转子串电阻调速

转子串电阻调速

绕线转子异步电动机转子串电阻电感起动与调速方

法的研讨

绕城转子异步电动机能够通过转子串电阻进行起动与调速,但电阻上能耗大;如果转子串频敏变阻器,虽能减少损耗,但只能起动而不能调速。本文提出一种转子串电阻、电感的方法,既能用于起动与调速,又能较大程度地节能。IJ作原理如图1,在绕线电机转于绕组每相串入相同的电阻与电感。首先我们考虑只串电感L的情况,电机运行时的临界转差率式中r;——定子绕组的电阻X;——定于绕组的电抗r二。——转子绕组电阻的折算值X二——转子回路电抗的折算值teZ。H。0+XL其中X二。——转子绕组电抗的折算值X、——转子串电感L的电抗折算值由于r;<<x。,x;Wx。,略去r;、x;,则即Sm与人成反比,与固有特性相比,临界转差率的值减少。电机运行时的最大转矩为同理略去r;、x;,则式中m;——电机定子相数V;——电机定子相电压。。——电机同步角速度由式(2)可知,凡人与Xb也成反比,与固有特性相比,最大转矩减少。由以上分析可知,转子串电感时的机械特性如图2中的曲线1(曲线0为电机的固有特性)。在此基础上转子绕组再串入电阻Rnl 与Rn。,由式(l)、式(2)可知:临界转差率随转子回路电阻的增加而增大,而最大转短不变,其机械(本文共计3页)......[继续阅读本文]

转子上串联电阻可以降低启动电流增大启动转矩,同样也可以用于调速,但转子回路串联电阻调速的方式不理想,在电机轻载和空载的时候几乎起不到调速的作用,串联电抗器也可以减小起动电流,但是起动转矩也会减小很多,所以不采用串联电抗器来启动。

不是说三项绕线转子异步电动机转子回路串入电阻,可以增大起动转矩,串入电阻值越大,起动转矩越大?要合适

是应该三相都串的,以保持三相平衡。所串电阻增大,转速变低。因为电阻增大,相当于电机端电压降低,电机机械特性变软,转差率增大。负载恒定的时候,电机的电流会增大的。

三相绕线型异步电动机转子串电阻启动的设计说明

引言 三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。 异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。 异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。 三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。我的设计为三相绕线型异步电动机转子电路串电阻启动。

1 三相异步电机的工作原理和结构组成 1.1 工作原理 三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。 1.2 结构组成 三相异步电动机主要由定子、转子、气隙三部分组成。 1.2.1 定子 三相异步电动机的定子由定子铁心、定子绕组和机座三部分组成。 1)定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。 2)定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。一般根据定子绕组在槽布置的情况,有单层绕组及双层绕组两种基本型型。容量较大的异步电动机都采用双层绕组。双层绕组在每槽的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。小容量异步电动机常采用单层绕组。槽定子绕组的导线用槽楔紧固。槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。 3)机座机座的作用主要是固定和支撑定子铁心。中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。对于大中型异步电动机,一般采用钢板焊接的机座。 1.2.2 转子 异步电机的转子由转子铁心、转子绕组和转轴组成。

直流电动机电枢串联电阻调速过程设计

指导教师评定成绩: 审定成绩: 湖南交通工程学院 课程设计报告 设计题目:直流电机的串电阻调速过程设计 院系:电气与信息工程系 学生姓名:张蕴 专业:电气工程及其自动化 班级:14级电气工程及其自动化(1)班学号:144139240471 指导教师:陈海文

设计时间:2017 年11 月 课程设计任务书 一、设计题目 直流电机的串电阻调速过程设计 二、设计任务和要求 1.熟练直流电机的机械特性和电气特性; 2.根据图片提示,综合运用知识分析直流电机的运行过程; 3.计算每个阶段变化过程中的阻值对系统的影响; 4.推导出每个速度变化过程中电阻值的公式; 5.根据以下直流电动机特性 Pn=85KW Uan=380V Ian=176A Nn=1450r/min 欲用电枢串电阻启动,启动级数初步为3级

1)选择启动电流I1,切换电流I2和切换电流I3 2)求出起切电流比 3)求出启动时电枢电路的总电阻Ram 4)求出启动级数m 5)重新计算,校验I2,I3 6)求出各级总电阻 7)求出各级启动电阻 8)结论 9)提交整个设计报告和测试报告 目录 一、直流电动机的综述 (4) 二、他励直流电动机 (5) 三、设计内容 (12) 四、结论 (14) 五、心得体会 (16) 六、参考文献 (17)

