专题7.1 空间几何体的结构特征及其表面积、体积-2020届高考数学一轮复习学霸提分秘籍(解析版)

专题7.1 空间几何体的结构特征及其表面积、体积-2020届高考数学一轮复习学霸提分秘籍(解析版)
专题7.1 空间几何体的结构特征及其表面积、体积-2020届高考数学一轮复习学霸提分秘籍(解析版)

23 1

第七篇 立体几何与空间向量

专题7.01 空间几何体的结构及其表面积、体积

【考试要求】

1.利用实物、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构;

2.知道球、棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题;

3.能用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图. 【知识梳理】

1.空间几何体的结构特征 (1)多面体的结构特征

名称

棱柱

棱锥

棱台

图形

底面

互相平行且全等

多边形

互相平行且相似

侧棱

平行且相等

相交于一点,但不一定相

延长线交于一点

侧面形状

平行四边形

三角形

梯形 (2)旋转体的结构特征 名称

圆柱

圆锥

圆台

图形

母线

互相平行且相等,

垂直于底面

相交于一点

延长线交于一点

轴截面 全等的矩形 全等的等腰三角形

全等的等腰梯形

圆 侧面展开

矩形

扇形

扇环

23 2

图 2.直观图

空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.

(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.圆柱、圆锥、圆台的侧面展开图及侧面积公式

圆柱

圆锥

圆台

侧面展开图

侧面积公式

S 圆柱侧=2πrl

S 圆锥侧=πrl

S 圆台侧=π(r 1+r 2)l

4.空间几何体的表面积与体积公式

名称

几何体

表面积

体积

柱 体

(棱柱和圆柱) S 表面积=S 侧+2S 底

V =S 底h

锥 体

(棱锥和圆锥) S 表面积=S 侧+S 底

V =1

3

S 底h

台 体

(棱台和圆台)

S 表面积=S 侧+S 上+S 下

V =1

3

(S 上+S 下+S 上S 下)h

S =4πR 2

V =43

πR 3

【微点提醒】

1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.

2.正方体的棱长为a ,球的半径为R ,则与其有关的切、接球常用结论如下 : (1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ; (3)若球与正方体的各棱相切,则2R =2a .

23 3

3.长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.

4.正四面体的外接球与内切球的半径之比为3∶1. 【疑误辨析】

1.判断下列结论正误(在括号内打“√”或“×”)

(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )

(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y

轴,且∠A =90°,则在直观图中,∠A =45°.( )

(4)锥体的体积等于底面面积与高之积.( ) 【答案】 (1)× (2)× (3)× (4)×

【解析】 (1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱. (2)反例:如图所示的图形满足条件但不是棱锥.

(3)用斜二测画法画水平放置的∠A 时,把x ,y 轴画成相交成45°或135°,平行于x 轴的线段还平行于x 轴,平行于y 轴的线段还平行于y 轴,所以∠A 也可能为135°. (4)锥体的体积等于底面面积与高之积的三分之一,故不正确. 【教材衍化】

2.(必修2P10B1改编)如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH ∥A ′D ′.剩下的几何体是( )

A.棱台

B.四棱柱

C.五棱柱

D.六棱柱

【答案】 C

【解析】 由几何体的结构特征,剩下的几何体为五棱柱.

23 4

3.(必修

2P27练习1改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A.1 cm B.2 cm C.3 cm

D.32

cm 【答案】 B

【解析】 由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2=4,所以r =2(cm). 【真题体验】

4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.323

π C.8π

D.4π

【答案】 A

【解析】 设正方体的棱长为a ,则a 3=8,解得a =2.设球的半径为R ,则2R =3a ,即R = 3.所以球的表面积S =4πR 2=12π.

5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4

C.π2

D.π4

【答案】 B

【解析】 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12

.

∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =π·r 2·h =π·???

?3

22

×1=3π4.

6.(2019·菏泽一中月考)用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为________. 【答案】

2

4

【解析】 设原矩形的长为a ,宽为b ,则其直观图是长为a ,高为b 2sin 45°=2

4b 的平行四边形,所以S 直观S 矩形

23 5

24ab ab =2

4.

