直线与园圆与圆的位置关系知识点及习题

直线与园圆与圆的位置关系知识点及习题
直线与园圆与圆的位置关系知识点及习题

直线与圆、圆与圆的位置关系

一、直线与圆的位置关系

1、直线与圆相离?d r

>?无交点;

2、直线与圆相切?d r

=?有一个交点(切点);

3、直线与圆相交?d r

d

r d=r r d

二、切线的判定定理与性质

(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;

两个条件:过半径外端且垂直半径,二者缺一不可

即:∵MN OA

⊥且MN过半径OA外端

∴MN是⊙O的切线

(2)性质定理:经过切点的半径垂直于圆的切线

经过切点垂直于切线的直线必经过圆心(如上图)

①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

例1、在中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?

解题思路:作AD⊥BC于D

在中,∠B=30°∴

在中,∠C=45°

∴ CD=AD

∵ BC=6cm ∴

N M

O

B

O

B

A

C

D

O

∴ 当时,⊙A 与BC 相切;当

时,⊙A 与BC 相交;

时,⊙A 与BC 相离。

例2.如图,AB 为⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠DCB=?∠A . (1)CD 与⊙O 相切吗?如果相切,请你加以证明,如果不相切,请说明理由. (2)若CD 与⊙O 相切,且∠D=30°,BD=10,求⊙O 的半径.

解题思路:(1)要说明CD 是否是⊙O 的切线,只要说明OC 是否垂直于CD ,垂足为C ,?因为C 点已在圆上.

由已知易得:∠A=30°,又由∠DCB=∠A=30°得:BC=BD=10 解:(1)CD 与⊙O 相切 理由:①C 点在⊙O 上(已知) ②∵AB 是直径

∴∠ACB=90°,即∠ACO+∠OCB=90° ∵∠A=∠OCA 且∠DCB=∠A ∴∠OCA=∠DCB ∴∠OCD=90° 综上:CD 是⊙O 的切线. (2)在Rt △OCD 中,∠D=30°

∴∠COD=60° ∴∠A=30° ∴∠BCD=30° ∴BC=BD=10 ∴AB=20,∴r=10

答:(1)CD 是⊙O 的切线,(2)⊙O 的半径是10.

三、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠ (证明) 四、圆幂定理

(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P ,

P

O D

C B

A B

O

∴PA PB PC PD ?=? (相似)

(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2

CE AE BE =?

(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到

割线与圆交点的两条线段长的比例中项。 即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2

PA PC PB =?

(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ?=? 五、三角形的内切圆

(1)定义:与三角形三边都相切的圆(角平分线的交点) (2)内心、外切三角形

例1:如图,⊙O 为△ABC 的内切圆,∠C =ο

90,AO 的延长线交BC 于点D ,

AC =4,DC =1,,则⊙O 的半径等于 ( )

1、如图,∠ABC =90°,O 为射线BC 上一点,以点O 为圆心、21BO 长为半

径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 度时与⊙0相切.

六、圆与圆的位置关系

外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+;

O E

D

C

B

A

D

C

B P

A

O

D

C

B

P

A

O

内切(图4)?有一个交点?d R r

=-;内含(图5)?无交点?d R r

<-;

r

R

d

图3

r

R

d

例1.两个同样大小的肥皂泡黏在一起,其剖面如图1所示(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.

(1)(2) 解题思路:要求∠TPN,其实就是求∠OPO′的角度,很明显,∠POO′是正三角形,如图2所示.

解:∵PO=OO′=PO′∴△PO′O是一个等边三角形∴∠OPO′=60°

又∵TP与NP分别为两圆的切线,∴∠TPO=90°,∠NPO′=90°

∴∠TPN=360°-2×90°-60°=120°

例2.如图1所示,⊙O的半径为7cm,点A为⊙O外一点,OA=15cm,

求:(1)作⊙A与⊙O外切,并求⊙A的半径是多少?

r

R

d

图4

r

R

d

图5

r

R

d

A

O

(1) (2) (2)作⊙A 与⊙O 相内切,并求出此时⊙A 的半径.

解题思路:(1)作⊙A 和⊙O 外切,就是作以A 为圆心的圆与⊙O 的圆心距d=r O +r A ;(?2)?作OA 与⊙O 相内切,就是作以A 为圆心的圆与⊙O 的圆心距d=r A -r O .

解:如图2所示,(1)作法:以A 为圆心,r A =15-7=8为半径作圆,则⊙A?的半径为8cm

(2)作法:以A 点为圆心,r A ′=15+7=22为半径作圆,则⊙A 的半径为22cm 例3.如图所示,点A 坐标为(0,3),OA 半径为1,点B 在x 轴上. (1)若点B 坐标为(4,0),⊙B 半径为3,试判断⊙A 与⊙B 位置关系; (2)若⊙B 过M (-2,0)且与⊙A 相切,求B 点坐标. 答(1)AB=5>1+3,外离.