一、综述

直流电动机因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励3类,其中自励又分为并励、串励和复励3种。 直流电动机- 特点: (一)调速性能好。所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。 (二)起动力矩大。可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。直流电动机–工作原理: 如上图(a)所示,则有直流电流从电刷A 流入,经过线圈abcd,从电刷B 流出,根据电磁力定律,载流导体ab和cd 收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片

电阻的串联、并联和混联习题

临河一职电工基础课程导学案 课题:电阻的串联、并联和混联习题主备人田乐备课时间2013-04-21 备课组组长签字教研组长签字一填空题 1.将l0和20两个电阻串联,总电阻是__________Ω。若通过它们的电流是 0.3A,则两电阻两端的总电压是__________V。 2.把R1=15和R2=5两个电阻并联接到6V电源上,等效电阻是 __________ Ω,通过R1电阻的电流是__________A。 3,某灯泡额定电压是24 V,正常发光时灯丝电阻为16Ω,若想使该灯泡在电源 电压为36V的电路中正常发光,可在电路中串联一个阻值为___________的电阻 4.有4Ω和6Ω两个电阻.将它们串联后的总电阻是___________Ω;将它们并 联后的总电阻是________Ω. 5.将两个电阻串联,R l=2R2,则通过R1、R2的电流之比为________,R1、R2 两端的电压之比为___________ 6.两个等值电阻,串联后总电阻为R1,并联后总电阻为R2,则R1:R2= _______ 7.已知:R1=R2=R3=2 Ω,在某一电路中,R1先与R2串联,再与R3并联,其 等效电阻的阻值为_______Ω. 8.串联电路的总电阻等于_________________,写成数学表达式是 _____________ ;串联电路中的电流______________ ,写成数学表达式是 _________________ ;串联电路的总电压等于________________,写成数 学表达式是_________________. 9. n个相等的电阻R串联,其等效电阻等于______;n个相等的电阻R并联, 其等效电阻等于___________. 10.有n个相同的电阻R,若把其中2个电阻串联起来,其等效电阻为 ;若把其中3个电阻串联起来,其等效电阻为________;若把n个电阻都串 联起来,其等效电阻应为_________ 11.电阻R1和R2串联后的总电阻为10Ω,已知R1=4Ω,则R2= ______Ω,它们并联后的总电阻为_______Ω. 二选择题 1.两电阻的阻值分别为10和20,它们串联的总电阻为 ( ) A.6.7Ω B.10 Ω C.20Ω D. 30Ω 2..两个组织分别为6Ω和3Ω的电阻,串联接在9V的电源两端,闭合开关后,电路中的电流为( ) A.6A B.3A C.1A D.0.5A A3AB5AC1A 6.下图所示的是一个电路时的电表示数,请你判断下列说法中正确的是(A.电流表的读数是2.3A B.电压表的示数是

绕线式电动机转子串电阻调速方法

绕线式电动机转子串电阻 调速方法 LELE was finally revised on the morning of December 16, 2020

绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 1、串电阻启动增加,降低,起动达速后切除启动电阻(就是转子回路)全速运行。 2、串电阻启动(电阻最大值起动),根据需要调整电阻的阻值,可以改变电机的运行速度,达到调速的目的(是有范围的调速)。 绕线式电机的启动电流是可调的,通过调整转子串联的电阻大小,可以调节绕线式电机的启动电流! 原理:对于绕线式异步电动机,当电网电压及频率不变时,在转子回路中串入电阻后,可以改善电动机的起动转矩,在绕线电机转子中串接启动电阻,减小启动电流,电阻一般接为星形接法,根据公式: I0=U0/R0 当转子串接电阻时R0↑,在U0不变的情况下,I0↓,此分析忽略电机感抗的损耗。 启动前将电阻全部接入转子回路,随着启动过程的结束,启动电阻被逐级短接,KM1,KM2,KM3逐级吸合,保证始终有较大的起动转矩,短接方式可以遵循时间和电流调节原则,KA1,KA2,KA3中间继电器可以根据实际工作情况而 定。 RN=E N÷I N÷√3 R N:电机转子额定电阻 E N:电机转子额定电压 I N:电机转子额定电流 例:240KW-6极电机,定子电流436A,定子电压380V。转子电流376A,转子电压407V RN=(E N÷IN)÷√3=(407÷376)÷√3=()÷√3=Ω △RY1= RN =× =Ω △RY2= =×=Ω △R1= =× =Ω △R2= RN =× =Ω

