三角函数的化简、求最小正周期和最值

三角函数的化简、求最小正周期和最值
三角函数的化简、求最小正周期和最值

三角函数的化简、求最小正周期和最值

1、已知()sin f x x x =∈x (R ).

(1)求函数)(x f 的最小正周期; (2)求函数)(x f 的最大值,并指出此时x 的值.

2、已知函数()2sin cos cos2f x x x x =+(x ∈R). (1)求函数()x f 的最小正周期;

(2)当x 取什么值时,函数()f x 取得最大值,并求其最大值;

(3)若θ为锐角,且83

f πθ??

+= ?

?

?,求tan θ的值.

(理)3、设函数??

?

??π-

+=2sin sin )(x x x f ωω,R ∈x . (1)若21

ω,求)(x f 的最大值及相应的x 的集合; (2)若8

π

=x 是)(x f 的一个零点,且100<<ω,求ω的值和)(x f 的最小正周期.

4、已知函数()4sin()cos f x x x π=-

(Ⅰ)求()f x 的最小正周期; (Ⅱ)若(0,)θπ∈,2

()4

3

f π

θ+=

, 求sin θ的值

5、已知函数21()cos cos 1,2f x x x x x R =

+∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在[,]124

ππ

上的最大值和最小值,并求函数取得最大值和最小值时的自变量x 的值.

6、已知向量(cos sin ,sin )a x x x =+,(cos sin ,2cos )b x x x =-,设()f x a b =?. 求(1)求函数()f x 的最小正周期.

(2)当,44x ππ??

∈-???

?时,求函数()f x 的最大值及最小值.

7、已知函数22

()cos sin sin 2f x x x x =-+

(1)求()f x 的最大值和最小正周期;

(2)设,[0,

]2

π

αβ∈,(

)()282

f f α

πβπ+=+=sin()αβ+的值

8、已知函数()sin sin()3

f x x x π

=+-. (Ⅰ)求()f x 的单调递增区间;

(Ⅱ)在ABC ?中,角A ,B , C 的对边分别为,,a b c . 已知()f A =a =,试判断ABC

?的形状.

9、已知函数()1cos 2cos 2

x

f x x x a +=+

+(a 为常数). (1)求函数()x f 的最小正周期,并指出其单调减区间;

(2)若函数()x f 在??

?

??

?20π, 上的最大值是2,试求实数a 的值.

(理)10、已知()223sin cos 2sin 12f x x x x x πωωωω??

=-+- ?

??0>ω)的最小正周期为π.

(1) 求()x f 的单调递增区间;

(2) 在ABC ?中,c b a ,,分别是角C B A ,,的对边,已知(),1,2,1===A f b a 求角C .

三角函数式的化简与求值

三角函数式的化简与求值 三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场 已知 2π<β<α<43π,cos(α-β)=13 12,sin(α+β)=-53 ,求sin2α的值_________. ● 案例探究 [例1] 不查表求sin 220°+cos 280°+3cos20°cos80°的值. 命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高. 知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错. 技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会. 解法一:sin 220°+cos 280°+3sin 220°cos80° = 21 (1-cos40°)+21 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+21 cos160°+3sin20°cos(60°+20°) =1-21cos40°+2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20° -sin60°sin20°) =1- 21cos40°-41cos40°-43sin40°+43sin40°-2 3sin 220° =1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 220°+cos 280°+3sin20°cos80° y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°= 2 1 ,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y = 41,即x =sin 220°+cos 280°+3sin20°cos80°=4 1.

g3.1049 三角函数的化简、求值与证明

g3.1049 三角函数的化简、求值与证明 一、知识回顾 1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。 二、基本训练 1、已知θ是第三象限角,且445 9 sin cos θθ+=,那么2sin θ等于 ( ) A 、223 B 、223- C 、23 D 、23 - 2、函数23 232 y sin x cos x =--+的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π 3、tan 70cos10(3tan 201)- 等于 ( ) A 、1 B 、2 C 、-1 D 、-2 4、已知46 sin 3cos (4)4m m m αα--=≠-,则实数m 的取值范围是______。 5、设1 0,sin cos 2 απαα<<+=,则cos2α=_____。 三、例题分析 例1、化简: 4221 2cos 2cos 2.2tan()sin () 44 x x x x ππ -+ -+ 例2、设3177cos(),45124 x x π ππ +=<< ,求2sin 22sin 1tan x x x +-的值。 例3、求证:sin(2)sin 2cos().sin sin αββ αβαα +-+=