(2)设B (x ,0)x≠-2,则29x +B 半径为│x+2│, ①设⊙B 与⊙A 29x +,

当x>-229x +,平方化简得:x=0符题意,∴B (0,0), 当x<-229x +-x -1,化简得x=4>-2(舍), ②设⊙B 与⊙A 29x +-1,

当x>-229x +,得x=4>-2,∴B (4,0), 当x<-22

9x +-x -3,得x=0,

七、两圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点

∴12O O 垂直平分AB

B

A

O1

O2

C

O2

O1

B A

_A

_y _x

_O

八、圆的公切线

两圆公切线长的计算公式:

(1)公切线长:12Rt O O C ?

中,221AB CO ==

(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。 九、圆内正多边形的计算 (1)正三角形

在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ?中进行

::2OD BD OB =;

(2)正四边形

同理,四边形的有关计算在Rt OAE ?

中进行,::OE AE OA = (3)正六边形

同理,六边形的有关计算在Rt OAB ?

中进行,::2AB OB OA =.

基础训练 1.填表:

2.若直线a 与⊙O 交于A ,B 两点,O 到直线a?的距离为6,?AB=?16,?则⊙O?的半径为_____. 3.在△ABC 中,已知∠ACB=90°,BC=AC=10,以C 为圆心,分别以5,8为半径作图,那么直线AB 与圆的位置关系分别是______,_______,_______.

4.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( ) A .相离 B .相切 C .相交 D .内含 5.下列判断正确的是( )

①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,?则直线与圆相交. A .①②③ B .①② C .②③ D .③

6.OA 平分∠BOC ,P 是OA 上任一点(O 除外),若以P 为圆心的⊙P 与OC 相离,?那么⊙P 与OB 的位置关系是( )

A.相离 B.相切 C.相交 D.相交或相切

7.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?

8.如图,⊙O的半径为3cm,弦AC=42cm,AB=4cm,若以O为圆心,?再作一个圆与AC 相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?

◆提高训练

9.如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,?如果⊙M 与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m?

的取值范围是_______.

10.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm?长为半径的圆与直线BC的位置关系是_______.

11.如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,2长为半径的圆与直线AC,EF,CD的位置关系分别是什么?

12.已知⊙O的半径为5cm,点O到直线L的距离OP为7cm,如图所示.(1)怎样平移直线L,才能使L与⊙O相切?

(2)要使直线L与⊙O相交,应把直线L向上平移多少cm?

13.如图,Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径作圆,?那么: (1)当直线AB与⊙C相切时,求r的取值范围;

(2)当直线AB与⊙C相离时,求r的取值范围;

(3)当直线AB与⊙C相交时,求r的取值范围.

14.在南部沿海某气象站A测得一热带风暴从A的南偏东30?°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米范围内将受到影响,?若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.

九年级下册直线和圆的位置关系练习题

一、选择题:

1.若∠OAB=30°,OA=10cm ,则以O 为圆心,6cm 为半径的圆与射线AB 的位置关系是( )

A .相交

B .相切

C .相离

D .不能确定

2.Rt △ABC 中,∠C=90°,AB=10,AC=6,以C 为圆心作⊙C 和AB 相切,则⊙C 的半径长为

( )

A .8

B .4

C .9.6

D .4.8

3.⊙O 内最长弦长为m ,直线l 与⊙O 相离,设点O 到l 的距离为d ,则d 与m 的关系是

( )

A .d =m

B .d >m

C .d >2

m

D .d <2

m

4.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为( )

A .锐角三角形

B .直角三角形

C .钝角三角形

D .等边三角形

5.菱形对角线的交点为O ,以O 为圆心,以O 到菱形一边的距离为半径的圆与其他几边的

关系为( )

A .相交

B .相切

C .相离

D .不能确定

6.⊙O 的半径为6,⊙O 的一条弦AB 为63,以3为半径的同心圆与直线AB 的位置关系是( )

A .相离

B .相交

C .相切

D .不能确定

7.下列四边形中一定有内切圆的是( )

A .直角梯形

B .等腰梯形

C .矩形

D .菱形

8.已知△ABC 的内切圆O 与各边相切于D 、E 、F ,那么点O 是△DEF 的( )

A .三条中线交点

B .三条高的交点

C .三条角平分线交点

D .三条边的

垂直平分线的交点 9.给出下列命题:

①任一个三角形一定有一个外接圆,并且只有一个外接圆;

②任一个圆一定有一个内接三角形,并且只有一个内接三角形;

③任一个三角形一定有一个内切圆,并且只有一个内切圆;

④任一个圆一定有一个外切三角形,并且只有一个外切三角形.

其中真命题共有()

A.1个B.2个C.3个D.4个

二、证明题

1.如图,已知⊙O中,AB是直径,过B点作⊙O的切线BC,连结CO.若AD∥OC交⊙O 于D.求证:CD是⊙O的切线.

2.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD 是小圆的切线.

3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.

(1)当圆心O与C重合时,⊙O与AB的位置关系怎样?

(2)若点O沿CA移动时,当OC为多少时?⊙C与AB相切?