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式 本文介绍了三相异步电动机的七种调速方式及其特点,指明其适用的场合、情况。 三相异步电动机转速公式为:n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:①高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。 ②有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中; ③电磁离合器的调速方法,能量损耗在离合器线圈中; ④液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高; 3、接线简单、控制方便、价格低; 4、有级调速,级差较大,不能获得平滑调速; 5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 1、效率高,调速过程中没有附加损耗; 2、应用范围广,可用于笼型异步电动机; 3、调速范围大,特性硬,精度高; 4、技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。

电阻的串联和并联

电阻的串联和并联 知识点一:; :电阻的串联有以下几个特点:(指R1、R2串联,串得越多,总电阻越大) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(串联电路中总电压等于各部分电路电压之和) ③电阻:R=R1+R2(串联电路中总电阻等于各串联电阻之和);如果n个等值电阻(R)串联,则有R总=nR 注:总电阻比任何一个分电阻都大,其原因是电阻串联相当于增加了导体的长度; ④分压作用:U1/U2=R1/R2(阻值越大的电阻分得电压越多,反之分得电压越少) ⑤比例关系:电流:I1∶I2=1∶1 例题:电阻为12Ω的电铃正常工作时的电压为6 V,若把它接在8 V的电路上,需要给它串联一个多大的电阻?(要求画出电路图,在图上标出有关物理量) 例题:把电阻R1=20Ω与电阻R2=15Ω串联起来接入电路中,流过R1、R2的电流之比是 __________,R1、R2两端的电压之比是_____________。 例题:如图所示,电源电压为10V,闭合开关S后,电流表、电压表的示数分别为O.5A和6V。求:(1)通过R1的电流I1是多少? (2)马平同学在求R2的电阻值时,解题过程如下: 根据欧姆定律:R2=U/I=6V/0.5A=12Ω 请你指出马平同学在解题过程中存在的错误,并写出正确的 解题过程。 练习1.电阻R1和R2串联后接在电压为6 V的电源上,电阻R1=2Ω,R2=4Ω,求: (1)总电阻. (2)R1两端的电压.(要求画出电路图,在图上标出有关物理量) 2.如图所示的电路中,若电源电压保持6 V不变,电阻R1=10Ω,滑动变阻器R2的变化范围是O~20Ω.求: (1)欲使电压表的示数为4 V,则此时电流表的示数为多大?滑动变阻器连入电路的电阻是多大? (2)当滑动变阻器连人电路的电阻为20Ω时,电流表、电压表的示数分别是多大? 3.把电阻R1=5Ω与电阻R2=15Ω串联起来接入电路中,流过R1、R2的电流之比是__________,

水电阻阻值的计算方法

水电阻阻值的计算方法. 水电阻的调试方法 1、起动电阻的确定: 串入电机转子回路的每相电阻值R,应按下式确定0

R=2U/√3Ik*I/I 2e012e1e注:U转子开路电压2e I转子额定电流2e I定子额定电流1e I定子运行电流1K常数(1.1至1.3之间) 简化公式: RO=0.7*U2e/I2e 2、液体的配制 将动极板移到起始位置,(转动皮带轮移动极板)、,加入清水至A 水箱规定水位的四分之三处; B、将电解粉与清水按3%的配比注入三个水箱,然后移动动极板数

次,使溶液浓度均匀后将动极板复位; C、测量任两极之间的电阻值R,若R在R范围内,配制即完成,0若R偏大,则适当增加电解粉。使液体浓度增加,若R偏小则加入适量清水。 3、液阻的测量 将液阻的动极板移到起始位置后,在任何两极间通入10A左右、50Hz 的电流I,测量两极的电压降U,按欧姆定律原则计算出来就行。 ] 原创[高压电动机液体电阻起动器调试. 液体电阻起动器调试 (一) 、准备工作 1、检查液体起动柜内配线,液体起动器与一次柜、DCS系统的联锁

控制线,确保无误。 2、转子线先不与液体电阻起动器连接,等测完电阻再连接。 3、确认端子间或各暴露的带电部位没有短路或对地短路情,确认端子连接、螺钉等均紧固无松动。 4、 PLC程序检查,调出PLC内部程序,检查程序是否合理,是否满足控制逻辑,如存在问题,就地修改。 (二)、液体起动器动作试验:

1、用手动盘车方法使动极板处于上、下限位的中间,检查控制电源三相电正常后,将“试验”钮子开关左旋于运行位置,合上柜内空气开关,此时若极板上行则为正常; 2、用手动作上限位行程开关应停止运行,若极板下行则相序错误。此时关掉电源交换两相电源线即可; 3、然后合上电源将“试验”钮子开关右旋于“试验”位置,极板向下运行直到下限位置停止,且短接接触器吸合。 (三)、液体电阻配制: 配制方案:根据电机转子回路内电阻配液; 1、配液用水:一般选用经过净置后去掉沉淀物的生活用水即可。 2、电阻溶剂即电阻粉,由生产厂商提供。 的确定:RO液体起动电阻、3. RO=0.577*U2e/I2e·KF·kt/kM 式中:U2e:电机转子回路的开路电压(V) I2e:电机转子回路的额定电流(A)

绕线式电动机转子回路串电阻起动控制电路

绕线式电动机转子回路串电阻启动控制电路的安装、调试及故障排查 【课时安排】 2课时 【实训目标】 1.正确理解三相绕线转子异步电动机转子回路串电阻启动的工作原理。 2.能正确识读三相绕线转子异步电动机转子回路串电阻启动控制电路的原理图和布置图。 3.会按照工艺要求正确安装三相绕线转子异步电动机转子回路串电阻启动控制电路。 4..能用万用表对控制电路进行通电前的检查。 5.能熟练使用电钳工工具及低压测量仪表。 6.培养安全第一、科学严谨、团结合作、成本意识、节能环保意识。 【实训条件准备】 1.常用电工工具:包括试电笔、克丝钳、剥线钳、改锥、尖嘴钳、斜口钳等。 2.万用表 3.绝缘导线:主电路采用平方,控制电路采用BV1平方。 4.绕线式异步电动机 5.交流接触器、时间继电器、按钮、熔断器、热继电器等电器元件 【实训过程】 一、实训电路 1. 绕线式电动机转子回路串电阻启动控制电路原理图如图5所示 图5 绕线式电动机转子回路串电阻启动控制电路 2.小组讨论双速电动机控制线路工作原理。 起动控制:

停止控制: 3.备齐所需电气元器件及工具并检测元器件 配齐所用电气元件,并进行质量检验。元器件应完好,各项技术指标符合规定要求,否则予以更换。 二、计划与实施 1.绘制电器元器件布置图并安装电器元器件 2.绘制接线图 3.安装、接线 (1)小组成员讨论线路连接的思路与方法,并作介绍。 (2)小组合作根据电路图完成接线。 4.检测线路 (1)检查所接电路,按照电路图从头到尾按顺序检查

(2)用万用表初步测试电路有无短路情况。确保电路未通电的情况下把万用表打到欧姆档,用万用表检查电路,并填写在下表。 5.通电运行 (1)整理试验台多余的导线和工具,避免对电路造成影响 (2)为保证人身安全,在通电试车时,一人操作一人监护,认真执行、安全操作规程的有关规定,经老师检查并现场监护。 在教师检查无误后,经教师允许后才可以通电运行。 (1)通电顺序:先合上实验台总电源开关。 按下按钮SB1,观察并记录电动机工作状态,接触器KM状态,时间继电器KT1 状态。 (2)第一延时时间到,观察并记录M工作状态,接触器KM1状态,时间继电器KT2状态。 (3)第二延时时间到,观察并记录M工作状态,接触器KM2状态,时间继电器KT3状态。 (4)第三延时时间到,观察并记录M工作状态,接触器KM3状态。 (5)按下停止按钮SB2,观察并记录M工作状态,接触器KM1状态,接触器KM2状态,接触器KM3状态,时间继电器KT1状态,时间继电器KT2状态,时间继电器KT3状态。 6.故障排查 利用维修电工技能鉴定装置上进行绕线式异步电动机转子回路串电阻起动控制线路的排故练习。记录故障现象、判断记录故障部位、可能的故障原因并说明排故方法。 绕线式异步电动机转子回路串电阻起动控制电路排故记录 7.整理现场 三、评价反馈 双速电动机控制线路安装、调试项目评价表

三相电机七种调速方式

三相电机七种调速方式 一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;

