单回路控制

单回路控制
单回路控制

一、单回路控制系统

1一个简单控制系统由那几部分组成?各有什么作用?

2什么是简单控制系统?试画出简单控制系统的典型方块图。

答:所谓简单控制系统,通常是指由一个被控对象、一个检测元件及传感器(或变送器)、一个调节器和一个执行器所构成的单闭环控制系统,有时也称为单回路控制系统。

简单控制系统的典型方块图如下图所示。

题2 方块图

3在石油化工生产过程中,常常利用液态丙烯汽化吸收裂解气体的热量,使裂解气体的温度下降到规定数值上。下图是一个简化的丙烯冷却器温度控制系统。被冷却的物料是乙烯裂解气,其温度要求控制在(15±1.5)℃。如果温度太高,冷却后的气体会包含过多的水分,对生产造成有害影响;如果温度太低,乙烯裂解气会产生结晶析出,杜塞管道。

题3 图丙烯冷却器

(1)指出系统中被控对象、被控变量和操作变量各是什么?

(2)试画出该控制系统的组成方块图。

答:(1)被控对象为丙烯冷却器;被控变量为乙烯裂解气的出口温度;操作变量为气态丙烯的流量。

(3)该系统的方块图:

题3 方块图

4反应温度控制系统示意图。A、B两种物料进入反映,通过改变进入夹套的冷却水流量来控制反应器内的温度保持不变。图中TT表示温度变送器,TC便是温度控制器。试画出该温度控制系统的方块图,并指出该控制系统中的被控对象、被控变量、操作变量及可能影响被控变量变化的扰动各是什么?

题4图反应器温度控制系统

答:反应器温度控制系统中被控对象为反应器;被控变量为反应器内温度;操作变量为冷却水流量;干扰为A、B物料的流量、温度、浓度、冷却水的温度、压力及搅拌器的转速。反应器的温度控制系统的方块图:

题4方块图

5 乙炔发生器是利用电石和水来产生乙炔气装置。为了降低电石消耗量,提高乙炔的收率,确保生产安全,设计了如图所示温度控制系统。工艺要求发生器温度控制在(80±1)℃。试画出该温度控制系统的方块图,并指出图中的被控对被控变量、操作变量及可能存在的扰动。

题5图乙炔发生器

答:乙炔发生器温度控制系统方块图如下图所示(图中T、T O分别为乙炔发生器温度及其设定值)。

题5 方块图

被控对象:乙炔发生器;

被控变量:乙炔发生器内温度;

操纵变量:冷水流量;

扰动量:冷水温度、压力;电石进料量、成分等。

6列管式换热器。工艺要求出口物料温度保持恒定。经分析如果保持物料入口流量和蒸汽流量基本恒定,则温度的波动将会减小到工艺允许的误差范围之内。现分别设计了物料入口流量和蒸汽流量两个控制系统,以保持出口物料温度恒定。

题6图

(1)试画出对出口物料温度的控制系统方块图;

(2)指出该系统是开环控制系统还是闭环控制系统,并说明理由。

答:(1)控制系统方块图如下图所示。

题6方块图

(2)控制系统为开环控制系统。从方块图可以看出,对物料入口流量和蒸汽流量均为闭环控制系统;而对于出口物料温度,未经过测量变送环节反馈到系统输入端,没有形成闭环系统。

7. 画出图示系统的方框图:

8. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?

9. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。

10增大过程的增益对控制系统的控制品质指标有什么影响?过程的时间常数是否越小越好?为什么?

11. 已知广义对象的传递函数为1)

S (T e K P S

τP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么?

1. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。

2. 某温度控制系统已经正常运行,由于原温度变送器(量程200~300℃)损坏,改用量程为0~500℃的同分度号的温度变送器,控制系统会出现什么现象?应如何解决?

3. 一个简单控制系统中,控制阀口径变化后,对系统质量有何影响?

4. 试述控制阀流量特性的选择原则,并举例加以说明。

5. 对图示控制系统采用线性控制阀。当负荷G 1增加后,系统的响应趋于非周期函数,而G 1减少时,系统响应震荡加剧,试分析其原因,并设法解决之。

6. 已知蒸汽加热器如图所示,该系统热量平衡式

为:G 1C 1(θ0-θi)=G 2λ(λ为蒸汽的冷凝潜热)。

(1)主要扰动为θi 时,(2)主要扰动为G1时,(3)设定值变化时,选择控制阀的流量特性。

1. 试确定习题7中控制器的正反作用。若加热变

成冷却,且控制阀由气开变为气关,控制器的正

反作用是否需要

2 图中,还是反作用方式?

(a) (b)

(c) (d)

题2图 答: (a)――正作用;(b) ――反作用;(c) ――正作用;(d) ――反作用;

3 图中的液面调节回路,工艺要求故障情况下送出的气体中也不许带有液体。试选取调节阀气开、气关型式和调节器的正、反作用,再简单说明这一调节回路的工作过程。

答:因工艺要求故障情况下送出的气体不许带液,故当气源压力为零时,阀门应打开,所以调节阀是气关式。当液位升高时,要求调节阀开度增大,由于所选取的是气关调节阀,故要求调节阀输出减少,调节器是反作用。

其工作过程如下:液位↑→液位变送器输出↑→调节器输出↓→调节阀开度↑→液体输出↑→液位↓。

题3图

4图示为加热炉温度控制系统。根据工艺要求,出现故障时炉子应当熄火。试说明调节阀的气开、气关型式,调节器的正、反作用方式,并简述控制系统的动作过程。

题4图

答:故障情况下气源压力为零,应切断燃料,以确保炉子熄火。故要求调节阀为气开式,气源中断时关闭。

当炉温增高时,要求燃料量减少,即减小调节阀开度。由于是气开阀,所以要求调节器输出减小,应选用反作用调节器。

控制系统的动作过程为:

进料↓→温度↑→调节器输出↓→调节阀开度↓→燃料量↓→炉温↓。反之,由于各种原因引起炉温↓→调节器输出↑→调节阀开度↑→燃料量↑→炉温↑。

5请判定图示温度控制系统中,调节阀和调节器的作用型式。

题5图

(1)当物料为温度过低时易析出结晶颗粒的介质,调节介质为过热蒸汽时;

(2)当物料为温度过高时易结焦或分解的介质,调节介质为过热蒸汽时;

(3)当物料为温度过低时易析出结晶颗粒的介质,调节介质为待加热的软化水时;

(4)当物料为温度过高时易结焦或分解的介质,调节介质为待加热的软化水时。

答:(1)气关调节阀,正作用调节器;

(2)气开调节阀,反作用调节器;

(3)气开调节阀,正作用调节器;

(4)气关调节阀,反作用调节器。

6图为一蒸汽加热器,它的主要作用是对工艺介质加热,要求此介质出口温度恒定。

(1)选择被控变量和控制变量,组成调节回路,并画出方块图。

(2)决定调节阀的气开、气关型式和调节器的正反作用。

(3)当被加热的流体为热敏介质时,应选择怎样的调节方案为好?