4.如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?

5.设直线ι到⊙O的圆心的距离为d,半径为R,并使x2-2d x+R=0,试由关于x的一元二次方程根的情况讨论ι与⊙O的位置关系.

6.如图,AB是⊙O直径,⊙O过AC的中点D,DE⊥BC,垂足为E.

(1)由这些条件,你能得出哪些结论?(要求:不准标其他字母,找结论过程中所连的辅助线不能出现在结论中,不写推理过程,写出4个结论即可)

(2)若∠ABC为直角,其他条件不变,除上述结论外你还能推出哪些新的正确结论?并画出图形.(要求:写出6个结论即可,其他要求同(1))

7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?

8.如图,有一块锐角三角形木板,现在要把它截成半圆形板块(圆心在BC上),问怎样截取才能使截出的半圆形面积最大?(要求说明理由)

9.如图,直线ι1、ι2、ι3表示相互交叉的公路.现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?

答案:

一.1-5 A D C B B ;6-9 C D D B

二.1.提示:连结OC,证△AOC与△BOC全等

2.作垂直证半径,弦心距相等

3.①垂直三角形的高,用面积方法求;②△AOE∽△ABC即可

4.用角平分线定理证明EF=EA=EB即可

5.做三角形的内切圆

6.①DE与⊙O相切,AB=BC,DE2+CE2=CD2,∠C+∠CDE=90°

②BC是⊙O的切线,有DE=1/2AB等.

7.R=2.4或3

8.∠A角平分线与BC的交点为圆心O,O到AC的距离为半径做圆

9.4

《直线与圆、圆与圆的位置关系》专题(学生版)

《直线与圆、圆与圆的位置关系》专题 2019年( )月( )日 班级 姓名 1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d ) 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|) (1)圆的切线方程常用结论 ①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. ②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长 弦心距d 、弦长l 的一半1 2l 及圆的半径r 构成一直角三角形,且有r 2=d 2+????12l 2. 1.直线y =x +1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离

2.两圆x2+y2-2y=0与x2+y2-4=0的位置关系是() A.相交B.内切 C.外切D.内含 3.已知直线l:y=k(x+3)和圆C:x2+(y-1)2=1,若直线l与圆C相切,则k=() A.0 B. 3 C. 3 3或0 D.3或0 4.已知圆的方程为x2+y2=1,则在y轴上截距为2的切线方程为________.5.(2018·全国卷Ⅰ)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________. 考点一直线与圆的位置关系 考法(一)直线与圆的位置关系的判断 [典例]直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是() A.相交B.相切 C.相离D.不确定 [解题技法]判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒]上述方法中最常用的是几何法.

(完整版)直线与圆知识归纳

直线与圆 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan π α≠ =a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式 能力提升 斜率应用 例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则 c c f b b f a a f ) (,)(,)(的大小关系

例2.已知实数y x ,满足)11(222 ≤≤-+-=x x x y ,试求2 3 ++x y 的最大值和最小值 两直线位置关系 两条直线的位置关系 设两直线的方程分别为: 222111:b x k y l +=或0 :22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们 相交,交点坐标为方程组???+=+=2211b x k y b x k y 或???=++=++00 222 111C y B x A C y B x A 直线间的夹角: ①若θ为1l 到2l 的角,12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ②若θ为1l 和2l 的夹角,则12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ③当0121=+k k 或02121=+B B A A o 直线1l 到2l 的角θ与1l 和2l 的夹角α:) 2 (π θθα≤ =

圆与圆的位置关系 学案

圆与圆的位置关系学案 活动1,请以点o 为起始点,移动你手上的硬币,观察归纳两个圆的位置关系有几种情况?用铅笔刻描画出你得出的情况。 课堂练习:【A 组】 1、右图中有两圆的位置关系有 , 未出现的位置关系是 2、判断对错 1)、若两圆有两个公共点,则两圆相交( ) 2)、如果两圆没有交点,所以这两圆的位置关系是外离。( ) 3)若两圆只有一个交点,则这两圆外切. ( ) 4)、当O 1O 2=0时,两圆是同心圆. ( ) 3、⊙O 1和⊙O 2的半径分别为2cm 和5cm,在下列情况下,分别求出两圆的圆心距d 的取值范围:

(1)外离________ (2)外切________ (3)相交____________(4)内切________ (5)内含___________ 4、⊙O1和⊙O2的半径分别为3cm和4cm,求⊙O1和⊙O2的位置关系.设: (1)O1O2=8cm______ (2)O1O2=7cm _______ (3)O1O2=5cm ______ (4)O1O2=1cm _________ (5)O1O2=0cm _______ 5:如图⊙O的半径为5cm,点P是⊙O外一点, OP=8cm。若以P为圆心作⊙P与⊙O相切,求⊙P的半径? 【B组】 6:如图,在网格图中,(每个小正方形的边长均为1个单位)⊙A的半径为1,⊙B的半径为2, 1)、使⊙A与静止的⊙B外切,那么⊙A 由图示位置需向右平移个单位。 2)、使⊙A与静止的⊙B内切,那么⊙A由图示位置需向右平移个单位。 A B 【C组】 7在ABC中,AB=3,BC=5,AC=6,分别以顶点A,B,C为圆心的三个圆两两外切,求这三个圆的半径分别是多少? 8、分别以1厘米、2厘米、4厘米为半径,用圆规画圆,使他们两两外切。如何画最快?