调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。 四、绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 五、定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。 调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点:调压调速线路简单,易实现自动控制; 调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。 调压调速一般适用于100KW以下的生产机械。 六、电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。 电磁转差离合器由电枢、磁极和励磁绕组三部分组成。电枢和后者没有机械联系,都能自由转动。电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁

电机调速控制

一、直流电机调速方法 (1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢 电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内 无级平滑调速的系统来说,这种方法最好。I a 变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 (2)改变电动机主磁通Φ。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。 I f 变化时间遇到的时间常数同I a 变化遇到的相比要大得多,响应速度较慢, 但所需电源容景小。 (3)改变电枢回路电阻R。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大暈电能。 二、异步电机调速方法 三相异步电动机转速公式为:n60f p1s。 从上式可见,改变供电频率f、电动机的极对数P及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种: (1)高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。 (2)有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中; (3)电磁离合器的调速方法,能量损耗在离合器线圈中;

转子电阻计算

转子电阻的计算步骤如下: (一)计算公式q(用转差率几何平均法) 1.计算S 0 同步提升速度 s m i D n v t t /925.320 602 14.375060=???== π 转差率 618.0925 .35 .1925.3S 00=-=-= t t v v v 2.计算转差率S pz 加速平均力矩 M 1p =×=???+=" +'=5 .80202140191406372)(111)(j p i R F F M η2377N · m 电动机最大额定力矩 3790735 280 95509550===e e e n P M N · m 电动机最大力矩 M e =e M λ=2.1×3790=7960N · m 电动机额定转差率 t e t e n n n S -= =750735 750-=0.02 最大力矩的转差率 0789.0)11.21.2(02.0)1(22 =-+ ?=-+=λλe z m S S 转差率 013.01)23777960(237779600789.012211=??????--=???? ??????-???? ??-=y m y m pz pz M M M M S S 3.计算公比 q=(N+0.5) 811.1013 .0618 .0) 5.06(0==+pz S S 4.检验上下切换力矩M 1、M 2 允许最大上下切换力矩 M 1max =0.9M m =0.9×7960=7164N · m 上切换力矩

m N 1647m 52N 63618.01811 .10789.0811.10789.0618.07960 21S 2M M 6 60 0m 1<=?+??= += S q S q S N mz N mz 加速段静阻力 Nm ma F F F j 204006.014.333562 40191 4063721111=?-+=-''+'= ∑ 加速段静阻力矩 Nm i R F M j j j 120085 .0201 2040011=??= = η 允许最小下切换力矩 Nm M M j 132012001.11.11min 2=?== 下切换力矩 m N 3201m N 1922618.01811 .10789.0811.10789.0618.07960 21S 2M M 1 6160 !10m 2>=?+??= += ++++S q S q S N mz N mz 通过的检验知,公比=q 1.811合适 (二)各级电阻阻值计算 1.转子绕组每相电阻 Ω=???== 024.0357 3492 02.05.135.122e e e z I u S R 2.第一预备级电阻 Ω=?== 978.302 .03.0024 .03.01e z y S R R 3.第二预备级电阻计算 电动机额定力矩 F n =N v P m j n 60637925 .385 .028*********=??= η

三相异步电动机的七大调速方法

三相异步电动机的七大调速方法 下面成都贝尔菲特科技发展有限公司小编为您介绍三相异步电动机的七大调速方式: 首先来看三相异步电动机转速公式:n=60f/p(1-s) 从公式中可以看出,改变供电频率f、电动机极对数p及转差率s均可太到改变转速目。 从调速本质来看,不同调速方式无非是改变交流电动机同步转速或不改变同步转两种。 生产机械中广泛使用不改变同步转速调速方法有绕线式电动机转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速有改变定子极对数多速电动机,改变定子电压、频率变频调速有能无换向电动机调速等。 从调速时能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,无转差损耗,如多速电动机、变频调速以及能将转差损耗回收调速方法(如串级调速等)。有转差损耗调速方法属低效调速,如转子串电阻调速方法,能量就损耗转子回路中;电磁离合器调速方法,能量损耗离合器线圈中;液力偶合器调速,能量损耗液力偶合器油中。一般来说转差损耗随调速范围扩大而增加,调速范围不大,能量损耗是很小。 一、变极对数调速方法 这种调速方法是用改变定子绕组接红方式来改变笼型电动机定子极对数达到调速目,特点如下: 具有较硬机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获平滑调速; 可以与调压调速、电磁转差离合器配合使用,获较高效率平滑调速特性。