【考点聚焦】

考点一 空间几何体的结构特征 【例1】 (1)给出下列命题:

①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A.0

B.1

C.2

D.3

(2)给出下列命题:

①棱柱的侧棱都相等,侧面都是全等的平行四边形;

②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③存在每个面都是直角三角形的四面体; ④棱台的侧棱延长后交于一点. 其中正确命题的序号是________. 【答案】 (1)A (2)②③④

【解析】 (1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.

(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1

23 6

-ABC ,四个面都是直角三角形;④正确,由棱台的概念可知.

【规律方法】 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.

2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.

3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略. 【训练1】 下列命题正确的是( )

A.两个面平行,其余各面都是梯形的多面体是棱台

B.两个面平行且相似,其余各面都是梯形的多面体是棱台

C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台

D.用平面截圆柱得到的截面只能是圆和矩形 【答案】 C

【解析】 如图所示,可排除A ,B 选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,否则为椭圆或椭圆的一部分.

考点二 空间几何体的直观图

【例2】 已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34

a 2

B.38

a 2 C.68

a 2 D.616

a 2 【答案】 D

【解析】 如图①②所示的实际图形和直观图.

23 7

由斜二测画法可知,A ′B ′=AB =a

,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=6

8a .

所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =6

16a 2.故选D.

【规律方法】

1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y 轴的线段长度减半,平行于x 轴和z 轴的线段长度不变)来掌握.

2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系S 直观图=

2

4S 原图形.

【训练2】 如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2 B.1+2

2

C.2+22

D.1+ 2

【答案】 A

【解析】 恢复后的原图形为一直角梯形, 所以S =1

2(1+2+1)×2=2+ 2.故选A.

考点三 空间几何体的表面积

【例3】 (1)若正四棱锥的底面边长和高都为2,则其全面积为________.

(2)圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积为________(结果中保留π).

(3)如图直平行六面体的底面为菱形,若过不相邻两条侧棱的截面的面积分别为Q 1,Q 2,则它的侧面积为______.

【答案】 (1)4+45 (2)1 100π cm 2 (3)2Q 21+Q 22

【解析】 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.

23 8

由题意知底面正方形的边长为2,正四棱锥的高为2, 则正四棱锥的斜高PE =22+12= 5.

所以该四棱锥的侧面积S =4×1

2×2×5=45,

∴S 全=2×2+45=4+4 5.

(2)如图所示,设圆台的上底周长为C ,因为扇环的圆心角是180°,所以C =π·SA .

又C =2π×10=20π,所以SA =20. 同理SB =40.

所以AB =SB -SA =20. S 表=S 侧+S 上底+S 下底

=π(r 1+r 2)·AB +πr 21+πr 22

=π(10+20)×20+π×102+π×202 =1 100π(cm 2).

故圆台的表面积为1 100π cm 2.

(3)设直平行六面体的底面边长为a ,侧棱长为l ,则S 侧=4al ,因为过A 1A ,C 1C 与过B 1B ,D 1D 的截面都为

矩形,从而?

????Q 1=AC ·

l ,Q 2=BD ·l , 则AC =Q 1l ,BD =Q 2

l .

又AC ⊥BD ,

∴????AC 22

+????BD 22

=a 2.∴????Q 12l 2

+???

?Q 22l 2

=a 2. ∴4a 2l 2=Q 21+Q 22,2al =Q 21+Q 22, ∴S 侧=4al =2Q 21+Q 22.

23 9

【规律方法】 1.求解有关多面体侧面积的问题,关键是找到其特征几何图形,如棱柱中的矩形、棱台中的直角梯形、棱锥中的直角三角形,它们是联系高与斜高、边长等几何元素间的桥梁,从而架起求侧面积公式中的未知量与条件中已知几何元素间的联系.

2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.

3.旋转体的表面积问题注意其侧面展开图的应用.

【训练3】 (1)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A.6π(4π+3) B.8π(3π+1)

C.6π(4π+3)或8π(3π+1)

D.6π(4π+1)或8π(3π+2)

(2)(必修2P36A10改编)一直角三角形的三边长分别为6 cm ,8 cm ,10 cm ,绕斜边旋转一周所得几何体的表面积为________.

【答案】 (1)C (2)336

5

π cm 2

【解析】 (1)分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,所以S 底=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2=8π(3π+1);②以长为4π的边为高时,6π为圆柱底面周长,则2πr =6π,r =3.所以S 底=9π,S 表=2S 底+S 侧=18π+24π2=6π(4π+3).