中考数学专题复习 圆与圆的位置关系

专题 圆与圆的位置关系 【阅读与思考】 两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质. 解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有: 1.相交两圆作公共弦或连心线; 2.相切两圆作过切点的公切线或连心线; 3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形. 熟悉以下基本图形和以上基本结论 . 【例题与求解】 【例1】 如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2 . (全国初中数学竞赛试题) 解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长. B 【例2】 如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B ,

⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为( ) A .c a b +=2 B .c a b +=2 C . b a c 1 11+= D . b a c 111+= (天津市竞赛试题) 解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线. 【例3】 如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证: (1)∠APD =∠BPD ; (2)CB AC PC PB PA ?+=?2. (天津市中考试题) 解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手. P B C D A 【例4】 如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC . (全俄中学生九年级竞赛试题) 解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角. 【例5】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上

《圆与圆的位置关系》 学案

28.2.4《圆与圆的位置关系》 学案 教学目标: 1.使学生了解圆与圆位置关系的定义, 2.掌握用数量关系来识别圆与圆的位置关系。 重点难点: 用数量关系识别圆与圆的位置关系是本节课的教学重点,又是本节课的教学难点。 研讨过程: 一、认识生活中有关圆与圆的位置关系的一些图形 在现实生活中,圆与圆有不同的位置关系,如下图所示: 圆与圆的位置关系除了以上几种外,还有其他的位置关系吗?我们如何判断圆与圆的位置关系呢?这些问题待学习完这节课后就可以得到解决。 二、用公共点的个数阐述两圆的位置关系 请同学们在纸上画一个圆,把一枚硬币当作另一个圆,在纸上移动这枚硬币,观察两圆的位置关系和公共点的个数。 上图(1)、(2)、(3)所示,两个圆没有公共点,那么就说两个圆相离,其中 又叫做外离, 又叫做内含。 中两圆的圆心相同,这两个圆还可以叫做同心圆。如果两个圆只有一个公共点,那么就说这两个圆相切,上图(4)、(5)所示.其中 又叫做外切, 又叫做内切。如果两个圆有两个公共点,那么就说这两个圆相交,如图 所示。 (填写序号) 奥运会五环

三、用数量关系识别两圆的位置关系 思考:如果两圆的半径分别为3和5,圆心距(两圆圆心的距离)d 为9,你能确定他们的位置关系吗?若圆心距d 分别为8、6、4、2、1、0时,它们的位置关系又如何呢? 利用以上的思考题让同学们画图或想象,概括出两圆的位置关系与圆心距、两圆的半径具有什么关系。 (1)两圆外离 d R r ?> +; (2)两圆外切d R r ?=+; (3)两圆外离R r d R r ?-<<+; (4)两圆外离d R r ?=-; (5)两圆外离0d R r ?≤<-; (填<、=、>号) 两圆的位置关系可表示成下列数轴的形式。 要判断两圆的位置关系,要牢牢抓住两个特殊点,即外切和内切两点,当圆心距刚好等于两圆的半径和时,两圆 ,等于两圆的半径差时,两圆 。若圆心距处于半径和与半径差之间时,两圆 ,大于两圆半径和时,两圆 ,小于两圆半径差时,两圆 。 四、例题与练习 例1、已知⊙A 、⊙B 相切,圆心距为10 cm ,其中⊙A 的半径为4 cm ,求⊙B 的半径。(提示:分两种情况讨论) 解:设⊙B 的半径为R . (1) 如果两圆外切,那么 (2) 如果两圆内切,那么 所以⊙B 的半径为 cm 或 cm 。 例2、两圆的半径的比为2:3,内切时的圆心距等于8c m ,那么这两圆相交时圆心距的范围是多少? 解: 练习:课本P54 练习1、2、3 五、小结 这节课我们同样也用数量关系来体现圆与圆的位置关系。在识别圆与圆的位置关系时,关系式比较多,也难于忘记,如果同学们能够掌握用数轴来体现圆与圆的位置关系,理解起来就会更深刻,记忆也会更容易。 六、作业 P55 习题8、9 教学反思: 0R-r R+r 外离相交外切内切内含d

