模糊神经网络在智能控制中的应用研究

模糊神经网络在智能控制中的应用研究
模糊神经网络在智能控制中的应用研究

模糊神经网络在智能控制中的应用研究1

郑子杰,王虎

武汉理工大学信息工程学院,武汉 (430070)

E-mail :zhzijie.27@https://www.360docs.net/doc/5810305714.html,

摘 要:本文简要介绍了神经网络(Neural Network )及模糊神经网络(Fuzzy Neural Network )的特点以及发展状况,并给出了模糊神经网络在智能控制中的几种应用,同时指出了今后研究中有待解决的一些问题,并对模糊神经网络技术将来的发展及其在工程上的应用作了展望。

关键词:神经网络,模糊神经网络,FFNC ,智能控制

中图分类号: TP183 文献标识码:A

1. 神经网络简介

神经网络是仿效生物处理模式以获得智能信息处理功能的理论。神经网络着眼于脑的微观网络结构,通过大量神经元的复杂连接,采用由底到顶的方法,通过自学习、自组织和非线性动力学所形成的并行分布方式,来处理难于语言化的模式信息[1]。自1943年第一个神经网络模型—MP 模型被提出至今,神经网络的发展十分迅速,特别是1982年提出的Hopfield 神经网络模型和1985年Rumelhart 提出的反向传播算法BP ,使Hopfield 的模型和多层前馈型神经网络成为用途广泛的神经网络模型,在语音识别、模式识别、图像处理和工业控制等领域的应用颇有成效。

神经网络的核心由其基本结构、学习规则及其工作方式三大部分组成。

1.1 基本结构

神经网络是由大量神经元广泛互连而成的复杂网络系统。单一神经元可以有许多输入、输出。神经元之间的相互作用通过连接的权值体现。神经元的输出是其输入的函数。常用的函数类型有:线性函数、Sigmoid 型函数和阈值型函数[2]。虽然单个神经元的结构和功能极其简单和有限,而大量神经元构成的网络系统其行为却是丰富多彩的。图1表示出单个神经元和Hopfield 模型的结构。

在图1(a)中, i u 为神经元的内部状态,

i

θ为阈值,i x 为输入信号, ij w 表示从j u 到i u 连接的权值, i s 表示外部输入信号,则神经元的输入为-i i j j i i n e t w x s θ=+∑,输出为 ()i i y f n e t =,其中f 是神经元的转

换函数。

在图1(b)中。Hopfield 模型是由许多神经元构成的互连网络,适当选取神经元兴奋模式的初始状态,则网络的状态将逐渐到达一个极小点即稳定点、从而可以联想出稳定点处的样本。

神经网络的基本特征是:

(1)大规模并行处理。神经网络能同时处理与决策有关的因素,虽然单个神经元的动作速度不快,但网络的总体处理速度极快。 1本课题得到教育部重点项目(03120)(基于FSOC 嵌入式微控制器设计与研究)的资助。

(2)容锗性。由于神经网络包含的信息是分布存储的,即使网络某些单元相连接有缺陷,它仍可以通过联想得到全部或大部分信息。

(3)自适应性和自组织性。神经网络系统可以通过学习不断适应环境,增加知识的容量。

(a)神经元结构模型 (b )hopfield 模型

图1 神经元模型和hopfield 模型 1.2 学习规则

学习规则决定了神经网络的连接权值舶变化,典型的学习规则有:

(1)Hebb 规则。如Hopfield 网络采用的修正Hebb 规则为

(21)(21)j i w i a δ?=??

其中i a 和j a 分别是节点i 和j 的激活值,常用于自联想网络。

(2) δ学习规则和广义δ学习规则。可用于学习非线性可分函数。BP 网络就依据这些学习规则。

(3)模拟退火。Boltzman 机就采用模拟退火算法作为其学习算法,它能学习非常复杂的非线性可分函数。

(4)无教师学习规则。它利用自适应学习方法,使节点能选择接受空间上的不同特性。

1.3 工作方式

(1)前向式或称前馈式。在这种方式中,网络被分成输入层、隐含层和输出层,信息从

图2 前向式神经网络的结构与工作方式

输入层开始,经由隐含层流向输出层,如图2所示。如感知器和BP 网络就是典型的前向式网络。

(2)演化式。此时输入层和输出层合二为一,例如Hopfield 网络。

当前,神经网络理论与应用已取得了丰硕的成果,其中多层前馈型神经网络BP 是最具应用特色的网络之一。虽然如此,神经网络理论还存在着许多缺陷,例如训练速度但,容易

陷入局部极小和全局搜索能力弱等。克服这些缺陷的有效途径之一是将神经网络、模糊逻辑、遗传算法三者相结合,以便达到取长补短、功能更完善的目的。

2. 模糊神经网络

模糊神经网络在本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。模糊神经网络通常有下列类型:

(1)模糊神经网络具有实数输入信号,且具有模糊权值;

(2)模糊神经网络具有模糊输入信号,且具有实数权值;

(3)模糊神经网络具有模糊输入信号,且具有模糊权值。

模糊神经网络亦是全局逼近器,这已为许多学者所证明[3],同时也奠定了模糊神经网络获得广泛应用的理论基础。模糊系统与模糊神经网络既有联系又有区别,其联系通常表现在许多模糊神经网络在本质上是模糊系统的实现;其区别表现在模糊神经网络又表现为神经网络之特性。模糊神经网络恰好充分地利用了各自的优点,避免了其缺点,因而受到了重视。

实际上,模糊神经网络作为具有一定的处理定性与定量知识的技术与方法,主要原因还是在于模糊逻辑具有较强的结构性知识表达能力,即描述系统定性知识的能力和神经网络强大的自学习与定量数据的直接处理能力。

模糊神经网络的学习算法通常是常规神经网络的学习算法或其推广。其常见的学习算法有五种,分别为:反向传播学习算法;模糊反向传播学习算法;基于α—截集的反向传播学习算法;随机搜索学习算法;遗传学习算法。

目前,模糊神经网络技术已经获得了广泛的应用。集中在以下几个领域:模糊回归问题的研究;模糊控制;模糊专家系统;模糊分级分析;模糊短阵方程;模糊建模以及模糊模式识别。

3. 模糊神经网络在智能控制中的应用

模糊神经网络系统是当前颇受人们关注的最新颖的控制策略研究方向之一。由于采用不同的控制思想和策略,引出的模糊神经网络控制器(FNNC)的结构形式将有所不同[4]。下面通过对几种典型的模糊神经网络控制器结构形式的分析,指出不同结构形式的FNNC的特点。从FNNC结构形式的变迁,可以预测,随着动态推理过程知识流动理论的研究,把知识流动过程与网络结构形式的完美结合,形成能更加准确地表达人类思维过程,有一定思维能力的智能控制器,将是FNNC结构的发展趋势。

3.1 采用神经网络记忆模糊规则构成的FNNC

图3采用神经网络记忆模糊规则构成的FNNC结构图

模糊控制器的模糊推理并不能十分令人满意地表达经验知识,模糊量也缺乏一个明确准则用以确定隶属度函数曲线。人们借鉴人类思维过程,把抽象的“概念”对应着模糊量,并与抽象的经验相联系。由于神经元之间具有不同程度的兴奋强度,可以用来记忆这些联系,同时神经网络是以并行方式工作的,可以从根本上解决模糊控制在控制时间上的限制,这样就出现了采用神经网络记忆模糊规则构成的FNNC。其结构形式见图1(e:误差;d/dt:误差微分;Yd:参考量)。

这种FNNC与模糊逻辑控制器有相同的框架,但各部分实现的方法不同。神经网络部分是一个多层神经网络。在使用前,采用BP算法通过“概念”的表达将抽象化的经验转化成样本,经训练调整网络的权重,使网络能存储抽象的经验规则。网络具有的这种记忆功能,即使当网络输入为非样本时,其输出与该输入较近的样本的输出也非常相似。

3.2 模糊系统的联结主义表达构成的FNNC

将模糊系统处理非统计不确定性的方法,与神经网络的联结主义结构和学习算法结合起来,使其构成的模糊神经网络具有模糊表达、似然推理、联结主义学习以及分布式信息处理等特点。这种结构的模糊神经网络根据模糊系统的模糊化、模糊推理、模糊判决3大模块把它们以联结主义表达,就构成了相应的FNNC[5]。其典型结构如图4所示。

一个具体的FNNC结构形式与系统的描述,如模糊控制规则的条数及隶属函数有关,同时还因网络的学习算法及点函数选取的不同而异。但形成这种结构的思想是模糊控制系统在神经网络上的实现。FNNC通过一定的学习算法自动产生隶属函数的合适形状及模糊规则。有些FNNC由于采用自学习模糊算法,使其能实现模糊规则的在线辨识及隶属函数的自动更新,具有自学习能力。