(2)旋转一周所得几何体为以245 cm 为半径的两个同底面的圆锥,其表面积为S =π×245×6+π×245×8=

336

5π(cm 2).

考点四 空间几何体的体积

【例4】 (1)(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V

为( )

A.1∶2

B.2∶3

C.3∶4

D.1∶3

(2)(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.

23 10

【答案】

(1)B (2)1

12

【解析】 (1)设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =2

3

.

(2)连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =1

2AC .因为

F ,

G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =1

2AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为

平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为1

2,所以

四棱锥M -EFGH 的体积为13×????2

22

×12=112

.

【规律方法】 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.

2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.

3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.

【训练4】 (必修2P28A3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.

【答案】 1∶47

【解析】 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积为V 1=13×12×12a ×12b ×12c =

148abc ,剩下的几何体的体积V 2=abc -148abc =47

48

abc ,所以V 1∶V 2=1∶47.

23 11

考点五 多面体与球的切、接问题

【例5】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2

C.6π

D.32π3

【答案】 B

【解析】 由AB ⊥BC ,AB =6,BC =8,得AC =10.

要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .

则12×6×8=1

2×(6+8+10)·r ,所以r =2. 2r =4>3,不合题意.

球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32

.

故球的最大体积V =43πR 3=9

2

π.

【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 【答案】见解析

【解析】将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.

【迁移探究2】 若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积. 【答案】见解析

【解析】如图,设球心为O ,半径为r ,

23 12

则在Rt △AOF 中,

(4-r )2+(2)2=r 2, 解得r =9

4

则球O 的体积V 球=43πr 3=43π×????943=243π16

.

【规律方法】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.

2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.

【训练5】 (2019·北京海淀区调研)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( ) A.23π B.234

π C.64π

D.643

π 【答案】 D

【解析】 如图,设O ′为正△PAC 的中心,D 为Rt △ABC 斜边的中点,H 为AC 中点.由平面PAC ⊥平面ABC .则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =

2

3PH =23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.

故几何体外接球的表面积S =4πR 2=643

π.

【反思与感悟】 1.几何体的截面及作用

(1)常见的几种截面:①过棱柱、棱锥、棱台的两条相对侧棱的截面;②平行于底面的截面;③旋转体中的轴截面;④球的截面.

(2)作用:利用截面研究几何体,贯彻了空间问题平面化的思想,截面可以把几何体的性质、画法及证明、计算融为一体.

2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.

3.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.

【易错防范】

1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.

2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.

【核心素养提升】

【直观想象与逻辑推理】——简单几何体的外接球与内切球问题

1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.

2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.

一、知识要点

1.外接球的问题

(1)必备知识:

①简单多面体外接球的球心的结论.

结论1:正方体或长方体的外接球的球心是其体对角线的中点.

结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.

结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.

②构造正方体或长方体确定球心.

③利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.

(2)方法技巧:几何体补成正方体或长方体.

2.内切球问题

(1)必备知识:

①内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.

23 13

23 14

②正多面体的内切球和外接球的球心重合.

③正棱锥的内切球和外接球球心都在高线上,但不一定重合. (2)方法技巧:体积分割是求内切球半径的通用做法. 二、突破策略

1.利用长方体的体对角线探索外接球半径

【例1】 已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A.16π B.20π

C.24π

D.32π

【答案】 C

【解析】 设正四棱柱的底面边长为a ,高为h ,球半径为R ,则正四棱柱的体积为V =a 2h =16,a =2,4R 2=a 2+a 2+h 2=4+4+16=24,所以球的表面积为S =24π.

【评析】 若几何体存在三条两两垂直的线段或者三条线有两个垂直,可构造墙角模型(如下图),直接用公式(2R )2=a 2+b 2+c 2求出R

.

2.利用长方体的面对角线探索外接球半径

【例2】 三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 【答案】 14π

【解析】 如图,在长方体中,设AE =a ,BE =b ,CE =c .

23 15

则SC =AB

=a 2+b 2=10, SA =BC =b 2+c 2=13, SB =AC =a 2+c 2= 5.