中考试题专题之圆与圆的位置关系试题及答案

20XX 年中考试题专题之 23-圆与圆的位置关系试题及答案 一.选择 1. (20XX 年泸州)已知⊙ O 1与⊙ O 2的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆 的位 置关系为 A .外离 B .外切 C .相交 D .内切 2. (20XX 年滨州 )已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结 论正确的是( ) A . 0 d 1 B . d5 C . 0 d 1或 d 5 D . 0≤ d 1或 d 5 3.( 20XX 年台州市 ) 大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置 系为( ) A .外离 B .外切 C. 相交 D .内含 4.( 2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6( 20XX 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 7.( 20XX 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 8. .(20XX 年益阳市)已知⊙ O 1和⊙ O 2的半径分别为 1和 4,如果两圆的位置关系为相交, 那 么圆心距 O 1O 2 的取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 A . B . C . D . 10.. (2009肇庆) 10.若⊙O 1与⊙O 2相切,且 O 1O 2 5 , ⊙ O 1的半径 r 1 2,则⊙O 2的 半径 r 2 是( ) B . 5 9. ( 20XX 年宜宾)若两圆的半径分别是 A. 内切 B. 相交 C.外切 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关 D. 外离 C . 7 系是

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

高中人教版数学必修2《圆与圆的位置关系》精品导学案

必修2 第四章 §4-3 圆与圆的位置关系 【课前预习】阅读教材P 129-132完成下面填空 1. 两圆的的位置关系 (1)设两圆半径分别为12,r r ,圆心距为d 若两圆相外离,则 ,公切线条数为 若两圆相外切,则 ,公切线条数为 若两圆相交,则 , 公切线条数为 若两圆内切,则 ,公切线条数为 若两圆内含,则 ,公切线条数为 (2) 设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,若两圆相交,则两圆的公共弦所在的直线方程是 2.圆系方程 ①以点),(00y x C 为圆心的圆系方程为 ②过圆0:22=++++F Ey Dx y x C 和直线0:=++c by ax l 的交点的圆系方程为 ③过两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C 的交点的圆系方程为 (不表示圆2C ) 【课初5分钟】课前完成下列练习,课前5分钟回答下列问题

1. 已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( ) A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1 C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=1 2.两个圆1C :2222x y x y +++-2=0与2C :2242x y x y +--+1=0的公切线有 且仅有( ). A .1条 B .2条 C .3条 D .4条 3.圆1C :22()(2)x m y -++=9与圆2C :2(1)x ++2()y m -=4外切,则m 的值 为( ). A. 2 B. -5 C. 2或-5 D. 不确定 4.两圆:x 2 + y 2 + 6 x + 4y = 0及x 2+y 2 + 4x + 2y – 4 =0的公共弦所在直线方程为 强调(笔记): 【课中35分钟】边听边练边落实 5. 已知圆1C :22660x y x +--=①,圆2C :22460x y y +--=②(1)试判 断两圆的位置关系;(2)求公共弦所在的直线方程.

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题) 知识梳理 浙江省诸暨市学勉中学(311811)郭天平 圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。 一、有关圆的基础知识要点归纳 1. 圆的定义:平面内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径. 2. 圆的标准方程 ① 圆的标准方程:由圆的定义及求轨迹的方法,得()()()022 2 >=-+-r r b y a x , 其中圆心坐标为()b a ,,半径为r ;当0,0==b a 时,即圆心在原点时圆的标准方程为 2 2 2 r y x =+; ② 圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。 3. 圆的一般方程 ①圆的一般方程:展开圆的标准方程,整理得, 02 2 =++++F Ey Dx y x ( ) 042 2>-+F E D ; ② 圆的一般方程的特点:(1)22,y x 项系数相等且不为0;(2)没有xy 这样的二次项 ③ 二元二次方程02 2=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件是 0≠=C A 且0=B ; 二元二次方程02 2=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是0 ≠=C A 且0=B 且0422>-+AF E D 4. 圆的参数方程 圆的参数方程是由中间变量θ将变量y x ,联系起来的一个方程. ① 圆心在原点,半径为r 的圆的参数方程是:θθ θ(sin cos ?? ?==r y r x 为参数); ② 圆心在()b a ,,半径为r 的圆的参数方程是:θθθ (sin cos ? ??+=+=r b y r a x 为参数); 5. 确定圆方程的条件 圆的标准方程、圆的一般方程及参数方程都有三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。如已知条件中涉及圆心与半径有关等条件,一般设圆的标准方程,即列出r b a ,,的方程组,求出r b a ,,的值,也可根据圆的特点直接求出圆心()b a ,,半径r 。当圆心位置不能确定时,往往选择圆的一般方程形式,由已知条件列出F E D ,,的三个方程,显然前者解的是三元二次方程组,后者解的是三元一次方程组,在运算上显然设一般式比标准式要简单。 6. 点与圆的位置关系 设圆()()2 2 2 :r b y a x C =-+-,点()00,y x M 到圆心的距离为d ,则有:

(完整版)高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2π θ∈时,0k ≥; (2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0?增加到90?时,斜率从0增加到+∞; 当倾斜角从90?增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式:1 21121x x x x y y y y --=-- (4)截距式:1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点00(,)P x y 到直线0Ax By C ++= 的距离:d = (3)平行线间的距离:10Ax By C ++=与20Ax By C ++= 的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:222 ()()x a y b R -+-=(0R >) (2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d = R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点);

圆与圆的位置关系学案

4.2.2 圆与圆的位置关系(学案) 姓名: 一、复习引入:圆与圆的位置关系 设两圆1C 与2C 的半径分别为R r ,,圆心距为12=C C d 。 (二)自主探究:如何根据圆的方程,判断它们之间的位置关系? 类比回顾:

典例(教材P129页例3)已知圆2212880C x y x y +++-=:, 2224420C x y x y +---=:,试判断圆1C 与圆2C 的位置关系? (三)形成方法: 典例变式1:判定圆221210240C x y x y ++--=:,222440C x y x y +--=:的位置关系?