题6图

答:(1)被控变量:流体出口温度,控制变量(操纵变量):蒸汽流量。方块图:

(2)对于非热敏介质或易结晶介质,调节阀应选气关式,调节器的作用方向应是正作用。(3)对于热敏介质,为防止局部过热而气化,调节参数不宜为蒸汽而选冷凝水为好。即将调节阀装于冷凝水管线上。

7图为一液体储槽,需要对液位加以自动控制。为安全起见,储槽内液体严格禁止溢出,试在下述两种情况下,分别确定调节阀的气开、气关型式及调节器的正、反作用。

题7图

(1)选择流入量Qi为操纵变量;

(2)选择流出量Qo为操纵变量。

答:(1)当选择流入量Qi为操纵变量时,调节阀安装在流入管线上,这时,为了防止液体溢出,在调节阀膜头上气源突然中断时,调节阀应处于关闭状态,所以应选用气开型式调节阀,调节器应选择反作用方向;

(2)当选择流出量Qo为操纵变量时,调节阀安装在流出管线上,这时,为了防止液体溢出,在调节阀膜头上气源突然中断时,调节阀应处于全开状态,所以应选用气关型式调节阀,反作用方向的调节器。

8 有一冷却器,以冷却水作为冷剂来冷却物料温度,现选择冷却水流量为操纵变量,物料出口温度被控变量。试确定在下述3种情况下的调节阀气开、气关型式和调节器的正、反作用。(1)被冷却物料温度不能太高,否则对后续生产不利;

(2)被冷却物料温度不能太低,否则易凝结;

(3)冷却器置于室外,而该地区冬季温度最低达0℃以下。

答:(1)应选气关型调节阀、反作用式调节器;

(2)应选气开型调节阀、正作用式调节器;

(3)应选气关型调节阀、反作用式调节器;

整定

1调节器参数整定的任务是什么?工程上常用的调节器参数整定有哪几种方法?

答:调节器参数整定的任务是:根据已定的控制方案,来确定调节器的最佳参数值(包括比例度δ、积分时间Ti、微分时间Td),以便使系统能获得好的调节质量。

调节器参数整定的方法有理论计算和工程整定两大类,其中常用的是工程整定法。

属于调节器参数的工程整定法主要有临界比例度法、衰减曲线法和经验凑试法等。

2什么是临界比例度法?有何特点?

答:临界比例度法是在纯比例运行下通过试验,得到临界比例度δk和临界周期Tk,然后根据经验总结出来的关系,求出调节器各参数值。

这种方法比较简单,易于掌握和判断,适用于一般的控制系统。但是不适用于临界比例度小的系统和不允许产生等幅振荡的系统,否则易影响生产的正常进行或造成事故。

3什么是衰减曲线法?有何特点?

答:衰减曲线法是在纯比例运行下,通过使系统产生衰减振荡,得到衰减比例度δs和衰减周期Ts(或上升时间T升),然后根据经验总结出来的关系求出调节器各参数值。

这种方法比较简便,整定质量高,整定过程安全可靠,应用广泛,但对于干扰频繁、记录曲线不规则的系统难于应用。

4选择。

某控制系统采用比例积分作用调节器。某人用先比例后加积分的凑试法来整定调节器的参数。若比例带的数值已基本合适,在加入积分作用的过程中,则()。

A.应适当减小比例带;

B.应适当增加比例带;

C.无需改变比例带。

答:B。

因为随着积分作用的增强,系统过渡过程的振荡将加剧,所以为了使系统得到与用纯比例作用相同的衰减比或达到同样的调节质量,应适当增加调节器的比例带。这就相当于减少了放大倍数。对二阶系统将会使衰减系数增大。

5. 一个纯比例简单控制系统,增加积分作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么?

6. 一个过程控制系统的对象有较大的容量滞后,而另一系统由于测量点位置造成纯滞后。若对两个系统均采用微分控制,试问效果如何?

7. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K PτP/T P×100%,即δ∝K P,δ∝τP/T P,为什么?而选择比例积分控制时,δ=1.44K PτP/T P×100%,即比例度增加,为什么?

8. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK(临界比例度),为什么?

9. 某一温度控制系统,采用4:1衰减曲线法进行整定,测得系统的衰减比例度δs=25%,衰减振荡周期Ts=10min,当控制器采用P和PI控制作用时,试求其整定参数值。

10. 某一个过程控制系统,利用临界比例度法进行控制器的参数整定。当比例度为12%时,系统出现等幅振荡,其临界振荡周期为180s,试求采用PID控制器时的整定参数值。

11. 有一个过程控制系统(采用DDZ-Ⅲ型仪表),当广义对象的输入电流(即控制器的输出电流)为14mA时,其被控温度的测量值为70℃。当输入电流突然从14mA增至15mA,并待被控温度达到稳定时,其测量值为74℃。设测温仪表的量程为50-100℃。同时由实验测得广义对象的时间常数T P=3min,滞后时间τP=1.2min,试求衰减比为4:1时PI控制器的整定参数值。

单回路控制系统原理样本

单回路控制系统原理 一、过程控制的特点 与其它自动控制系统相比, 过程控制的主要特点是: 1、系统由工业上系列生产的过程检测控制仪表组成。一个简单的过程控制系统是由控制对象和过程检测控制仪表( 包括测量元件, 变送器、调节器和调节阀) 两部分组成。 如图1: 液位控制系统 Q2 K C: 调节器的静态放大系数 K V: 调节阀的静态放大系数 K0: 被控对象的静态放大系数