三角函数辅助角公式化简

精选文库 7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数 的单调增区间;

精选文库 (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +-,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数 f (x )=a r ?b r 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π ] 上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2 x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2 x ω),(ω>0),设函数f (x )=a v ?b v ,且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若 且 ,求 的值。

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

二倍角的三角函数的化简与证明

课题:二倍角的三角函数 本节考试要求为B 级 一、知识梳理 1、二倍角公式 =α2sin ;=α2cos ;=α2tan . 2、公式变形 =α2sin ;=α2cos ;=-αcos 1 ; =+αcos 1 ;=-α2sin 1 ;=+α2sin 1 . 3、技巧:(1)巧变角;(2)切化弦;(3)变逆用;(4)幂升降;(5)变结构;(6)1代换;(7)三兄妹. 二、三基能力强化 1、已知5 3 )4sin( = -x π ,则=x 2sin . 2、已知θ是第三象限角,且9 5cos sin 4 4=+θθ,那么θ2sin = . 3、在ABC ?中,6cos 4sin 3=+B A ,1cos 3sin 4=+A B ,则C sin 的值为 . 4、教材习题改编)已知1tan 2tan 1=+-θθ,则=++)4 tan(42tan π θθ . 5、已知βα,均为锐角,且α αα αβsin cos sin cos tan +-=,则=+)tan(βα . 三、典例互动 三角函数式的化简:化简的要求 例1:(1)化简)4 cos(6)4sin( 2x x -+-π π ; (2)α αααα2sin ) 1cos )(sin 1sin (cos +--+ 规律总结: 三角函数式的求值:求值的方法 例2:求值:0 01000 1cos 20sin10(tan 5tan 5)2sin 20-+-- 又如:ο ο ο ο 78sin 66sin 42sin 6sin =

例3:已知),43(ππα∈,3 10 tan 1tan =+αα,求 ) 2 sin(28 2 cos 112 cos 2 sin 82 sin 52 2 π αα α α α --++的 值。 变题:本题条件不变,求 ) 3 sin(cos 22sin 2π ααα- -的值。 例4:已知ββαsin 3)2sin(=+,设x =αtan ,y =βtan ,记)(x f y = (1)求)(x f 的解析式;(2)若角α是一个三角形的最小内角,试求函数)(x f 的值域 四、课堂反馈 1.已知cos2α=1 4 ,则sin 2α=________. 2.2sin2α1+cos2α·cos 2αcos2α 等于________. 3.已知α,β,γ∈(0,π 2),且sin α+sin γ=sin β,cos β+cos γ=cos α,则α-β的值等于________. 4.定义运算a b =ab 2+a 2b ,则sin15°cos15°的值是________. 5.(原创题)已知sin θ=4 5 ,且cos θ-sin θ+1<0,则sin2θ=________. 6.化简:2cos 4x -2cos 2x + 1 2 2tan(π4-x )·sin 2(π 4+x ) .