(四)问题再探: 思考1:在典例中,设两圆相交于A 、B 两点,如何求相交弦AB 的直线方程?你有什么发现? 思考2:在典例中,怎么求公共弦AB 的长? (五)提升练习: 典例变式2:已知圆2212880C x y x y +++-=:, 2222108410(0)C x y x y r r +---+=>:,当r 为何值时,两圆的位置关系为外切? 相交?内含?

(六)课堂小结: 绵中精品小练习及两个思考探究题: 探究1:对比直线的交点系方程,当圆2211110C x y D x E y F ++++=:与圆 2222220C x y D x E y F ++++=:相交时,方程 ()2222111222+0x y D x E y F x y D x E y F λ++++++++=可以表示什么曲线? 探究2:已知两圆2211110C x y D x E y F ++++=:与2222220C x y D x E y F ++++=: 当1C 与2C 相交时,直线()()()1212120l D D x E E y F F -+-+-=:表示两圆的公共弦方程。那么,当两圆相切或是相离时,直线l 是否有一定的几何特征呢?

高考理科数学专题:直线与圆、圆与圆的位置关系(含答案和解析)

1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d r ?相离. (2)代数法:――→判别式Δ=b 2-4ac ????? >0?相交;=0?相切;<0?相离. 2.圆与圆的位置关系 设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0). 【知识拓展】 1.圆的切线方程常用结论 (1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. (2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条. (2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )

直线与圆知识点总结

直线和圆知识点总结 1、直线的倾斜角:(1 )定义:在平面直角坐标系中,对于一条与 X 轴相交的直线l , 如果把X 轴绕着交点按逆时针方向转到和直线I 重合时所转的最小正角记为,那么 就叫 做直线的倾斜角。当直线I 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围 0, < 2 一 过点P ( J3,1),Q (0,m )的直线的倾斜角的范围 [―,——],那么m 值的范围是 3 3 (答:m 2 或 m 4) 2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线 的斜率k ,即k = tan ( 丰90° );倾斜角为90°的直线没有斜率;(2)斜率公式:经过 两点R (x 1,yJ 、卩2&2』2)的直线的斜率为 k a (1,k ),直线的方向向量与直线的斜率有何关系? 如(1)两条直线钭率相等是这两条直线平行的一 X 1 X 2 ; ( 3)直线的方向向量 x 1 x 2 (4)应用:证明三点共线: k AB k BC 。 _________ 条件(答:既不充分也不必要); (2)实数x, y 满足3x 2y 5 0 ( 1 x 3),则上的最大值、最小值分别为 ___________ (答: x (1)点斜式:已知直线过点 (x 0,y 0)斜率为k ,则直线方程为kx b ,它不包括垂直于 x 轴的直线。(3)两点式:已知直 线经过R (X 1,yJ 、卩:化皿)两点,则直线方程为 —―丄 —―生,它不包括垂直于坐 y 2 y 1 X 2 X 1 标轴的直线。(4)截距式:已知直线在x 轴和y 轴上的截距为a,b ,则直线方程为— 1 , a b 它不包括垂直于坐标轴的直线和过原点的直线。(5) 一般式:任何直线均可写成 Ax By C 0(A,B 不同时为0)的形式。如(1)经过点(2,1)且方向向量为v =( — 1, . 3 ) 的直线的点斜式方程是 _____________________ (答:y 1 V3(x 2) ) ; ( 2 )直线 (m 2)x (2 m 1)y (3m 4) 0 ,不管 m 怎样变化恒过点 _______ (答:(1, 2) ); (3) 若曲线y a | x |与y x a (a 0)有两个公共点,则a 的取值范围是 ____________ (答: a 1) 提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线, 还 有截距式呢?); (2)直线在坐标轴上的截距可正、 可负、也可为0.直线两截距相等 直线 的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线 两截距绝对值相等 直线的斜率为 1或直线过原点。 如过点A (1,4),且纵横截距的绝对 值相等的直线共有―条(答:3) 4. 设直线方程的一些常用技巧 :(1)知直线纵截距b ,常设其方 程为y kx b ; (2) 知直线横截距X 0,常设其方程为x my x °(它不适用于斜率为 0的直线);(3)知直线过 点 (x °,y °),当斜率k 存在时,常设其方程为 y k (x x 。) y 。,当斜率k 不存在时,则其 方程 如(1)直线xcos .. 3y 2 0的倾斜角的范围是 5 (答:[。,評它,));(2) 1) 3、直线的方程 y y 。 k (x x 0),它不包括垂直于 x 轴的直线。(2)斜截式:已知直线在y 轴上的截距为 b 和斜率k ,则直线方程为y