从而a 2+b 2+c 2=14=(2R )2,可得S =4πR 2=14π.故所求三棱锥的外接球的表面积为14π.

【评析】 三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方体中构造三棱锥,从而巧妙探索外接球半径. 3.利用底面三角形与侧面三角形的外心探索球心

【例3】 平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将其沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD .若四面体A ′BCD 的顶点在同一球面上,则该球的体积为( ) A.32

π B.3π

C.23

π D.2π

【答案】 C

【解析】 如图,设BD ,BC 的中点分别为E ,F .因点F 为底面直角△BCD 的外心,知三棱锥A ′-BCD 的外接球球心必在过点F 且与平面BCD 垂直的直线l 1上.又点E 为底面直角△A ′BD 的外心,知外接球球心必在过点E 且与平面A ′BD 垂直的直线l 2上.因而球心为l 1与l 2的交点.又FE ∥CD ,CD ⊥BD 知FE ⊥平面A ′BD .从而可知球心为点F .又A ′B =A ′D =1,CD =1知BD =2,球半径R =FD =BC 2=32.故V =43π????3

33

=32

π.

【评析】 三棱锥侧面与底面垂直时,可紧扣球心与底面三角形外心连线垂直于底面这一性质,利用底面与侧面的外心,巧探外接球球心,妙求半径. 4.利用直棱柱上下底面外接圆圆心的连线确定球心

【例4】 一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9

8

,底面周长为3,则这个球的体积为________.

23 16

【答案】

4π3

【解析】 设正六棱柱底面边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则a =1

2,底面积为S =

6·34·????122

=338,V 柱

=Sh =338h =98,∴h =3,R 2=????322

+????122

=1,R =1,球的体积为V =4π3. 【评析】 直棱柱的外接球、圆柱的外接球模型如下图

其外接球球心就是上下底面外接圆圆心连线的中点. 5.锥体的内切球问题

(1)题设:如图①,三棱锥P -ABC 是正三棱锥,求其内切球的半径.

图①

第一步:先画出内切球的截面图,E ,H 分别是两个三角形的外心; 第二步:求DH =1

3CD ,PO =PH -r ,PD 是侧面△ABP 的高;

第三步:由△POE ∽△PDH ,建立等式:OE DH =PO

PD ,解出r .

(2)题设:如图②,四棱锥P -ABC 是正四棱锥,求其内切球的半径.

图②

第一步:先画出内切球的截面图,P ,O ,H 三点共线; 第二步:求FH =1

2

BC ,PO =PH -r ,PF 是侧面△PCD 的高;

23 17

第三步:由△POG ∽△PFH ,建立等式:OG HF =PO

PF ,解出r .

(3)题设:三棱锥P -ABC 是任意三棱锥,求其的内切球半径.

方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和; 第一步:先画出四个表面的面积和整个锥体体积;

第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ?V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ; 第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC

6.柱体的内切球问题

【例5】 体积为4π

3的球与正三棱柱的所有面均相切,则该棱柱的体积为________.

【答案】 6 3

【解析】 设球的半径为R ,由4π3R 3=4π

3,得R =1,所以正三棱柱的高h =2.

设底面边长为a ,则13×3

2a =1,所以a =2 3.

所以V =

3

4

×(23)2×2=6 3. 【分层训练】

【基础巩固题组】(建议用时:40分钟) 一、选择题

1.下列说法中,正确的是( ) A.棱柱的侧面可以是三角形

B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形

C.正方体的所有棱长都相等

D.棱柱的所有棱长都相等 【答案】 C

【解析】 棱柱的侧面都是平行四边形,选项A 错误;其他侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C. 2.一个球的表面积是16π,那么这个球的体积为( ) A.163

π B.323

π C.16π

D.24π

23 18

【答案】 B

【解析】 设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3

=32

3

π.

3.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是( )

A.南

B.北

C.西

D.下

【答案】 B

【解析】 将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.

4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )

A.14斛

B.22斛

C.36斛

D.66斛

【答案】 B

【解析】 设米堆的底面半径为r 尺,则π2r =8,所以r =16

π.

所以米堆的体积为V =14×13π·r 2·5=π12·????16π2

·5≈320

9(立方尺).

故堆放的米约有320

9

÷1.62≈22(斛).