本方法适用于不需要无级调速生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源频率,改变其同步转速调速方法。变频调速系统主要设备是提供变频电源变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节附加电势来改变电动机转差,达到调速目。大部分转差功率被串入附加电势所吸收,再利用产生附加装置,把吸收转差功率返回电网或转换能量加以利用。转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围额定转速70%-90%生产机械上; 调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。

关于美恒公司THYROMAT定子调压调速装置电机转子电阻计算的探讨

关于THYROMAT定子调压调速装置电机转子电阻计算的探讨 作者姓名:王成杰 作者单位:大连美恒电气有限公司 摘要:电机的调压调速控制,尤其在冶金行业中,已得到广泛应用。由于调压调速原理决定电机转子必须串入转子电阻器,所以在实际设计中,计算电机转子电阻值、选择电阻器是必须的。笔者针对美恒公司THYROMAT调压调速装置的特点,实现电机转子电阻值的计算与电阻器的选取。 关键词:定子调压转子电阻电阻器计算THYROMAT 引言: 美恒公司的THYROMAT定子调压调速装置在冶金行业的起重机上得到广泛应用,在实际应用中常常需要计算电机的转子电阻值。本文旨在探讨如何计算电机转子电阻值及选取相应电阻器。 一. THYROMAT调压调速系统电机转子回路 图1,转子回路图 注:KM41,KM42动作信号由THYROMAT装置输出。

二. 理想模型的建立 建立一个理想模型。近似把电机曲线稳定区域看成直线,以下讨论都建立在这个理想模型上。 电机100%额定电压输入,负载为额定负载。满足THYROMAT 装置起动曲线③50%速度能够达到,当速度达到50%、75%时能够顺利切电阻KM41、KM42,起动力矩满足2倍额定转矩。画出对应曲线如图2中①②③④所示。 起升机构电机工作状态描述如下: 上升状态: 在Q 点起动,起动力矩Tq ,工作曲线为③,此时已切除4R (KM40)。当 THYROMAT 接收到1,2,3档上升指令时,通过调节电压,曲线在③⑧之间变化,由于电压为100%,故能够满足50%以下速度调速范围。当接收到4档上升指令时,THYROMAT 输出全电压先运行于a 点,此时速度50%,需切3R (KM41),电机运行曲线变为曲线②,切换到b 点,运行到c 点时速度达到75%,需切2R (KM42),电机运行曲线变为曲线①,切换到d 点,稳定运行于e 点。由图三角形相似可得出N T Tq 2=,其中,N T 为额定负载力矩,Tq 为起动力矩。 图2,电机正向曲线图

基于异步电机转子绕组串电阻调速仿真模型

基于异步电机转子绕组串电阻调速仿真模型 段文鹏 河西学院物理与机电工程学院 甘肃 张掖 733400 摘要:本文利用MATLAB 的sinulink 对三相异步电机转子绕组串电阻调速进行仿真模型。当在转子绕组串入附加电阻后,电机的机械性能发生变化,在一定的负载转矩下,改变转子绕组串入附加电阻的大小,电机的转速发生变化,从而达到调速的目的。 关键词:MATLAB 附加电阻 调速 引言: 三相异步电动机在转子绕组串入附加电阻后,电机的机械性能发生变化,在一定的负载转矩下,改变转子绕组串入附加电阻的大小,电机的转速发生变化,从而达到调速的目的。利用MATLAB 的sinulink 对三相异步电机转子绕组串电阻调速进行仿真模型,观察图像,从而更加明确清晰的认识三相异步电动机的工作特性和调速的机理。 一、 三相异步电机转子绕组串电阻调速的仿真模型 二、 三相异步电机转子绕组串电阻调速的仿真波形分析 Continuous pow ergui v + - Voltage Measurement Series RLC Branch2 Series RLC Branch1 Series RLC Branch Scope2 Scope1 -C-Constant m A B C a b c Tm AC Voltage Source2AC Voltage Source1 AC Voltage Source

1、定子电流的仿真模型 2、定子电压的仿真模型 3、阻抗角的仿真模型

阻抗角是指交流电路中相电压和相电流之间的相位差,又称为功率因数角,也可以表述为复(数)阻抗的复角。 4、励磁电流的仿真模型 励磁电流就是同步电机转子中流过的电流(有了这个电流,使转子相当于一个电磁铁,有N极和S极),在正常运行时,这个电流是由外部加在转子上的直流电压产生的。以前这个直流电压是由直流电动机供给,现在大多是由可控硅整流后供给。我们通常把可控硅整流系统称为励磁装置。

电阻的串联、并联和混联.