新苏科版九年级数学上册:2.5 直线与圆的位置关系(1)学案

新苏科版九年级数学上册:2.5 直线与圆的位置关系(1)学案 时间 学习目标1.经历探索直线与圆的位置关系的过程; 2.理解直线与圆的三种位置关系——相交、相切、相离;3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系. 学习重点用“圆心到直线的距离与圆半径之间的数量关系”来描述“直线与圆的位置关系”的方法. 学习难点直线和圆相切:“直线和圆有唯一公共点”的含义. 学习过程: 【预习·导学】 我们已经学习过点和圆的位置关系,请同学们回忆: (1)点和圆有哪几种位置关系? (2)怎样判定点和圆的位置关系?(数量关系——位置关系) 【预习检测】 【教学内容】 实践探索一:直线和圆的位置关系 在纸上画一个圆,上下移动直尺.把直尺看作直线,在移动的过程中观察直线与圆的位置关系发生了怎样的变化? 直线与圆的三种不同位置关系与直线与圆的公共点个数有关.(1)直线和圆有两个公共点,叫做直线和圆相交. (2)直线和圆有唯一公共点,叫做直线和圆相切,这条直线叫圆的切线,这个公共点叫切点.

(3)直线和圆没有公共点时,叫做直线和圆相离. 【小组合作探究】 实践探索二:探究直线与圆的位置关系的数量特征 1.直线与圆的位置关系能否像点与圆的位置关系一样,也可以用数量关系来刻画它们的三种位置关系呢?1.学生自己画图探究,并进行全班交流研讨. (1)直线与圆相交 d <r ; (2)直线与圆相切 d =r ; (3)直线与圆相离 d >r . 【大班交流,师生互动】 例1 在△ABC 中,∠A =45°,AC =4,以C 为圆心,r 为半径的圆与直线AB 有怎样的位置关系?为什么? (1)r =2;(2)r =22;(3)r =3. d O (1)相交 r d .(2)相切 r d .(3)相离 r O O

初中数学专题复习圆与圆的位置关系(一)

第39讲 圆与圆的位置关系(一) [复习目标] 使学生了解圆与圆之间的5种位置关系,掌握两圆位置关系的判定方法,了解两圆公切线的有关概念,掌握两圆相交、相切的有关性质,并会应用于解题. [知识要点] 1.两圆的5种位置关系及判定方法. 2.相交、相切两圆的性质; 1) 相切两圆的连心线必过切点,相切两圆有公切线; 2) 相交两圆的连心线必垂直平分公共弦. 注:常见的辅助线是①画相切两圆的公切线②画公共弦和连心线。 [典型例题解析] 例1 选择、填空题: 1) 已知两圆的半径满足方程02222=+-x x ,圆心距为2,则两圆的位置关系为( ) A .相交 B .外切 C .内切 D .外离 2)如果两圆相(内)切,一个圆的半径为3,两圆的圆心距为4,则另一个圆的半径为 1 或7 . 3)相交两圆半径分别为一无二次方程0170272=+-x x 的两根,它们的公共弦长16,则它们的圆心距为 21或9 . 4)如两圆共有三条公切线,那么这两个圆的位置关系为( ) A .外离 B .相交 C .外切 D .内切 5)已知两圆半径分别为12和4,外公切线长是15,则两圆的位置关系为 ,外公切线与连心线夹角的正弦值为 . 例2 如图,⊙O 1和⊙O 2相交于A 、B 两点,且O 1在⊙O 2上,过点A 的直线CD 分别与 ⊙O 1和⊙O 2交于点C ,D ,过点B 的直线EF 分别与⊙O 1和⊙O 2交于点E ,F ,⊙O 2的弦O 1D 交AB 于P. 1) 求证:CE ∥DF ; 2) 求证:D O P O OG 112?=. 思路 1)画公共弦AB ,证∠E+∠F=180°; 2)证ΔAO 1P ∽ΔAO 1 D 得D O P O OG 112?=. 小结 添公共弦AB 对解题起到了桥梁和关键得作用,是两圆相交中常见得辅助线. 思考 1)如何证G 是ΔABD 得内心?2)若PG=1,GD=2,求⊙O 1得半径? 例3 如图,⊙O 1和⊙O 2内切于A ,⊙O 2得弦BC 切⊙O 1于D ,AD 得延长线交⊙O 2于M ,连结 AB ,AC 分别交⊙O 1于E ,F ,连结EF . A B C E F D O 1 O 2 P G