5.如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的

23 19

体积为( )

A.3

B.32

C.1

D.32

【答案】 C

【解析】 如题图,在正△ABC 中,D 为BC 中点,则有AD =

3

2

AB =3,又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ?平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,

∴VA -B 1DC 1=13S △B 1DC 1·AD =13×1

2×2×3×3=1.

二、填空题

6.一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 面积为________.

【答案】 2 2

【解析】 因为直观图的面积是原图形面积的

2

4

倍,且直观图的面积为1,所以原图形的面积为2 2. 7.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 【答案】

7

【解析】 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=1

3

π×52×4+π×22×8,解得r =7.

8.(2019·济南调研)祖暅(公元前5~6世纪),祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一

23 20

百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b ,高皆为a 的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,可以证明S 圆=S 环总成立.据此,短轴长为4 cm ,长轴为6 cm 的椭球体的体积是________ cm 3.

【答案】 16π

【解析】 因为总有S 圆=S 环,

所以椭半球体的体积等于V 柱-V 锥=πb 2a -13πb 2a =2

3πb 2a ,

椭球体的体积为V =4

3πb 2a .因为2b =4,2a =6,所以b =2,a =3,

所以,该椭球体的体积是4

3×22×3π=16π(cm 3).

三、解答题

9.如图所示,正四棱台的高是17 cm ,两底面边长分别为4 cm 和16 cm ,求棱台的侧棱长和斜高.

【答案】见解析

【解析】设棱台两底面的中心分别为O ′和O ,B ′C ′,BC 的中点分别为E ′,E ,连接O ′B ′,O ′E ′,O ′O ,OE ,OB ,EE ′,则四边形O ′E ′EO ,OBB ′O ′均为直角梯形. 在正方形ABCD 中,BC =16 cm , 则OB =8 2 cm ,OE =8 cm , 在正方形A ′B ′C ′D ′中,B ′C ′=4 cm , 则O ′B ′=2 2 cm ,O ′E ′=2 cm , 在直角梯形O ′OBB ′中,

BB ′=OO ′2+(OB -O ′B ′)2=19(cm); 在直角梯形O ′OEE ′中,

EE ′=OO ′2+(OE -O ′E ′)2=513(cm).

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

空间几何体的表面积及体积公式大全教学教材

空间几何体的表面积及体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧2 1= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥 ② 圆锥

3、 台体 ① 棱台 ② 圆台 4、 球体 ① 球:r V 33 4π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(31 S S S S h V 下下 上 上 台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PF PE AB CD =

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

空间几何体的表面积和体积

空间几何体的表面积和体积 [基础要点] 1.圆柱的表面积公式: 2.圆锥的表面积公式: 3.圆台的表面积公式: 4.圆锥的体积公式: 5.棱锥的体积公式: 6.圆台的体积公式: 7.球的表面积公式: 8.球的体积公式: 题型一、柱体的体积、表面积公式 例1、直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积为12,Q Q ,求它的侧面积 变式:如图是一个平面截长方体得剩余部分,已知4,3,AB BC ==5,8AE BF ==, 12C G =,求几何体的体积 题型二、锥体、球体的体积和表面积公式 例2、正四面体棱长为a ,求其外接球和内切球的表面积 变式:一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求: (1)圆锥的侧面积 (2)圆锥的内切球的体积 题型三、台体的表面积与体积公式 例3、如图,已知正三棱台111A B C ABC -的两底面边长分别为2和8,侧棱长等于6,求三棱台的体积V D1 O1C1 D C B1 B A1 A O H

变式:用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24㎝,下底半径为16㎝,母线长为48㎝,则矩形铁皮的长边长是多少? 题型四、实际问题与几何体面积、体积的结合 例4、如图示,一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R ,正四棱台的上、下底面边长分别是2.5R 和3R ,斜高为0.6R , (1)求这个容器盖子的表面积(用R 表示,焊接处对面积的影响忽略不计) (2)若R=2㎝,为盖子涂色时所用的涂料每0.4kg 可以涂1㎡,计算为100个这样的盖子涂色约需要多少千克。(精确到0.1kg ) 变式:某人买了一罐容积为V 升、高为a 米的直三棱柱型罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距底高度分别为,b c 的地方(单位:米),为了减少罐内液油的损失,该人采用罐口朝上,倾斜灌口的方式拿回家,试问罐内液油最理想的估计能剩多少? [自测训练] 1、已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则T S 等于( ) A 、 19 B 、49 C 、 14 D 、 13 2、圆柱的轴截面是边长为5㎝的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A 、10㎝ B 、 2 542 π+㎝ C 、52㎝ D 、2 51π+㎝ 3、棱锥的高为16㎝,底面积为2 512cm ,平行于底面的截面积为2 50cm ,则截面与底面的距离为( ) A 、5㎝ B 、10㎝ C 、11㎝ D 、25㎝