三角函数式化简

三角函数式化简 孙小龙 所谓三角函数化简,就是灵活运用公式,对复杂的三角函数式进行变形,从而得到较为简单的三角函数式以便于进行问题讨论,所以三角函数式的化简是研究复杂三角函数式的基础。下面我们一起深入探究如何进行三角函数式化简。 方法引导 三角函数式化简通常是最让人头疼的一类题型,因为化简没有明确的方向,很难继续进行。其实化简只要遵守“三看”原则,即能顺利化简。一是看角,二是看名,三是看式子的结构和特征。 (1) 看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角; 如倍角关系、半角关系、互余关系、互补关系等; (2) 看函数名的特点,向同名函数转化,弦切互化; (3) 看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。另外,根据式 子的特点,还可以使用辅助角公式。 了解了化简原则之后,下面我们开始化简了。 例一 化简f(x)=2cosxsin(x+3 π )-3sin 2x+sinxcosx 分析:首先先看角,式子中的角度不统一,所以首要任务是统一角度,根据式子的结构特点和π 3的特殊性,可以运用两角和的正弦公式将式子展开 f (x )=2cos x sin(x +3 π)-3sin 2 x +sin x cos x ?????→用三角公式展开2cos x (sin x cos 3 π +cos x sin 3 π)-3sin 2 x +sin x cos x = 2sin x cos x +3cos 2 x -3sin 2 x 第一步化简完成后,再次观察式子的结构特点,每一个单项式都是二次的,所以再运用降幂公式把式子变为一次式 2sin x cos x + 3cos 2 x -3sin 2 x ???? →降幂公式 sin2x +3cos2x 继续运用辅助角公式进行彻底化简 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). 例二 化简: 42212cos 2cos 2.2tan()sin () 44 x x x x ππ-+ -+ 分析:我们还是先从角度入手,分子上角度统一,分母角度不统一,但仔细观察发现分母中两个角 呈互余关系,再看函数名的特点,我们可以运用诱导公式进行化简;分子上仔细观察结构,提出1 2, 可以得到完全平方式 42212cos 2cos 2.2tan()sin ()44 x x x x ππ-+ -+诱导公式及完全平方式 → 12(4cos x?4cos x+1)242cot(π4+x)sin (π4 +x )2=(2cos x?12)24sin(π4+x)cos(π4+x) 统一角度后,分析式子的结构特点,运用降幂公式进行化简 (2cos x?12) 2 4sin(π4+x)cos(π 4+x) 降幂公式 → 2cos 2x 22sin(π+2x)= 2cos 2x 22cos 2x = 12 cos 2x 我们可以通过两个例题发现化简题目中透露出来的隐藏信息,这就是三角函数式化简要求 最终形式:正弦型函数(通常情况) 化简方法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 任何三角函数式化简只要掌握了化简的原则和要求,遇到化简题就能轻而易举的攻破了,但首先有个前提:熟练掌握常见三角函数变换公式,如同角三角函数变换公式、诱导公式、两角和与差的余弦正弦正切公式、倍角与半角公式、辅助角公式等。同时还要了解其他三角函数变换公式,如三角函数积化和差和和差化积公式、三倍角公式和万能置换公式等。 小试牛刀 1. 化简βαβαβα2cos 2cos 2 1 cos cos sin sin 2222-+。 2. 化简x x x x x x f 2sin 2cos sin cos sin )(2244-++=

三角函数的周期

三角函数的周期性 一、课题:三角函数的周期性 二、教学目标:1.理解周期函数、最小正周期的定义;会判断一些简单的、常见的函数的周 期性,并会求一些简单三角函数的周期。 2.会求正、余弦函数的最小正周期。 三教学重点:函数周期性的概念. 教学难点:周期函数与最小正周期的意义 四、教学过程: (一)引入: 1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?…… (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢? 2问题三角函数是刻画圆周运动的数学模型,那么“周而复始”的基本特征在函数性质中怎么体现? (二)新授 1周期定义:一般的,对于函数f(x),如果存在一个非零的常数T,使得定义域内的每一个x的值,都满足f(x+T)=f(x), 那么函数f(x)就叫做周期函数,非零的常数T叫做这个函数的周期上述(1)的周期是多少?正弦函数的,周期是多少? 2 最小正周期:对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期 说明:1 “每一个”怎么理解 2f(x+T)=f(x) 周期为T f(2x+T)=f(x) 周期为 3并不是所有的周期函数都有最小正周期,以后未特殊说明周期即指最小正周期 4f(x)=sinx, f(x)=cosx f(x)=tanx的周期是多少 例题讲解 例1 若钟摆的高度h(mm)与时间t(s)之间的函数关系如图 (1)求该函数的周期 (2)求t=10s时钟摆的高度 例2 改1 求函数f(x)=sin4x的周期 2 求函数f(x)=sin3x的周期 3求函数f(x)=2 sin3x+1的周期 4求函数f(x)=2 cos3x+1的周期

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

三角函数的周期性

1.4.1三角函数的周期性 一、导学目标 1.引导学生从单位圆中,得出正弦、余弦函数值呈现周期性变化 2.函数周期性定义 3.能求三角函数的周期 二、知识回归 1.任意角的三角函数 sin y α= cos x α= 2.终边与α角相同 2απ+ 2απ- L L 2()k k Z απ+∈ 三角函数值相同 三、新知导学 由观察可知 1.三角函数值出现周期性变化的特点 sin(2)sin cos(2)cos x k x x k x ππ+=+= (k Z ∈) 2.函数定义 对于函数()f x ,如果存在一个非零常数T ,使定义域内每一个x ,都有()()f x T f x +=,则函数()f x 叫周期函数,非零常数T 叫做这个函数的周期。 3.正弦函数sin y x =,余弦函数cos y x =的周期 2,4,6,2,4,6,ππππππ---L L 2(,0)k k Z k π∈≠ 都是它们的周期 2π是所有周期中最小的正数,是sin ,cos x x 的最小的 正周期 周期函数()f x ,如果它所有的周期中存在一个最小的正数,这个最小正数就是()f x 的最小正周期,一般,函数周期都是指最小正周期 sin ,cos y x y x ==的周期是T=2π 四、例题分析与巩固训练