K m: 变送器的静态放大系数 2、被控对象的设备是已知的, 对象的型式很多, 它们的动态特性是未知的或者是不十分清楚的, 但一般具有惯性大, 滞后大, 而且多数具有非线性特性。 3、控制方案的多样性。有单变量控制系统、多变量控制系统; 有线性系统、有非线性系统、; 有模拟量控制系统、有数字量控制系统, 等等。这是其它自动控制系统所不能比拟的。 4、控制过程属慢过程, 多半属参量控制。即需对表征生产过程的温度、流量、压力、液位、成分、PH等进行控制。 5、在过程控制系统中, 其给定值是恒定的( 定值控制) , 或是已知时间的函数( 程序控制) 。控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。 工业生产要实现生产过程自动化, 首先必须熟悉生产过程, 掌握对象特点; 同时要熟悉过程参数的主要测量方法, 了解仪表性能、特点, 根据生产工艺要求和反馈控制理论的分析方法, 合理正确地构建过程控制系统; 而且经过改变调节仪表的PID特性参数, 使系统运行在最佳状态。 过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。 二、单回路控制系统原理 如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。由于系统结构简单, 投资少, 易于调整、投运, 又

电动车无刷控制器电路图[高清]

今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: (原文件名:1.gif) 图1:350W整机电路图 整机电路看起来很复杂,我们将其简化成框图再看看: (原文件名:2.gif) 图2:电路框图

电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。 (原文件名:3.gif)

图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信

单回路控制系统整定实验报告

单回路控制系统整定实验报告 一、实验目的 (1)掌握动态模型的创建方法.。 (2)掌握单回路控制系统的理论整定方法和工程整定方法。 (3)了解调节器参数对控制品质的影响。 二、实验仪器 计算机一台 三、实验步骤 (1)启动计算机,运行MATLAB应用程序。 (2)在MATLAB命令窗口输入Smulink,启动Simulink。 (3)在Simulink库浏览窗口中,单击工具栏中的新建窗口快捷按钮或在Simulink库窗口中选择菜单命令File→New→Modeel,打开一个标题为“Untitled”的空白模型编辑窗口。 (4)用鼠标双击信号源模块库(Source)图标,打开信号源模块库,将光标移动到阶跃信号模块(Step)的图标上,按住鼠标左键,将其拖放到空白模型编辑窗口中。用鼠标双击附加模块库(Simulink Extra)图标,打开A到底提哦哪里Liner模块库,将光标移到PID Controller 图标上,按住鼠标左键,将其拖放到空白模块编辑窗口中。 (5)用同样的方法从连续系统模块库(Continuous)、接受模块库(Sinks)和数学运算模块库(Math Operations)中把传递函数模块(Transfer Fcn)、示波器模块(Scope)和加法器模块(Sum)拖放到空白模型编辑

窗口中。 (6)用鼠标单击一个模块的输出端口并用鼠标拖放到另一模块的输入端口,完成模块间的连接,如图1,图二。 图1 图二 (7)构造图1所示的单回路反馈系统的仿真模型。其中控制对象由子系统创建,如图2。 (8)设调节器为比例调节器,对象传递函数为: 0(1) n K T s (其中:0K =1,0T =10,n=4) ,用广义频率特性法按衰减率0.75计算调节器的参数;

毕业设计_--单回路控制器的设计

单回路控制器的设计 学院:电子工程学院 年级:2012级 专业:自动化 姓名:、 学号:20125229 指导教师:

摘要 介绍了以89C51单片机实现的单回路智能控制器的设计思想,由于软件功能丰富,因此这可完成模拟仪表难以或无法完成的复杂调节功能,运算功能的显示功能,它可适用于工业过程中控制诸多领域。并且分析了51单片机与8255的连接方法,可以用它制成多路扩展的IO口控制器。该系统将单片机应用到单回路控制系统,实现一个比较简单的单回路PID控制。 。 关键词 单片机单回路智能控制器软件设计 IO扩展 PID控制

目录 摘要 (2) 第1章前言 (1) 1.1当前单片机系统的介绍及在单回路控制过程中的应用与前景错误!未定义书签 第2章单片机外部设备扩展 (2) 2.1单片机最小系统设计 (2) 2.1.1 单片机外部存储器的扩展 (2) 2.12 看门狗电路、复位电路的设计 (2) 2.2I/O接口的扩展 (3) 2.2.1.1 I/O扩展概述 (3) 2.2.2 89c51与可编程RAM/IO芯片8255的接口 (4) 2.3键盘的设计 (4) 2.4 LED显示器设计 (5) 2.5 数字量模拟量转换 (5) 2.5.1 信号采样及转换电路设计 (7) 2.6开关量的输入输设计 (8) 2.7 单片机串行口扩展设计。(MAX232与单片机接口设计) (10) 结论 (11) 参考文献 (12) 致谢 (12)

第1章前言 1.1单回路控制系统的介绍及单片机在单回路控制系统中的应用及前景 89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压、高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器, VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O 口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

1.1.1单回路控制系统

1.1.1单回路控制系统设计 第一节过程控制系统设计概述 ?单回路反馈控制系统---又称简单控制系统,是指由一个被控过程、一个 检测变送器、一个控制器和一个执行器所组成的.对一个被控变量进行控 制的单回路反馈闭环控制系统。 ?单回路反馈控制系统组成方框图: ?简单控制系统是实现生产过程自动化的基本单元、其结构简单、投资少、易于调整和投运,能满足一般工业生产过程的控制要求、因此在工业生产小应用十分广泛,尤其适用于被控过程的纯滞后和惯性小、负荷和扰动变化比较平缓,或者控制质量要求不太高的场合。 ?过程控制系统设计和应用的两个重要内容:控制方案的设计、调节器整定参数值的确定。 ?过程控制系统设计的一般要求: ●过程控制系统是稳定的,且具有适当的稳定裕度。 ●系统应是一个衰减振荡过程,但过渡过程时间要短,余差要小。 ?过程控制系统设计的基本方法: 设计方法很多,主要有对数频率特性设计法、根轨迹设计法、系统参数优化的计算机辅助设计等。 ?过程控制系统统设计步骤: ●建立被控过程的数学模型 ●选择控制方案 ●建立系统方框图 ●进行系统静态、动态特性分析计算 ●实验和仿真 ?过程控制系统设计的主要内容: ●控制方案的设计:核心,包括合理选择被控参数和控制参数、信息的获取 和变送、调节阀的选择、调节器控制规律及正、反作用方式的确定等。 ●工程设计:包括仪表选型、控制室和仪表盘设计、仪表供电供气系统设计、 信号及联锁保护系统设计等。 ●工程安装和仪表调校 ●调节器参数工程整定:保证系统运行在最佳状态。