第五节电阻的串联、并联和混联 一、电阻串联电路 定义:电阻的串联一一把两个或两个以上的电阻依次联接起来,使电流只有一条通路, 如图1-5-1。 (一)串联电路的特点 a 6+ u-ad 图1-5-1电阻串联电路 (1)电路中电流处处相等。 (2)电路总电压等于各部分电路两端的电压之和。 U U1 U2 U3 (3)总电阻 R R1 R2 R3 结论:串联电路的总电阻等于各个电阻之和。 (4)电压分配 I 5 ;I R U2 ; R2 I 土; R3 ;I丄 Rn U1 U2U3U n I R R3 I Rn 结论:串联电路中各电阻两端的电压与它的阻值成正比。 若两个电阻串联,贝y 1U I R R? R1R2 .. U1U ;U 2U R,1 R2R1 R2 (5)功率分配 旦旦旦旦 R R2R3R n 结论:串联电路中各电阻消耗的功率与它的阻值成正比。 又因P P P2 P3 所以,串联电路总功率等于各电阻上消耗的功率之和。 (二)串联电路的应用 1 ?获得大阻值电阻:总电阻。 2.限流:总电流。 3 .分压:电压分配。 4.扩大电压表的量程:分压。 例2:有一只电流表,满刻度电流I g= 100 A,表头线圈电阻R g= 1 k ,若将它改装成10V的电压表,应串联多大的电阻?

11 I 、电阻并联电路 电阻的并联:把若干个电阻一端连在一起,另一端连接在一起,如图 1-5-3。 A A 尬 r* --- L 卜 --------- ---------- [ [ — - I 】 ----------------- N A _ A 0+ u —u 何 (b ) 图1-5-3 电阻并联电路 (一)并联电路的特点 (1)电路中各支路两端的电压相等。 U 1 U 2 U 3 (2 ) 电路中总电流等于各支路的电流之和 I I 1 I 2 1 3 (3) 总电阻 设电压为U ,根据欧姆定律,则 1 = U ; I U ; I U ; I U R 丨1 R R 2 R n 所以 1 1 1 1 1 R 瓦 瓦 R 3 R n 结论: 并联电路总电阻的倒数,等于各个电阻的倒数之和。 (4) 电流分配 U =丨1 R 1 = I 2 R 2= I 3 R 3 结论:并联电路中通过各个电阻的电流与它的阻值成反比。 当只有两个电阻并联时 R.1 R 2 U g =R g I g = 1 k 100 A = 0.1 V 串联电压需分压 U U g (10 0.1) V 9.9V 串联阻值 U U g 10 0.1 R 6 k I lg 100 10 6 解:表头流过最大电流时,表头两端的电压 图1-5-2 例2串联电路的应用

绕线转子电阻计算

绕线转子电阻计算 绕线式三相异步电动机转子计算起动电阻是比较复杂的,一般分为3段电阻均匀切出时的计算方法: 1.计算转子额定电阻:R=U/(1.73×I)(U=转子电压,I=转子电流) 2.计算转子一相的内电阻:r=S×R式中:S=转差率,S=(n1- n)/n1(n1=同步转速,n=电机额定转速 3.电机额定力矩计算:M额=(975×P额)/n(M额=电机额定力矩,P 额=电机额定功率) 4.电机最大起动力矩与额定力矩之比:M=M最大/M额(M最大=最大起动力矩,M最大≤2M额 5.计算最大起动力矩与切换力矩之比:λ=根号3次方的(1/S×M)(λ=最大起动力矩与切换力矩之比) 6.3级(段)电阻计算:A>r1=r(λ-1)B>r2=r1×λC>r3=r2×λ切除电阻时,r1最后切出。 例题:22KW绕线式三相异步电动机,转速723转/分,转子电压197V,转子电流70.5A,现要求该电机起动时最大转矩为额定转矩的两倍,计算起动电阻有关数据。 1.计算转子额定电阻:R=U/(1.73×I)=197/(1.73×70.5)= 1.63(Ω) 2.转子每相内阻:S=(n1-n)/n1=(750-723)/750=0.036r=S×R =0.036×1.63=0.059(Ω) 3.额定转矩:M额=(975×P额)/n=(975×22)/723=29.6(Kg.M) 4.确定最大起动转矩:取:M最大=2M额M=M最大/M额=2 5.力矩比:λ=根号3次方的(1/S×M)=根号3次方的(1/0.036×