(1)()sin 3f x x = 1(2)()2cos()23 g x x π=- 分析:由sin ,cos x x 周期都是2π,设周期T 即可 (1) 设()f x 周期为T ,()()f x T f x += ∴sin3()sin3x T x += sin(33)sin 3x T x += 32T π∴= 23 T π= (2) 设()g x 周期为T ()()g x T g x += 2cos()2cos()2323 x T x ππ+-=- 即2cos ()2cos()23223x T x ππ??- +=-???? 22 T π∴= 巩固训练 A 1. 求下列函数的周期 (1)2sin 2y x =- (2)cos 3 x y = 2.判断下列说法是否正确,并说明理由 (1)76x π=时,2sin()sin 3x x π+=,则23 π一定是函数sin y x =的周期 B 思考 sin()cos() y A x y A x ω?ω?=+=+ (其中,,A ω?为常数,0,0A ω≠>) 的周期为2T π ω= 例2 若钟摆高度()h mm 与时间()t s 之间的函数关系如图所示 (1) 求该函数的周期

三角函数辅助角公式化简

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π?? =-+ ?? ? , x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ?? -??? ?上的单调性. 2.已知函数( )4sin cos 3f x x x π?? =+ ?? ? (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数( )4tan sin cos 23f x x x x ππ??? ?=-- ? ???? ? (1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ?? -???? 上的单调递增区间及最大值与最小值. 4.设函数( )2 sin cos 2 f x x x x =+- . (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??????=- +-+ ? ? ?? ?? ??? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -??? ?上的值域. 6.已知函数( )21 cos cos 2 f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[] 0,π上的单调区间.

7.已知函数()4cos sin 16f x x x π? ?=+- ?? ?,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -???? 上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数 .

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

三角函数化简技巧

三角函数化简技巧 一、化简要求: 将一个三角函数式化简,最终结果一般都是出现两种形式:1、一元一次(即类似 B x A y ++=)sin(?ω)的标准形式;2、一元二次(即类似y=A(cosx+B)2 +C )的标准形式。 二、三角化简的通性通法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 三、例题讲解: (例1)f(x)=2cosxsinx+ x x x x cos sin 1sin 2cos 22 +--=_y=A(cosx+B)2+C B x A y ++=)sin(?ω (三角函数化简技巧)-3sin 2 x+sinxcosx 解:f (x )=2cos x sin(x +3 π)-3sin 2x +sin x cos x ?????→用三角公式展开 2cos x (sin x cos 3 π +cos x sin 3 π )- 3sin 2x +sin x cos x ????→降幂公式 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). (例2)y =2cos 2 x -2a cos x -(2a +1) 解:y =2cos 2 x -2a cos x -(2a +1) ???→配方 2(cos x -2 a )2-22 42+-a a . (例3)若tan x =2,则 x x x x cos sin 1sin 2cos 22 +--=_______. (例4)sin 4α+cos 4α=_______. 解:sin 4α+cos 4α?? →(sin 2α+cos 2α)2-2sin 2αcos 2α??→1-2 1 sin 22α?? →1-11-cos222α ? =13cos 244 α+. (例5)函数y =5sin x +cos2x 的最大值是_______. (例6)函数y =sin (3 π -2x )+sin2x 的最小正周期是 (例7)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,2 π ]上的最小值为-4,那么a 的值等于