第二节单回路控制系统方案设计 1.被控参数的选择 ?选取被控参数的一般原则为: ●选择对产品的产量和质量、安全生产、经济运行和环境保护具有决定性作 用的,可直接测量的工艺参数为被控参数。 ●当不能用直接参数作为被控参数时,应该选择一个与直接参数有单值函数 关系的间接参数作为被控参数。 ●被控参数必须具有足够大的灵敏度。 ●被控参数的选择必须考虑工艺过程的合理性和所用仪表的性能。 2.控制参数的选择 ?需要正确选择控制参数、调节器调节规律和调节阀的特性。 ?当工艺上允许有几种控制参数可供选择时,可根据被控过程扰动通道和控制通道特性,对控制质量的影响作出合理的选择。所队正确选择控制参数就是正确选择控制通道的问题。 ?扰动作用-----由扰动通道对过程的被控参数产生影响,力图使被控参数偏 离给定性 ?控制作用-----由控制通道对过程的被控参数起主导影响,抵消扰动影响, 以使被控参数尽力维持在给定值。 ?在生产过程有几个控制参数可供选择时,一般希望控制通道克服扰动的校正能力要强,动态响应要比扰动通道快。 ?可由过程静态特性的分析(扰动通道静态放大倍数K f、控制通道静态放大倍数K o)、过程扰动通道动态特性的分析(时间常数T f、时延τf、扰动作用点位置)、过程控制通道动态特性的分析(时间常数T o、时延τ(包括纯时延τ0、容量时延τc)、时间常数匹配)确定各参数选择原则。 ?根据过程特性选择控制参数的一般原则: ●控制通道参数选择:选择过程控制通道的放大系数K o要适当大一些,时间 常数T o要适当小一些。纯时延τ0愈小愈好,在有纯时延τ0的情况下,τ0 与T o之比应小—些(小于1),若其比值过大,则不利于控制。 ●扰动通道参数选择:选择过程扰动通道的放大系数K f应尽可能小。时间常 数T f要大。扰动引入系统的位置要远离控制过程(即靠近调节阀)。容量 时延τc愈大则有利于控制。 ●时间常数匹配:广义过程(包括调节阀和测量变送器)由几个一阶环节组成, 在选择控制参数时,应尽量设法把几个时间常数错开,使其中一个时间常 数比其他时间常数大得多,同时注意减小第二、第三个时间常数。 ●注意工艺操作的合理性、经济性。 3.系统设计中的测量变送问题 ?被控参数的测量和变送必须迅速正确地反映其实际变化情况,为系统设计提供准确的控制依据。 ?测量和变送环节的描述:

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

DCS单回路控制系统设计

第五章单回路控制系统设计 ?本章提要 1.过程控制系统设计概述 2.单回路控制系统方案设计 3.单回路控制系统整定 4.单回路控制系统投运 5.单回路控制系统设计原则应用举例 ?授课内容 第一节过程控制系统设计概述 ?单回路反馈控制系统---又称简单控制系统,是指由一个被控过程、一个 检测变送器、一个控制器和一个执行器所组成的.对一个被控变量进行控 制的单回路反馈闭环控制系统。 ?单回路反馈控制系统组成方框图: ?简单控制系统是实现生产过程自动化的基本单元、其结构简单、投资少、易于调整和投运,能满足一般工业生产过程的控制要求、因此在工业生产小应用十分广泛,尤其适用于被控过程的纯滞后和惯性小、负荷和扰动变化比较平缓,或者控制质量要求不太高的场合。 ?过程控制系统设计和应用的两个重要内容:控制方案的设计、调节器整定参数值的确定。 ?过程控制系统设计的一般要求: ●过程控制系统是稳定的,且具有适当的稳定裕度。 ●系统应是一个衰减振荡过程,但过渡过程时间要短,余差要小。 ?过程控制系统设计的基本方法: 设计方法很多,主要有对数频率特性设计法、根轨迹设计法、系统参数优化的计算机辅助设计等。 ?过程控制系统统设计步骤: ●建立被控过程的数学模型 ●选择控制方案