2)=根号3次方的(13.9)=2.4 6.3级电阻计算:A>r1=r(λ-1)=0.059(2.4-1)=0.083(Ω) B>r2=r1×λ=0.083×2.4=0.2(Ω) C>r3=r2×λ=0.2×2.4=0.48(Ω) 1》例题:22KW绕线式三相异步电动机,转速723转/分,转子电压197V,转子电流70.5A,现要求该电机起动时最大转矩为额定转矩的两倍,计算起动电阻有关数据。1》计算转子额定电阻:R =U/(1.73×I)=197/(1.73×70.5)=1.63(Ω) 2》转子每相内阻:S=(n1-n)/n1=(750-723)/750=0.036r=S ×R=0.036×1.63=0.059(Ω) 3》额定转矩:M额=(975×P额)/n=(975×22)/723=29.6(Kg.M) 4》确定最大起动转矩:取:M最大=2M额M=M最大/M额=2 5》力矩比:λ=根号3次方的(1/S×M)=根号3次方的(1/0.036×2)=根号3次方的(13.9)=2.4 6》3级电阻计算:A>r1=r(λ-1)=0.059(2.4-1)= 0.083(Ω)B>r2=r1×λ=0.083×2.4=0.2(Ω)搜索C>r3=r2×λ =0.2×2.4=0.48(Ω) 如有侵权请联系告知删除,感谢你们的配合!

绕线异步电动机串电阻启动

1.电动机 1.1旋转磁场 定子三相对称绕组中通以频率为f 1 的三相对称电流便会产生旋转磁场。旋转磁场的转速由下式确定 n 0= p f 1 60 式中,P为电机的极对数。n 又称为同步转速旋转磁场的转向由三相电 流通入三相绕组的相序决定。改变电流相序,旋转磁场的转向随之改变。 1.2异步电动机结构 Y形的电阻,或直接通过短路端环短三相异步电动机主要由静止的和转动的两部分构成,其静止部分称为定子。定子是用硅钢片叠成的圆筒形铁心,其内圆周有槽用来安放三相对称绕组:三相对称绕组每相在空间互差120°,可联接成Y形或Δ形。三相异步电动机转动的部分称为转子,是用硅钢片叠成的圆柱形铁心,与定子铁心共同形成磁路。转子外圆周有槽用以安放转子绕组。转子绕组有鼠笼式和线绕式两种。鼠笼式:将铜条扦入槽内,两端用铜环短接,或直接用熔铝浇铸成短路绕组。线绕式:安放三相对称绕组,其一端接在一起形成Y形,另一端引出连接三个已被接成路。 1.3异步电动机工作原理 转子绕组切割旋转磁场产生感应电势,并在短路的转子绕组中形成转子电流,转子电流与旋转磁场相互作用产生电磁力,形成转动力矩,使转子随旋转磁场以转速n转动并带动机械负载。转子和旋转磁场之间转速差的存在是异步电动机转动的必要条件,转速差以转差率s衡量

S= 0-n n n ×100% 1.4定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm 硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口;半开口和开口槽三种:适用于不同的电机 定子绕组:电路;绝缘导线绕制线圈;由若干线圈按一定规律连接成三相对称绕组交流电机的定子绕组称为电枢绕组 机座:支撑和固定作用;铸铁或钢板焊接 1.5转子 转子铁芯:导磁和嵌放转子绕组;0.5mm 硅钢片;外圆开槽 转子绕组:分为笼型和绕线型两种 笼型绕组:电路;铸铝或铜条优缺点 绕线型绕组:对称三相绕组:星接;集电环优缺点 气隙:气隙大小的影响:中小型电机的气隙为0.2mm ~2mm 2.电动机的起动指标 起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。对于任何一台电动机,在起动时,都有下列两个基本的要求。 2.1起动转矩要足够大 堵转状态时电动机刚接通电源,转子尚未转动时的工作状态,工作点在特性曲线上的S 点。这时的转差s=1,转速n=0,对应的电磁转矩T st 称为起动转矩。 堵转状态说明了电动机的直接起动能力。因为只有在T st >T L <一般要求T st >(1.1~1.2)T L ,电动机才能起动起来。T st 大,电动机才能重载起动;T st

相关文档
最新文档