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

空间立体体积的计算方法(1)

数学积分求体积方法概述 摘要:定积分在大学数学学习及应用中起着非常重要的作用,一直以来定积分问题就是大学数学学习的重点,也是本科及研究生入学考试重点考察的内容之一,在我们的生活中起着很重要的作用!空间立体体积的计算在日常生活和学习中是十分重要的,对于规则的立体,中学里已有一些求解公式,对于不规则的立体,则需要用高等数学积分法加以解决。本文总结了几种常见的利用积分求立体体积的方法及案例,通过所学积分学知识建立了更为普遍的立体体积的求解方法和计算公式,同时也介绍了相关的物理方法,并从具体的例题入手充分挖掘了空间立体体积计算的一些思想和方法。 关键词:积分; 空间立体体积; 积分区域; 被积函数 引言 空间立体体积的计算是生活中常见的问题,对于规则的空间立体体积的计算在中学时就有具体的计算公式,但对于不规则的空间立体体积则难以计算。本文就主要针对各种形状的空间立体研究计算其体积的简便方法。 其实很多文献对空间立体体积的计算问题都进行了讨论,文献[1]就基本上包括了此问题的所有积分计算方法,并给出了相应的计算公式。文献[2]-[9]分别从不同方面对各种方法进行了细致说明,并对个别特例进行了深入分析,给出了特殊的积分计算方法。文献[10]则主要是对部分方法做出了总结,并列出了大量相关例题辅助理解。以上文献充分体现出积分思想在解题中应用广泛,特别是在计算空间立体体积领域。如果我们能够在积分学的基础上掌握空间立体体积的计算方法,则能使一些复杂的问题简单化,还易让人接受。所以我们要分析掌握积分法,以便于解决与此相关的各种复杂问题,特别是各种空间立体体积的计算问题。 空间立体体积的计算是高等数学积分法在几何上的主要应用,其主要思想是将体积表示成定积分或重积分,研究空间立体,确定积分区域及被积函数,然后综合考虑立体特征、积分区域及被积函数特点,选择恰当的积分方法,使空间立体体积的计算简单明了。本文在上述文献的基础上,总结了中学常见的空间立体体积的计算方法。同时又探讨了它们和其它不规则立体的多种积分计算方法,最后还介绍了求解空间立体体积的物理方法,充分展示了空间立体体积计算方法的多样性及灵活性,特别是积分思想在此领域的运用,有力地拓展了求解立体体积的思路。

三视图求几何体的表面积与体积

三视图求几何体的表面积与体积 一、选择题 1.若一个几何体的三视图如图所示,则此几何体的体积为( ) (A)112 (B)5 (C)9 2 (D)4 2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A)6 (B)9 (C)12 (D)18 3.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( ) (B) (C) (D) 4.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) (A )6π (B )43π (C )46π (D )63π 5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( ) 6 A 32

6.(2012·浙江高考文科·T3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( ) (A)1 cm 3 (B)2 cm 3 (C)3 cm 3 (D)6 cm 3 7.某三棱锥的三视图如图所示,该三棱锥的表面积是( ) (A )28+ (B )30+ (C )56+ (D )60+ 8.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是 ( ) 侧(左)视图 俯视图

10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() (A)球 (B)三棱锥 (C)正方体 (D)圆柱 . 11.某几何体的三视图如图所示, 它的体积为() (A)12π (B)45π (C)57π (D)81π 12.某几何的三视图如图所示,它的体积为 (A)72π (B)48π (C)30π (D)24π 13.已知某几何体的三视图如图所示,