●建立系统方框图 ●进行系统静态、动态特性分析计算 ●实验和仿真 ?过程控制系统设计的主要内容: ●控制方案的设计:核心,包括合理选择被控参数和控制参数、信息的获取 和变送、调节阀的选择、调节器控制规律及正、反作用方式的确定等。 ●工程设计:包括仪表选型、控制室和仪表盘设计、仪表供电供气系统设计、 信号及联锁保护系统设计等。 ●工程安装和仪表调校 ●调节器参数工程整定:保证系统运行在最佳状态。 第二节单回路控制系统方案设计 1.被控参数的选择 ?选取被控参数的一般原则为: ●选择对产品的产量和质量、安全生产、经济运行和环境保护具有决定性作 用的,可直接测量的工艺参数为被控参数。 ●当不能用直接参数作为被控参数时,应该选择一个与直接参数有单值函数 关系的间接参数作为被控参数。 ●被控参数必须具有足够大的灵敏度。 ●被控参数的选择必须考虑工艺过程的合理性和所用仪表的性能。 2.控制参数的选择 ?需要正确选择控制参数、调节器调节规律和调节阀的特性。 ?当工艺上允许有几种控制参数可供选择时,可根据被控过程扰动通道和控制通道特性,对控制质量的影响作出合理的选择。所队正确选择控制参数就是正确选择控制通道的问题。 ?扰动作用-----由扰动通道对过程的被控参数产生影响,力图使被控参数偏 离给定性 ?控制作用-----由控制通道对过程的被控参数起主导影响,抵消扰动影响, 以使被控参数尽力维持在给定值。 ?在生产过程有几个控制参数可供选择时,一般希望控制通道克服扰动的校正能力要强,动态响应要比扰动通道快。 ?可由过程静态特性的分析(扰动通道静态放大倍数K f、控制通道静态放大倍数K o)、过程扰动通道动态特性的分析(时间常数T f、时延τf、扰动作用点位置)、过程控制通道动态特性的分析(时间常数T o、时延τ(包括纯时延τ0、容量时延τc)、时间常数匹配)确定各参数选择原则。 ?根据过程特性选择控制参数的一般原则: ●控制通道参数选择:选择过程控制通道的放大系数K o要适当大一些,时间 常数T o要适当小一些。纯时延τ0愈小愈好,在有纯时延τ0的情况下,τ0 与T o之比应小—些(小于1),若其比值过大,则不利于控制。 ●扰动通道参数选择:选择过程扰动通道的放大系数K f应尽可能小。时间常 数T f要大。扰动引入系统的位置要远离控制过程(即靠近调节阀)。容量 时延τc愈大则有利于控制。 ●时间常数匹配:广义过程(包括调节阀和测量变送器)由几个一阶环节组成,

回路控制器和DCS系统

回路控制器和DCS系统 七十年代,因为在现场工作的仪表工程师们对数字控制不太熟悉,希望数字控制的仪表面板作成与原来的模拟仪表的一样,这样就可以不改变操作习惯,另外也是为了危险分散,因而就出现了回路控制器。如HONEYWELL公司的KMM系列、FOXBORO公司的SPEC 200和日本北辰(后与横河合并)的HOMAC系列表,在面板上有过程变量(PV)、设定值和控制输出(CO)的棒图,指针式显示的过程值,手/自动切换、报警确认等。这种能完成以PID为基础的回路控制的数字仪表,只有一个或两个回路(两个单回路)。当时有人为了不与可编程序逻辑控制器(PLC)混淆,称这种仪表为可编程序调节器。 到80年代出现了双回路(可作两个串级回路)、四回路的控制器、32路数据采集器以及无纸记录仪等一系列数字仪表,在面板上仍保留棒图和手/自动切换,用数字显示代替指针显示,这些数字仪表统称为回路控制器。 到目前为止,这种仪表种类很多。最有特点的是能与上位(即人机界面)通讯组成一个系统,每一块表可以与现场总线相连,I/O可以根据需要扩展,它内部的算法预先用程序作成功能块的形式,存在ROM中。可以按照所要求的控制策略,进行组态(不是编程)。如美国MOORE公司的353产品有80多块功能块,通过组态路图实现控制组态,用MODBUS 与人机界面相连,人机界面的监控软件既可以用IFIX、也可以用INTOUCH。因为这两种软件都有这种可编程序调节器的驱动软件。国产监控软件只要有这种可编程序调节器的驱动软件,同样可以作为这种系统的监控软件。否则连不上去。353本身只有4个AI,2个AO,也就是能完成2个PID回路的控制。如果要增加控制回路,就要采用现场总线,因为它有LONWORKS的接口,可以把LONWORKS的模块连到该总线上。在组成系统时,要进行软件捆绑。为了数据安全,在表和总线之间加光电转换器。这种系统见图一。又如FOXBORO 公司和SMAR公司的回路控制器,它有多回路的。并且还有与可编程控制器(PLC)的接口,所以在我国应用也比较多。有几个模拟量的输出,就称为几回路的控制器。模拟量的输入可以多于模拟量的输出。另外还可以有少量的开关量的输入、输出。另一类是不能与现场总线相连,它的I/O点数不能扩展,但它也能与上位通讯组成一个系统。这种产品如美国HONEYWELL 公司的UDC、FOXBORO公司的另外的产品,费希尔的900系列、日本横河、富士、东芝和欧洲ABB公司都有类似的产品。最有代表性的产品是香港欧陆的系统6000,采用英国多家厂商的回路控制器,美国的可编程控制器,美国的监控软件,由香港人集成成为S6000系统。。由于它有良好的销售网络,在大陆应用很为广泛。尤其是制药行业应用较多。可以用铺天盖地来形容产品之多的数显表是把PID算法作成固定的,只要把过程变量(PV)接到仪表的端子上,人为输进设定,表就能输出控制量(CO)。也就是说,一个仪表只有一个功能块,就是PID,这样的产品国内、外已经很多,如日本千野的表,香港朝辉,国内天辰、天津仪表厂、沿海各省的仪表厂等都生产这样的产品。国内有时把它们叫作S 系列仪表。产品的外观见图三。它的功能非常单一,一块表只能完成一个功能。特点是不能组态。每一块表的价格只有几百元人民币。但进口的也需4000元左右。总的来看回路控制器的输入、输出点数很少。如果有几百个I/O点,完成几十个PID回路的控制任务,而每个表都需要有一个外壳和带棒图显示的面板,相对于可插模件来说,其价格就高多了。另外它的功能块相对于DCS控制器来说要少很多,因为它的内存较小,特别是当既有很多的模拟量采集量、又有开关量并且还有高级运算,用回路控制器就更不合算。如果没有上位来显示,又感到不太直观。由回路控制器集成的系统,加上以CRT为基础的人机界面,其价格比由模件组成的DCS就高多了。还有一个缺点,回路控制器组成的系统一般采用MODBUS与人机界面相连,只能采用星形结构,即只有一个主站。对于电厂需要冗余操作站来说,这就