图4模糊系统的联结主义表达构成的FNNC结构形式

图5自适应模糊神经网络控制结构图

3.3 自适应模糊神经网络控制器

前面阐述的两种结构形式的FNNC,虽然在不同的控制策略指导下形成的FNNC结构有所差异,但FNNC的总体框架有许多相似的地方,主要区别在于用不同的手段来实现模糊推理。利用人工神经网络(ANN)作为建模工具,对非线性系统静态建模、动态辨识,并把ANN和FNN(模糊神经网络)相结合,形成了自适应模糊神经网络控制器[6]。这种结构的FNNC在自组织学习过程中,为了达到自适应控制的目的,采用不同的方法,如通过测试、控制量校整、在线辨识未知受控对象,对受控对象工作状况的预测等,获取FNNC的自调整信息。这种FNNC一般由两个以上的网络单元构成,一个用于控制器的设计,另一个用于自调整信息的获取。这种FNNC的典型结构如图5所示。

4. 小结

今后,控制理论面临的突出问题是既要继续发展自身理论,又要在应用方面留下实实在在的成果;用神经网络实现模糊人工智能,以最大限度发挥人的智慧和能力。但是,由于工业过程的复杂性,尤其在连续生产过程中干扰大,可变因素多,用模糊神经网络处理系统问题仍然有它的不足之处。主要表现在:

1)达不到真正的实时性要求,不能实现真正的实时自学习、自调整、自适应。在连续生产过程中,往往会存在一些干扰因素,或者生产条件有一些变化,这就要求模糊神经网络能够识别这一变化,并且通过自学习作出相应的处理。

2)抗干扰性能不强。在离线学习时,模糊神经网络具有较强的抗干扰性能。但是,在实时过程中,由于相关软件及硬件的限制,抗干扰的能力被削弱。

3)模糊神经网络的工程化应用还缺乏实用的开发平台。在现有的开发平台中,绝大部分的组态软件都对传统的PID控制提供了很方便的应用。

研究模糊系统与神经网络的关系及用神经网络实现模糊逻辑推理等仍将是今后继续研究的发展趋势。在此同时,结合子波变换、分形几何等技术和理论,还有望构造一些权值易于理解的NN模型。

参考文献

【1】王耀南.一种模糊神经网络智能控制器及其应用.电子学报,1996,(8)

【2】管军,胡春.基于人工神经网络改进的Delphi 法[J].微计算机信息,2005,10-3:171-173 【3】乌云高娃.人工神经网络的发展. 福建电脑,2004(4)

【4】邓洪敏,何松柏,虞厥邦.基于模糊神经网络的规则学习.仪器仪表学报,2004(6)

【5】赵振宇,徐用懋.模糊理论和神经网络的基础与应用.北京:清华大学出版社,1997

【6】余有灵,徐立鸿,吴启迪. Generalized Fuzzy Neural Network. ACTA AUTOMATICA SINICA.2003(6)

The Application And Research of Fuzzy Neural Network In

Intelligent Control

Zheng Zijie,Wang Hu

Wuhan University of Technology,Wuhan (430070)

Abstract

This paper briefly introduces the characteristic and the state of development of Neural Network and Fuzzy Neural Network,and provides several kinds of applications in intelligent control of fuzzy neural network; and some problems remaining to be solved in the future research of fuzzy neural network are also put forward. Finally,it looks forward to the development in the future of the fuzzy neural network technology and its application on the project.

Keywords:neural network,fuzzy neural network,FNNC,intelligent control

作者简介:

郑子杰,男( 1983~) ,汉族,硕士研究生在读,主要研究方向:嵌入式技术及其应用;