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

5立体几何体积的求解方法

立体几何体积的求解方法 重要知识 立体几何体体积的求解始终要谨记一个原则:找到易于求解的底面(面积)和高(椎体就是顶点到底面的距离)。而这类题最易考到的就是椎体的体积(尤其是高的求解)。 求椎体体积通常有四种方法: (1)直接法:直接由点作底面的垂线,求垂线段的长作为高,底面的面积是底面积。 (2)转移法(等体积法):更换椎体的底面,选择易于求解的底面积和高。 (3)分割法(割补法):将一个复杂的几何体分成若干易于计算的椎体。 (4 )向量法:利用空间向量的方法(理科)。 典型例题 方法一:直接法 例1、(2014?南充一模)如图,在三棱柱ABC- ABC中,侧棱AA丄底面ABC AB丄BC, D 例2、女口图已知四棱锥P— ABCD中,底面ABCD是直角梯形,AB// DC / ABC=45 , DC=1 AB=2, PA丄平面ABCD PA=1.若M是PC的中点,求三棱锥M- ACD的体积.

变式1、(2014?漳州模拟)如图所示,在四棱锥P- ABCD中, AB丄平面PAD, AB// CD, PD=AQ E是PB的中点,F是CD上的点且“.■,,PHPAD中AD边上的高.若PH=1,;二二匚, e ■ FC=1,求三棱锥E- BCF的体积. d B 变式2、(2015?安徽)如图,三棱锥P- ABC中, PA丄平面ABC PA=1, AB=1, AC=2 / BAC=60。 求三棱锥P- ABC的体积; 方法二:转移法例3、(2015?重庆一模)如图,已知三棱锥A- BPC中, AP I PC, AC丄BC, M为AB 中点,D 为PB中点,且△ PMB为正三角形.若BC=4, AB=20,求三棱锥D- BCM的体积. B 例4、(2014?宜春模拟)如图,在四棱锥P- ABCD中,侧棱PA丄底面ABCD底面ABCD为矩 形,E为PD上一点,AD=2AB=2AP=2 PE=2DE求三棱锥P- ACE的体积.

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体 积公式汇总表 Prepared on 22 November 2020

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积=底S ,侧面积 =侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= 4a ; (6)内切球半径; r= 12a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知

底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( ) A. π288 3cm B. π192 3cm C. π288 3cm 或 π192 3cm D. π1923cm 8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A. 4s π B. S π2 C. S π D. S π3 32

空间几何体表面积和体积练习题

空间几何体的表面积和体积练习题 题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面半径之比为( ) A.49 B.94 C.427 D.274 题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为6,则此球的体积为________. 题3 一空间几何体的三视图如图所示,则该几何体的体积为( ) A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+233 题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( ) A .与x ,y 都有关 B .与x ,y 都无关 C .与x 有关,与y 无关 D .与y 有关,与x 无关 题5 直角梯形的一个底角为45°,下底长为上底长的32 ,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积. 题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( ) A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积. 题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;(Ⅱ)求正四棱台的体积. 题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积. 题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥C A DD ''-的体积与剩余部分的体积之比. 题11 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所

空间几何体的表面积和体积(一)

空间几何体的表面积与体积 柱体、锥体、台体的表面积与体积 [新知初探] 1.柱体、锥体、台体的表面积公式 2.柱体、锥体、台体的体积公式 柱体的体积公式V=Sh(S为底面面积,h为高); 锥体的体积公式V= 1 3Sh(S为底面面积,h为高); 台体的体积公式V= 1 3(S′+S′S+S)h. [点睛](1)圆柱、圆锥、圆台的侧面积公式之间的关系:

[小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)锥体的体积等于底面面积与高之积( ) (2)台体的体积可转化为两个锥体的体积之差( ) 答案:(1)× (2)√ 2.侧面都是等腰直角三角形的正三棱锥,底面边长为a 时,该三棱锥的表面积是( ) A.3+34a 2 B.34a 2 C.3+32 a 2 D.6+34 a 2 解析:选A ∵侧面都是等腰直角三角形,故侧棱长等于2 2 a ,∴S 表 = 34a 2+3×12 × ??? ?22a 2=3+34a 2. 3.若圆锥的底面半径为3,母线长为5,则圆锥的体积是________. 解析:由已知圆锥的高h =4, 所以V 圆锥=1 3π×32×4=12π. 答案:12π 柱、锥、台的表面积 [典例] 现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该 直四棱柱的侧面积. [解] 如图,设底面对角线AC =a ,BD =b ,交点为O ,对角线A 1C =15,B 1D =9, ∴a 2+52=152,b 2+52=92, ∴a 2=200,b 2=56. ∵该直四棱柱的底面是菱形, ∴AB 2= ????AC 22+????BD 22=a 2+b 2 4=200+564 =64,∴AB =8. ∴直四棱柱的侧面积S =4×8×5=160. (1)求几何体的表面积问题,通常将所给几何体分成基本几何体,再通过这些基本几何体的表面积进行求和或作差,从而获得几何体的表面积,另外有时也会用到将几何体展开求其展开图的面积进而得表面积.

