的电网之风。随着我国步入中国特色社会主义初级阶段,我国经济不断发展,工业规模不断扩大,随之而来的问题是我国输电负荷的节节攀升。我国有必要在特高压输电线路的研究中获得新的成果来减少输电线路在远距离输电上的损耗,改善我国以往输电损耗的过大现象,节约电力资源。 一、我国特高压输电线路存在的必要性 我国地域辽阔,煤炭、石油资源分布不均衡。同时,我国经济发展水平地域差距比较大,西部发展相对于沿海地区和东部地区来说较落后,电力发电资源主要集中在经济不发达地区。为了更好的实现利用自然发电资源,我们需要在能源配置上重新规划考虑,把我国有限的自然资源发挥出最大的利用率,实现经济快速稳定的增长。通过建设我国特高压输电线路系统,提高我国长距离、大规模的输送电力资源,帮助我国自然电力资源跨地区合理高效的利用。我国电力资源与电力我国电力需求地区不相统一,所以需要考虑建设特高压输电线路系统改善电力能源的传输问题。我国电网结构、功能、运作上存在一定的问题。首先,目前广泛应用的500kV级电网输送系统对于电力能源缺乏的地区的供应量满足不了该地区日益增长的经济发展需求;其次,电网结构的不合理布置,导致在电力资源需求量大的中部地区对高电压直流输电线路系统的短路电流控制上面还缺乏有效手段;第三,输电电网在电压稳定方面还有一定受扰动问题。特高电压输电线路系统的建立能够在一定程度上解决超高电压在远距离、高容量电力的输送,从电力资源中心向中部、南部大部分地区散射开来,提高电力网络的稳定性

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

直流输电技术及其应用论文

直流输电技术及其应用 The Feature Development and Application of Direct CurrentTransmission Techniques 山东农业大学电气工程及其自动化10级 摘要本文介绍了直流输电技术在电力系统联网应用中的必要性,直流输电系统的 结构,直流控制保护技术以及直流输电的特点和应用发展方向;同时认为直流输电技术是新能源发电并网的最佳解决方式。 电力工程是21世纪对人类社会生活影响最大的工程之一,电力技术的发展对城乡人民的生产和生活具有重大的关系,电力工业是关系国计民生的基础产业。电力的广泛应用和电力需求的不断增加,推动着电力技术向高电压、大机组、大电网发展,向电力规模经济发展。电力工业按生产和消费过程可分为发电、输电、配电和用电四个环节。输电通常指的是将发电厂发出的电力输送到消费电能的负荷中心,或者将一个电网的电力输送到另一个电网,实现电网互联。随着电网技术的不断进步,输电容量和输电距离的不断增加,电网电压等级不断提高。电网电压从最初的交流13.8KV,逐步发展到高压35KV、66KV、110KV、220KV、500KV、1000KV。电网发展的经验表明,相邻两个电压等级的级差在一倍以上才是经济合理的。这样输电容量可以提高四倍以上,不仅可与现有电网电压配合,而且为今后新的更高级别电压的发展留有合理的配合空间。我国从20世纪80年代末开始对特高压电网的规划和设备的制造进行研究;进入21世纪后,加快了特高压输电设备、电网研究和工程建设。2005年9月26日,第一条750KV输电实验线路(官亭——兰州东)示范工程投运;2006年12月,云南——广东±800KV特高压直流输电工程开工建设,并于2010年6月18日,通过验收正式投运,该工程输电距离1373KM,额定电压±800KV,额定容量500万KW,和2010年7月8日投运的向家坝——上海±800KV特高压直流示范工程一样,是当今世界电压等级最高的直流输电项目。 1.使用直流输电的原因 随着电力系统规模的不断扩大,输电功率的增加,输电距离的增长,交流输电遇到了一些技术困难。对交流输电来说,在输电功率大,输电导线横截面积较大的情况下,感抗会超过电阻,但对稳定的直流输电,则只有电阻,没有感抗。输电线一般是采用架空线,但跨过海峡给海岛输电时,要用水下电缆,电缆在金属线芯外面包裹绝缘层,水和大地都是导体,被绝缘层隔开的金属线芯和水或大地构成了一个电容器,在交流输电的情况下,这个电容对输电线路的受电端起旁路电容的作用,并且随着电缆的增长,旁路电容会增大到几乎不能通交流的程度。另外,交流电路若要正常工作,经同一条线路供电的所有发电机都要必须同步运行;要使电力网内众多的发电机同步运行,技术上是很困难的,而直流输电不存在同步问题。现代的直流输电,只是输电环节是直流,发电仍是交流,在输电线路的起端有专用的换流设备将交流转换为直流,在输电线路的末端也有专用的换流设备将直流换为交流。 2.直流输电技术的特点 随着电网的不断扩大,输电功率、输电距离迅速增加,交流输电遇到了一些难以克服的技术问题,直流输电所具有的的技术特点,使之作为解决输电技术难题的方向之一而受到重视。 2.1直流输电系统运行稳定性好 为保证电网稳定,要求网上所有发电机都必须同步运行,即所谓系统稳定性问题。对于交流长距离输电,线路感抗远远超过了电阻,并且输电线路越长,电抗越大,系统稳定越困难,

相关文档
最新文档