王虎,男( 1981~) ,汉族,硕士研究生在读,主要研究方向:计算机网络与信号处理。

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

智能控制技术第四章作业

4-1、神经元的种类有哪些?它们的函数关系如何? 4-2、为什么由简单的神经元连接而成的神经网络具有非常强大的功能? 4-3、神经网络按连接方式分有哪几类? 四、计算题 1、如图4-24所示的多层前向传播神经网络结构。假设对于期望的输入 12[,][13]x x =,12[,][0.90.3]d d y y =。网络权系数的初始值见图。试用BP 算法训练此网络。并详细写出第一次迭代学习的计算结果。这里,取神经元激励函数 1()1x f x e -=+。学习步长为1η=。最大迭代次数为iterafe max 。误差为e 。(四舍五入,精确到小数后1位) x 1 x 2 112 -20 3-1 -110-21-23o 1o 2y 1y 2 神经网络结构图w 11w 12w 21w 22 w 20 w 112w 122w 10w 102w 212w 222w 202 答案: 4-1、答案:神经元模型是生物神经元的抽象和模拟。它是模拟生物神经元的结构和功能、并从数学角度抽象出来的一个基本单元。它是神经网络的最基本的组成部分。 神经元一般是多输入-单输出的非线性器件。 模型可以描述为 i ij j i i j Net w x s θ=+-∑ ()i i u f Net = ()()i i i y g u h Net == 假设()i i g u u =,即()i i y f Net = i u 为神经元的内部状态;i θ为阀值;i x 为输入信号,1,...,j n =;ij w 为表示从j u 单元到i u 单元的连接权系数;i s 为外部输入信号。

常用的神经元非线性特性有以下四种 阀值型 10()00 i i i Net f Net Net ?>?=?≤?? 0 1 Neti 阀值函数f 分段线性型 00max 0()i i i i i i il i il Net Net f Net kNet Net Net Net f Net Net ?≤?=≤≤??≥? 0 f max Neti 线性函数f Net i1Net i0 Sigmoid 函数型 1()1i i Net T f Net e -= + Neti Sigmoid 函数f 10.5 Tan 函数型 ()i i i i Net Net T T i Net Net T T e e f Net e e -- -=+

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑和神经网络的结合成为可能。 2 模糊神经网络的学习算法 各种类型的模糊神经网络学习算法的共同方面是结构学习和参数学习两部分。结构学习是指按照一定的性能要求确定模糊系统的推理规则的条数,每条规则的前提和结论的隶属度函数以及由清晰化得到具体的规则数。参数学习是指进一步细化各隶属函数的参数以及模糊规则的其他参数,以使系统达到最优。结构学习主要是从输入输出数据中提取规则或由输入空间模糊划分获得规则,主要有启发式搜索、模糊网格法、树形划分法、基于模糊聚类的学习算

神经网络控制大作业_南航_智能控制

南京航空航天大学研究生实验报告 实验名称:神经网络控制器设计 姓名: 学号: 专业: 201 年月日

一、题目要求 考虑如下某水下航行器的水下直航运动非线性模型: ()||a m m v k v v u y v ++== 其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为 100,15,10a m m k ===。 作业具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 二、神经网络控制器的设计 1.构建系统的PID 控制模型 在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示: 图1 水下航行器的PID 控制系统 其中,PID 控制器的参数设置为:K p =800,K i =100,K d =10。 需要注意的一点是,经过signal to workspace 模块提取出的数据的Save format 为Array 格式。

2.BP神经网络控制器的训练 首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。 然后,新建m文件,编写神经网络控制器设计程序: %---------------------------------------------------------------- p=x'; %input t=u'; %input net=newff(p,t,3,{'tansig','purelin'},'trainlm'); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,x',u'); %train network gensim(net,-1); %generate simulink block %---------------------------------------------------------------- 上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为1、 3 和1。 图2 神经网络控制器结构及训练方法

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

智能控制大作业-神经网络

智能控制与应用实验报告神经网络控制器设计

一、 实验内容 考虑一个单连杆机器人控制系统,其可以描述为: 0.5sin()Mq mgl q y q τ+== 其中20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长, 29.8/g m s =,q 为杆的角位置,q 为杆的角速度,q 为杆的角加速度, τ为系统的控制输入。具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 4、为系统设计神经网络PID 控制器(选作)。 二、 对象模型建立 根据公式(1),令状态量121=,x q x x = 得到系统状态方程为: 12121 0.5**sin() x x mgl x x M y x τ=-= = (1) 由此建立单连杆机器人的模型如图1所示。

图1 单连杆机器人模型 三、系统结构搭建及神经网络训练 1.系统PID结构如图2所示: 图2 系统PID结构图 PID参数设置为Kp=16,Ki=10,Kd=8得到响应曲线如图3所示:

01234 5678910 0.2 0.4 0.6 0.8 1 1.2 1.4 t/s a n g l e /r a d 图3 PID 控制响应曲线 采样PID 控制器的输入和输出进行神经网络训练 p=[a1';a2';a3']; t=b'; net=newff([-1 1;-1 1;-1 1],[3 8 16 8 1],{'tansig' 'tansig' 'tansig' 'logsig' 'purelin'}); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,p,t); gensim(net,-1) 产生的神经网络控制器如图4所示:

智能控制(神经网络)作业

智能控制作业 学生姓名: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2 )1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

智能控制之神经网络系统辨识的设计

四、神经网络系统辨识分析(25分) 用BP 神经网络进行系统在线逼近的原理框图如图3所示 ) (k y n (k u (k y 图3 图4 假设某控制对象的模型为2 3 )1(1) 1()()(-+-+ =k y k y k u k y ,采样时间取t=1ms ,输入信号 t)sin(650.)u(π=k 。采用的BP 神经网络结构如图4所示,权值ij w 和2j w 的初值取 [-1,+1] 之间的随机值,权值采用δ学习算法,学习速率η取0.50,动量因子α取0.05。试分析神经网络在线逼近的运行过程,并作Matlab 仿真。 题目四、需要阐述清楚BP 网络逼近控制对象的工作原理和学习过程 BP 算法的基本思想是:对于一个输入样本,经过权值、阈值和激励函数运算后,得到一个输出y n (k),然后让它与期望的样本y(k)进行比较,若有偏差,则从输出开始反向传播该偏差,进行权值、阈值调整,使网络输出逐渐与希望输出一致。 BP 算法由四个过程组成:输入模式由输入层经过中间层向输出层的“模式顺传播”过程,网络的希望输出与网络的实际输出之间的误差信号由输出层经过中间层向输入层逐层修正连接权的“误差逆传播”过程,由“模式顺传播”与“误差逆传播”的反复交替进行的网络“记忆训练”过程,网络趋向于收敛即网络的全局误差趋向极小值的 “学习收敛”过程。 BP 网络(Back Propagation ),该网络是一种单向传播的多层前向网络。误差 反向传播的BP 算法简称BP 算法,其基本思想是梯度下降法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。 BP 网络特点: (1)是一种多层网络,包括输入层、隐含层和输出层; (2)层与层之间采用全互连方式,同一层神经元之间不连接; (3)权值通过δ学习算法进行调节;

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

神经网络与智能控制系统

神经网络与智能控制系统 姓名: 学号: 日期:

【摘要】本文介绍了神经网络的基本概念,论述了人工神经网络的产生与发展,以及人工神经网络在控制系统中的应用现状,分析了人工神经网络的特点和监视控制系统的原理,并阐述了几种基于神经网络的控制系统,简要介绍了人工神经网络的发展、应用及研究现状,通过实例来分析人工神经网络原理的设计和实现过程。 【关键词】人工神经网络;控制系统;智能控制;发展;应用 一、引言 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。 神经网络控制是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 神经网络控制是一种基本上不依赖于模型的控制方法,它适合于具有不确定性或高度非线性的控制对象,并具有较强的自适应和自学习功能,因此是智能控制的一个重要分支领域。人工神经网络利用物理器件来模拟生物神经网络的某些结构和功能,具有并行和分布式的信息处理网络结构,该结构一般由几个神经元组成,每一个神经元有一个单一的输出,但可通过连接的很多其它神经元,获得有多个连接通道的输入,每个连接通道对应一个连接权系数。 二、人工神经网络的产生与发展 人工神经网络的研究是从19世纪末期开始的,其发展历史经历了以下四个时期。 1.启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Papert发表的《感知器》(Perceptron)一书。早在1943年,美国神经生物学家W.S.McCul-loch和数学家W.Pitts合作,采用数理模型的方法研究脑细胞的动作和结构,以及生物神经元的一些基本生理特征,提出了第一个神经计算模型,即神经元的阈值元件模型(M-P模型),并指出:即使是最简单的神经网络,从原则上讲也可以进行任意算术或逻辑函数的计算。该模型把神经细胞的动作描述为:神经元的活动表现为兴奋或抑制的二值变化;任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;任何抑制性突触有输入激励后,使神经元抑制;突触的值不随时间改变;突触从感知输入到传送出一个输出脉冲的延迟时间是0.5ms。可见,M-P模型是用逻辑的

神经网络控制修订稿

神经网络控制 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量

相关文档
最新文档