空间几何体的表面积与体积 示范教案

1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积 整体设计 教学分析 本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积. 接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题. 教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形,圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系.由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下. 关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等;②一个几何体的体积等于它的各部分体积的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积公式的推导是建立在等体积概念之上的. 柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论. 与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系,是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式. 值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来增强空间想象能力. 三维目标 1.了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥

② 圆锥 3、 ① 棱台 ② 圆台 4、 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析 一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。二.命题走向----用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。∴点O 在∠BAD 的平分线上。

空间几何体的表面积与体积考点与题型归纳

空间几何体的表面积与体积考点与题型归纳 一、基础知识 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式 ①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和. ②圆台、圆柱、圆锥的转化 当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得: 2.空间几何体的表面积与体积公式 二、常用结论

几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a . (2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积 [典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π (2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( ) A .4+4 2 B .42+2 C .8+4 2 D.83 [解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22, ∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22

=12π.故选B. (2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×??? ?12×2×2+1 2×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练] 1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( ) A .28 B .24+25 C .20+4 5 D .20+25 解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+????1 2×1×2×2+2×1+2×5=24+2 5 .故选B. 2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )

怎么求几何体的表面积

怎么求几何体的表面积 在计算一些几何体的表面积时,有时同学们会感到非常棘手,下面举几例 与同学们共赏 . 例1.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为() A. 19m2 B. 21m2 C. 33m2 D. 34m2 解析:分别画出该组合体的三视图(如图2)如下:根据三视图可知其露出的表面积为6×2+6×2+9=33(m2),故选C. 点评:由实物的形状想象出具体的几何图形,由几何图形能想象出实物的形状,这是考查空间想象水平的主要表现形式. 例2.设棱长都为a的六个正方体摆放成如图所示的形状,则摆放成这种形状的表面积是() A.362a B.302a C.262a D.252a 分析:解此类题应利用视图的原理从不同角度去观察分析以实行解答. 解:从上面看到的面积是5个正方形的面积,下面共有5个正方形的面积,前后左右共看到4×4=16个正方形的面积,所以表面积是262a 故选C. 点评:主要考查了立体图形的视图问题.解题的关键是能把从不同的方向上看到的图形面积抽象出来(即利用视图的原理),从而求得总面积. 例3.(常州)若干个立方体形状的积木摆成如图所示的塔形,平放于桌面上,上面立方体的下底四个顶点是下面相邻立方体的上底各边中点,最下面的立方体棱长为1,如果塔形露在外面的面积超过7(不包括下底面),则立方体的个数至少是() A.2 B.3 C.4 D.5 图1 图2

分析:根据图示逐层算出露出的面积加以比较即解. 解:∵要求塔形露在外面的面积超过7(不包括下底面),最下面的立方体棱长为1, ∴最下面的立方体露出的面积为:4×(1×1)+0.5=4.5; 那么上面一层假如有立方体的话露出的面积为4×0.5+0.5×0.5=2.25,这两层加起来的面积为:6.75. 那么上面一层假如还有立方体的话露出的面积为4×0.25+0.25×0.25=1.0625,这三层加起来的面积为:7.8125. ∴立方体的个数至少是3.故选B. 点评:本题需注意假如上面有一层立方体的话露出的表面积为:4×正方形的面积+一半正方形的面积. 例4.(凉山州)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为() A.66 B.48 C.482+36 D.57 分析:根据三视图图形得出AC=BC=3,EC=4,即可求出这个长方体的表面积. 解:∵如图所示: ∴AB=32,

相关文档
最新文档