水箱液位单回路控制系统

水箱液位单回路控制系统 一、控制目的 根据设定的控制对象和管道配置,运用计算机和INTOUCH组态软件,设计一套监控系统,并通过调试使得水箱液位维持恒定或保持在一定的误差范围内。 二、性能要求 1、要求水箱液位恒定,液位设定值SP自行给定。 2、无扰动时,水压基本恒定,由变频器控制水泵实现。 3、扰动因数:水箱出水流量允许波动。 4、预期性能:响应曲线为衰减震荡;允许存在一定误差。调整时间尽可能短。 三、方案设计、控制规律选择 简单控制系统一般是单回路控制系统。由于其结构简单并且能够满足大多数控制质量的要求,因此在生产过程控制中得到了广泛的应用,是生产过程控制中最基本的一种控制系统。一个单回路反馈系统是由测量变送器装置、控制器、和被控对象所组成,按其被控变量类型的不同可以分为温度控制系统、压力控制系统、流量控制系统、液位控制系统等。 控制系统设计时针对某一特定生产对象进行的,当系统安装完成之后,控制效果主要取决于控制器的参数设定整定。选择合适的比例度、积分时间、微分时间是保证和提高系统控制质量的主要途径。 单回路水箱的原理,系统地输入变量为进水阀门、出水阀门的开度,输出变量为水箱液位。单回路PID控制的被控制量是水位,控制量是进水门、出水门开度。通过调节PID控制器的比例增益、积分时间、微分时间三个参数得到比较好的控制效果。 PID 调节器构成的闭环控制回路一般原理如图1 所示

图1 控制系统方框图 控制系统草稿图如图2 图2 控制规律选择:目前工业上常用的控制规律主要有:比例控制、比例积分控制和比例积分微分控制等。本方案采用比例积分微分控制。 比例控制——克服干扰能力强、控制及时、过渡时间短。是最基本的控制规律。但在终了时会存在余差,负荷变化越大余差越大。使用于滞后较小、负荷变化不大、允许被控变量存在余差的场合。 比例积分控制——在比例作用下引用积分作用,虽然会使系统的稳定性降低,但没有余差。适用于控制通道滞后较小、负荷变化不大、不允许被控变量存在余差的场合。 比例微分控制——引入了微分作用,具有超前控制作用,在被控对象具有较大滞后时,会有效的改善控制质量。但对于滞后小干扰作用频繁,含有高频噪声的系统,将可能使系统产生振荡,甚至失控。 比例积分微分控制——综合了比例、积分、微分控制规律的优点。适用于容量滞后较大、负荷变化大、控制要求高的场合。 该方案的控制目标是使水位达到平衡状态,通过控制电动调节阀改变阀门开度,来控制流量的大小,从而来控制水位。选择阀门开度为控制量,水位为被控量。控制规律选择PID控制规律。 四、测要求试:

单回路控制系统详解

一、单回路控制系统 1. 画出图示系统的方框图: 2. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?仪表行业定义的控制器增益与控制系统中定义的控制器的增益在符号上有什么关系?为什么? 3. 试确定习题1中控制器的正反作用。若加热变成冷却,且控制阀由气开变为气关,控制器的正反作用是否需要 4. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。 5. 已知广义对象的传递函数为1) S (T e K P S τP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么? 6. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。 7. 试述控制阀流量特性的选择原则,并举例加以说明。 8. 对图示控制系统采用线性控制阀。当负荷G 增加后,系统的响应趋于 非周期函数,而G 减少时,系统响应震 9. 一个简单控制系统中,控制阀口 径变化后,对系统质量有何影响? 10. 已知蒸汽加热器如图所示,该系 统热量平衡式为:G 1C 1(θ0-θi )=G 2λ(λ 为蒸汽的冷凝潜热)。 (1)主要扰动为θi 时,选择控制阀的流量特性。 (2)主要扰动为G 1时,量特性。 (3特性。 11.

作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么? 12. 试写出正微分和反微分单元的传递函数和微分方程;画出它们的阶跃响应,并简述它们的应用场合。 13. 什么叫积分饱和?产生积分饱和的条件是什么? 14. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K P τP /T P ×100%,即δ∝K P ,δ∝τP /T P ,为什么?而选择比例积分控制时,δ=1.44K P τP /T P ×100%,即比例度增加,为什么? 15. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK (临界比例度),为什么? 16. 在一个简单控制系统中,若对象的传递函数为 ) 1T )(1S 1)(T S (T K W P V P +-+S ,进行控制器参数整定时,应注意什么? 17. 已知广义对象的传递函数为1) S (T e K P S τP P +-,采用比例控制,当系统达到稳定边缘时,K C =K CK ,临界周期为T K 。问: (1)T K /τP 在什么数值范围内(即上、下界),τP /T P 增加时,这一比值是上升还是下降? (2)K CK 在什么数值范围内(即上、下界),τP /T P 增加时,K CK 是上升还是下降? 18. 一个过程控制系统的对象有较大的容量滞后,而另一系统由于测量点位置造成纯滞后。若对两个系统均采用微分控制,试问效果如何? 19. 某一温度控制系统,采用4:1衰减曲线法进行整定,测得系统的衰减比例度 δs=25%,衰减振荡周期Ts=10min ,当控制器采用P 和PI 控制作用时,试求其整定参数值。 20. 有一个过程控制系统(采用DDZ-Ⅲ型仪表),当广义对象的输入电流(即控制器的输出电流)为14mA 时,其被控温度的测量值为70℃。当输入电流突然从14mA 增至15mA ,并待被控温度达到稳定时,其测量值为74℃。设测温仪表的量程为50-100℃。同时由实验测得广义对象的时间常数T P =3min ,滞后时间τP =1.2min ,试求衰减比为4:1时PI 控制器的整定参数值。 21. 某一个过程控制系统,利用临界比例度法进行控制器的参数整定。当比例度为12%时,系统出现等幅振荡,其临界振荡周期为180s ,试求采用PID 控制器时的整定参数值。 22. 已知控制系统方块图如下: 求:(1)X 作单位跃阶变化时,随动控制系统的余差。

单回路控制系统参数整定

课程设计报告 ( 2015-- 2016年度第2学期) 名称:过程控制系统 题目:单回路控制系统参数整定院系: 班级: 学号: 学生姓名: 指导教师: 设计周数:第十七周 成绩: 日期:2016年6月23日