直线与圆知识点总结

直线和圆知识点总结 1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围[)π,0。如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66 ,,π ππ );(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[π πα∈值的范围是______ (答:42≥-≤m m 或) 2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k = , 直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线: AB BC k k =。如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则 x y 的最大值、最小值分别为______(答:2,13 -) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为 00()y y k x x -=-,它不包括垂直于x 轴的直线。 (2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。(3)两点式:已知直线经 过111(,)P x y 、222(,)P x y 两点,则直线方程为1 21121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。(4)截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+b y a x ,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。如(1)经过点(2,1)且方向向量为v =(-1,3) 的直线的点斜式方程是___________(答:1(2)y x -=-);(2)直线(2)(21)(34)m x m y m +----=,不管m 怎样变化恒过点______(答:(1,2)--);(3)若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______(答:1a >) 提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等?直线的斜率为-1或直线过原点;直线两截距互为相反数?直线的斜率为1或直线过原点;直线两截距绝对值相等?直线的斜率为1±或直线过原点。如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条(答:3) 4.设直线方程的一些常用技巧:(1)知直线纵截距b ,常设其方程为y kx b =+;(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;(5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. 提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。

圆与圆的位置关系

精心整理第三讲直线与圆的位置关系、圆与圆的位置关系 第一部分知识梳理 一.直线与圆的位置关系 1.直线与圆的三种位置关系

如图,设⊙O的半径为r,圆心O到直线l的距离为d,得出直线和圆的三种位置关系: (1)直线l和⊙O相离?d r > 此时:直线和圆没有公共点. (2)直线l和⊙O相切?d r = . (1)如果一条直线与圆只有一个公共点,那么这条直线是圆的切线. (2)到圆心的距离等于半径的直线是圆的切线. (3)经过半径的外端且垂直与这条半径的直线是圆的切线. 证明直线是圆的切线的两种情况: (1)当不能说明直线与圆是否有公共点时,应当用“圆心到直线的距离等于半径

长”来判定直线与圆相切. (2)当已知直线与圆有公共点时,应当用判定定理,即“经过半径外端且垂直于半径的直线是圆的切线”,简单地说,就是“联半径,证垂直”. 二.圆与圆的位置关系 1.圆与圆的五种位置关系 在同一个平面内,两个不等的圆的位置关系共有五种:外离、外切、相交、内切、 ( ( ( ( ( 2. 注:当两圆相切时分为两种情况:外切和内切. 3.相交两圆的性质 相交两圆的性质:相交两圆的连心线垂直平分两圆的公共弦. 注:当两圆相交时分为两种情况:圆心在公共弦的同侧和圆心在公共弦的两侧. 第二部分例题精讲

例1如图,已知Rt ABC ?中,∠C=90°,AC=3,BC=4 (1)圆心为点C、半径长R为2的圆与直线AB有怎样的位置关系? (2)圆心为点C、半径长R为4的圆与直线AB有怎样的位置关系? (3)如果以点C为圆心的圆与直线AB有公共点,求⊙C的半径R的取值范围. . 已知Rt ABC ?中,∠ABC=90°,AB=3,BC=4,以B为圆心作⊙B. (1)若⊙B与斜边AC只有唯一一个公共点,求⊙B的半径长R的取值范围. (2)若⊙B与斜边AC没有公共点,求⊙B的半径长R的取值范围. 例2已知:直线AB经过⊙O上的点C,并且

《直线和圆的位置关系》教学设计实施方案范立琰

《直线和圆地位置关系》教学设计 (课时:第一课时撰稿人:范立琰) 【课标分析】理解直线与圆有相交、相切、相离三种位置关系:了解切线地概念. 【教材分析】这部分内容包括直线和圆地三种关系,探索圆地切线地性质,探索圆地切线地判定方法,以及作三角形内切圆地方法.探索并证明切线长定理,并运用切线长定理进行有关地论证和计算. 本节课主要研究直线和圆地三种位置关系. 【学生分析】首先让学生感受生活中反映直线与圆位置关系地现象,然后让学生动手操作,在这一过程中引导学生归纳出直线与圆地几种位置关系,进一步归纳出直线与圆地不同位置关系中d与r地大小关系,然后对d=r地情形特别关注,这就是圆和直线地相切关系,从而讨论得出切线地性质,再通过旋转实验地办法探索切线地判定条件.在此基础上能做出三角形地内切圆.在教学中主要让学生探索归纳,当遇到困难时教师给予适当指导,这样可以充分发挥学生地主观能动性,还能增进同学们地友谊,培养学生地合作能力. 【教学过程】 d

它们分别是相交、相切、相离. (1)当直线与圆有两个公共点时,叫做直线和圆相交. (2)当直线和圆有唯一公共点时,叫做直线与圆相切,这条直线叫做圆地切线.这个唯一地公共点叫做切点.

当直线与圆相交时当直线与圆相切时当直线与圆相离时

作AB地垂线段CD.

点在圆内r.-------------------- dr 版权申明 本文部分内容,包括文字、图片、以及设计等在网上搜集整理. 版权为个人所有 This article includes some parts, including text, pictures, and design. Copyright is personal ownership.DXDiTa9E3d 用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律

相关文档
最新文档