《过程控制系统》课程设计 任务书 一、目的与要求 1.掌握单回路控制系统整定方法; 2.掌握PID参数对控制品质影响规律; 3.运用相应软件开发单回路控制系统整定程序。 二、主要内容 1.学习基于被控对象模型的单回路控制系统参数整定方法; 2.开发单回路控制系统PID参数整定程序; 3.寻找不同PID参数对控制品质影响规律。 三、进度计划 四、设计成果要求 1.阐明基于被控对象模型的单回路控制系统参数整定方法的基本原理; 2.完整的、可运行的单回路控制系统PID参数整定程序; 3.验证整定的PID参数下的控制效果,给出控制曲线图,同时给出其它PID参数下的控制曲线图,总结不同PID参数对控制品质影响规律。 五、考核方式 1.设计报告; 2.设计答辩。

二、设计(实验)正文 1.学习基于被控对象模型的单回路控制系统参数整定方法; 1)经验法 内容: 经验法实际是一种试凑法,是在生产实践中总结出来的参数整定法,该法在现场中得到了广泛的应用。利用经验法对系统的参数进行整定时,首先根据经验设置一组调节器参数,然后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程;若调节过程不满足要求,则修改调节器参数,再作阶跃扰动试验,观察调节过程;反复上述试验,直到调节过程满意为止。 实验步骤: (1) 首先将调节器的积分时间Ti置最大,微分时间Td置最小,根据经验设置比例带δ的数值,完成后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变比例带δ的值,重复上述试验,直到满意为止; (2) 将调节器的积分时间Ti由最大调整到某一值,由于积分作用的引入导致系统的稳定性下降,因而应将比例带适当增大,一般为纯比例作用的1.2倍。系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变积分时间Ti的值,重复上述试验,直到满意为止; (3) 将调节器的微分时间由小到大调整到某一数值,系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,修改微分时间重复试验,直到满意为止; 2)临界比例带法 内容: 临界比例带法又称边界稳定法,首先将调节器设置成纯比例调节器,然后系统闭环投入运行,将比例带由大到小改变,观察系统输出,直到系统产生等幅振荡为止。记下此状态下的比例带数值(即为临界比例带δk)和振荡周期Tk,然后根据经验公式计算调节器的其它参数。 实验步骤: (1) 将调节器的积分时间Ti置于最大,微分时间Td置最小,即Ti→∞,Td=0;置比例带δ为一个较大的值; (2) 系统闭环投入运行,待系统稳定后调整比例带δ的数值直到出现等幅振荡。记录并计算临界状态下临界比例带δcr和振荡周期Tcr,根据表2-1计算调节器的参数; (3)根据δcr和Tcr,由计算公式求得控制器的各个参数。 (4) 将调节器按计算出的参数设置好,系统闭环投入运行,待系统稳定后作阶跃扰动试验,观察系统的调节过程,适当修改参数,直到满意为止。

单回路控制

一、单回路控制系统 1一个简单控制系统由那几部分组成?各有什么作用? 2什么是简单控制系统?试画出简单控制系统的典型方块图。 答:所谓简单控制系统,通常是指由一个被控对象、一个检测元件及传感器(或变送器)、一个调节器和一个执行器所构成的单闭环控制系统,有时也称为单回路控制系统。 简单控制系统的典型方块图如下图所示。 题2 方块图 3在石油化工生产过程中,常常利用液态丙烯汽化吸收裂解气体的热量,使裂解气体的温度下降到规定数值上。下图是一个简化的丙烯冷却器温度控制系统。被冷却的物料是乙烯裂解气,其温度要求控制在(15±1.5)℃。如果温度太高,冷却后的气体会包含过多的水分,对生产造成有害影响;如果温度太低,乙烯裂解气会产生结晶析出,杜塞管道。 题3 图丙烯冷却器 (1)指出系统中被控对象、被控变量和操作变量各是什么? (2)试画出该控制系统的组成方块图。 答:(1)被控对象为丙烯冷却器;被控变量为乙烯裂解气的出口温度;操作变量为气态丙烯的流量。 (3)该系统的方块图: 题3 方块图 4反应温度控制系统示意图。A、B两种物料进入反映,通过改变进入夹套的冷却水流量来控制反应器内的温度保持不变。图中TT表示温度变送器,TC便是温度控制器。试画出该温度控制系统的方块图,并指出该控制系统中的被控对象、被控变量、操作变量及可能影响被控变量变化的扰动各是什么?

题4图反应器温度控制系统 答:反应器温度控制系统中被控对象为反应器;被控变量为反应器内温度;操作变量为冷却水流量;干扰为A、B物料的流量、温度、浓度、冷却水的温度、压力及搅拌器的转速。反应器的温度控制系统的方块图: 题4方块图 5 乙炔发生器是利用电石和水来产生乙炔气装置。为了降低电石消耗量,提高乙炔的收率,确保生产安全,设计了如图所示温度控制系统。工艺要求发生器温度控制在(80±1)℃。试画出该温度控制系统的方块图,并指出图中的被控对被控变量、操作变量及可能存在的扰动。 题5图乙炔发生器 答:乙炔发生器温度控制系统方块图如下图所示(图中T、T O分别为乙炔发生器温度及其设定值)。 题5 方块图 被控对象:乙炔发生器; 被控变量:乙炔发生器内温度; 操纵变量:冷水流量; 扰动量:冷水温度、压力;电石进料量、成分等。 6列管式换热器。工艺要求出口物料温度保持恒定。经分析如果保持物料入口流量和蒸汽流量基本恒定,则温度的波动将会减小到工艺允许的误差范围之内。现分别设计了物料入口流量和蒸汽流量两个控制系统,以保持出口物料温度恒定。 题6图

控制器的种类及工作原理

控制器的种类及工作原理 控制器(英文名称:controller)是指按照预定顺序改变主电路或控制电路的接线和改变电路中电阻值来控制电动机的启动、调速、制动和反向的主令装置。由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的“决策机构”,即完成协调和指挥整个计算机系统的操作。 控制器的分类有很多,比如LED控制器、微程序控制器、门禁控制器、电动汽车控制器、母联控制器、自动转换开关控制器、单芯片微控制器等。 一、种类概括简介: 1.LED控制器(LED controller):通过芯片处理控制LED灯电路中的各个位置的开关。控制器根据预先设定好的程序再控制驱动电路使LED阵列有规律地发光,从而显示出文字或图形。 2.微程序控制器:微程序控制器同组合逻辑控制器相比较,具有规整性、灵活性、可维护性等一系列优点,因而在计算机设计中逐渐取代了早期采用的组合逻辑控制器,并已被广泛地应用。在计算机系统中,微程序设计技术是利用软件方法来设计硬件的一门技术。 3.门禁控制器:又称出入管理控制系统(Access Control System) ,它是在传统的门锁基础上发展而来的。门禁控制器就是系统的核心,利用现代的计算机技术和各种识别技术的结合,体现一种智能化的管理手段。 4.电动汽车控制器:电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。 二、电动车控制器工作原理说明 电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。电动车就目前来看主要包括电动自行车、电动二轮摩托车、电动三轮车、电动三轮摩托车、电动四轮车、电瓶车等,电动车控制器也因为不同的车型而有不同的性能和特点。 电动车控制器近年来的发展速度之快使人难以想象,操作上越来越“傻瓜”化,而显示则越来越复杂化。比如,车速的控制已经发展到“巡航锁定”、驱动

常用电动车控制器电路及原理大全

!!电动自行车控制器电路原理分析 目前流行的电动自行车、电动摩托车大都使用直流电机,对直流电机调速的控制器有很多种类。电动车控制器核心是脉宽调制(PWM)器,而一款完善的控制器,还应具有电瓶欠压保护、电机过流保护、刹车断电、电量显示等功能。 电动车控制器以功率大小可分为大功率、中功率、小功率三类。电动自行车使用小功率的,货运三轮车和电摩托要使用中功率和大功率的。从配合电机分,可分为有刷、无刷两大类。关于无刷控制器,受目前的技术和成本制约,损坏率较高。笔者认为,无刷控制器维修应以生产厂商为主。而应用较多的有刷控制器,是完全可以用同类控制器进行直接代换或维修的。 本文分别介绍国内部分具有代表性的电动自行车控制器整机电路,并指出与其他产品的不同之处及其特点。所列电路均是根据实物进行测绘所得,图中元件号为笔者所标。通过介绍具体实例,达到举一反三的目的。 1.有刷控制器实例 (1)山东某牌带电量显示有刷控制器 电路方框图见图1。 1)电路原理 电路原理图见图2所示,该控制器由稳压电源电路、PWM产生电路、电机驱动电路、蓄电池放电指示电路、电机过流及蓄电池过放电保护电路等组成。

稳压电源由V3(TL431),Q3等元件组成,从36V蓄电池经过串联稳压后得到+12V电压,给控制电路供电,调节VR6可校准+12V电源。 PWM电路以脉宽调制器TL494为核心组成。R3、C4与内部电路产生振荡,频率大约为12kHz。 H是高变低型霍尔速度控制转把,由松开到旋紧时,其输出端可得到4V—1V的电压。该电压加到TL494的②脚,与①脚电压进行比较,在⑧脚得到调宽脉冲。②脚电压越低,⑧脚输出的调宽脉冲的低电平部分越宽,电机转速越高,电位器VR2用于零速调节,调节VR2使转把松开时电机停转再过一点。 电机驱动电路由Q1、Q2、Q4等元件组成。电机MOTOR为永磁直流有刷电机。TL494的⑧脚输出的调宽脉冲,经Q1反相放大驱动VDMOS管Q2。TL494的⑧脚输出的调宽脉冲低电平部分越宽,则Q2导通时间越长,电机转速越高。D1是电机续流二极管,防止Q2击穿。TL494的⑧脚输出低电平时,Q1、D2导通,Q4截止,Q2导通;TL494的⑧脚输出高电平时,Q1、D2截止,Q4导通,迅速将Q2栅极电荷泄放,加速Q2的截止过程,对降低Q2温度有十分重要的作用。 蓄电池放电指示电路由LM324组成四个比较器,12V由R24、VR1、VR4、VR3、VR5、R21分压形成四个不同基准电压分别加到四个比较器的反相端。蓄电池电压经R23和R22分压加到每个比较器的同相端,该电压和蓄电池电压成比例。VA=VB*R22/(R22+R23)。当蓄电池电压不低于38V时,LED1、LED2、LED3均点亮;当电池电压低于38V时,LED3熄灭;当电池电压低于35V时,LED2熄灭;当电池电压低于33V时,LED1熄灭,此时应给电池充电。调节VR1、VR4、VR3可分别设定LED3、LED2、LED1熄灭时的电压。LED4用作电源指示,LED5用作欠压切断控制器输出指示。 蓄电池过放电保护当蓄电池放电到31.5V时.LM324的①脚输出低电平,三极管Q5导通,约5V电压加到TL494的死区控制端④脚.该脚电位≥3.5V,就会迫使TL494内部调宽脉冲输出管截止,从而使三极管Q1、Q2截止,电机停止运转,蓄电池放电停止,进入电池保护状态。此时LED5点亮,指示出该状态。VR5用于设定电池保护点电压。

单回路控制系统原理

单回路控制系统原理 过程控制的特点一、与其它自动控制系统相比,过程控制的主要特点是: 1、系统由工业上系列生产的过程检测控制仪表组成。一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。 如图1:液位控制系统 H Q1 Q2

(t) z(t) 测量变 :调节器的静态放大系数 :调节阀的静态放大系数 1 / 13 K:被控对象的静态放大系数0:变送器的静态放大系数 2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。 3、控制方案的多样性。有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。这是其它自动控制系统所不能比拟的。 4、控制过程属慢过程,多半属参量控制。即需对表征生产过程的温度、流量、压力、液位、成分、等进行控制。

5、在过程控制系统中,其给定值是恒定的(定值控制),或是已知时间的函数(程序控制)。控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。 工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的特性参数,使系统运行在最佳状态。 过程控制系统的品质是由组成系统的对象和过程检测仪表各环 节的特性和系统的结构所决定的。 单回路控制系统原理二、 如图1所示单回路控制系统由对象、测量变送器、调节器、调2 / 13 节阀等环节组成。由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。 单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。 选择被控参数1、对于一个生产过程来说,影响正常操作的因素是很多的,但是,并非对所有影响因素都需要加以控制。

相关文档
最新文档