如何求三角函数的最小正周期

如何用初等方法求三角函数的最小正周期 在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。 一 公式法 函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω π2;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω y=Af(ωx+φ)(A ≠0,ω>0)一类三角函数的最小正周期(这里“f ”表示正弦、余弦、正切或余切函数)。 例1 求下列函数的最小正周期: (1) f(x)=2sin (53πx +1)。 (2) f(x)=1-31cos(4x 3π-)。 (3) f(x)=51tan(31x 3 π-). f(x)=)6 2cot(21π--x 解:用T 表示各函数的最小正周期,则: (1)T=5 32ππ =310 T=42π=2 π T=3 1 π=3π f(x )的最小正周期和y 1=1-2cot(2x -6π)的最小正周期相同,为T=2 π 二 定义法 根据周期函数和最小正周期的定义,确定所给函数的最小正周期。 例2 求函数f(x)=2sin (21x -6 π)的最小正周期。 解:把2 1x -6 π看成是一个新的变量z,那么2sinz 的最小正周期是2π。由于z +2π=21x-6π=(21x +4π)-6π。所以当自变量x 增加到x +4π且必须增加到x +4π时,函数值重复出现。 ∴函数y=2sin(21x-6 π)的最小正周期是4π。 例3 求函数f(x)=|sinx|-|cosx|的最小正周期。

解:根据周期函数的定义,易知2π、π都是这个的周期,下面证明π是这个函数的最小正周期。 设0<T <π是这个函数的周期,则|sin(x +T )|-|cos(x +T )|=|sinx|-|cosx| ① 对于任意x ∈R 都成立,特别的,当x=0时也应成立。 ∴ |sinT|-|cosT|=|sin0|-|cos0|=-1。 但当0<T <π时,0<|sinT|≤1,0<|cosT|<1,故有-1<|sinT|-|cosT|≤1, 矛盾,所以满足①且小于π的正数T 不存在。故函数f(x)=|sinx|-|cosx|的最小正周期是π。 三、最小公倍数法 求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正周期。 例4 求下列函数的最小正周期: (1)f(x)=sin3x+cos5x (2)f(x)=cos 34 x -sin 2 1x. (3)f(x)=sin 53x +tan 7 3x. 解:(1)∵sin3x 的最小正周期为T 1=π32,cos5x 的最小正周期为T 2=π52。而π32和π5 2的最小公倍数是2π. ∴f(x)的最小正周期为T=2π. (2) ∵cos 34x 的最小正周期为T 1=π23,-sin 2 1x 的最小正周期为T 2=4π。而π2 3和4π的最小公倍数是12π。 ∴f(x)=cos 34 x -sin 2 1x 的最小正周期为T=12π. (3)∵sin 53x 的最小正周期为T 1=π310,tan 73x 的最小正周期为T 2=π37。而π310和π3 7的最小公倍数是70π。 ∴f(x)=sin 53x +tan 7 3x 的最小正周期为T=70π. 说明:几个分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。 四 图象法 作出函数的图象,从图象上直观地得出所求的最小正周期。 例5 求下函数的最小正周期。 (1)y=|sin(3x +3 π)|

三角函数式的化简和证明

简单的三角恒等变换——化简与证明 学习目标:能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明. 学习重点:三角函数的有关公式的灵活应用和一些简单的变性技巧. 学习过程 一、知识清单 1.证明了cos()a b -= ?cos()a b += ?cos()2p a -= ,cos()2 p a += ?sin()a b += sin()a b -= ?tan()a b += ,tan()a b -= 2. cos (+)a b = ?cos 2a = = = sin()a b += ?sin 2a = tan()a b += ?tan 2a = 3.倍角的相对性 sin a = ,cos a = ,tan a = 4.要掌握这些公式的推导和联系,用时注意公式的“正用”,“逆用”和“变用”. 如:降幂扩角公式 2sin a = ;2 cos a = ; 1cos a += ;1cos a -= ; 1sin a += ;1sin a -= . 5. 划一公式:sin cos a x b x += (其中tan f = ,f 所在象限由 确定). 二、范例解析 题型一 三角函数式的化简和证明 1.三角函数式的化简要求:

通过对三角函数式的恒等变形使最后所得到的结果中: ①所含函数和角的名称或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值. 2.三角变换的三项基本原则: (1)角的变换:划同角(角的拆分,配角和凑角,1的变换); (2)函数名称的变换:划同名(正切划弦); (3)幂指数的变换:划同次(升幂、降幂公式,同角公式). 例1化简下列各式 ; ②1sin 2cos 21sin 2cos 2a a a a +-=++ ; ③2sin 2cos 1cos 2a a a -=+ ; ④222cos 12tan()sin ()44 a p p a a -=-+ ; 例2 证明下列各式(从左到右或从右到左或左右开攻中间会师,一般化繁为简) ①22tan 2sin 1tan 2a a a =+ ②2 2 1tan 2cos 1tan 2a a a -=+ ③sin 1cos tan 21cos sin a a a a a -==+ ④[]1sin cos sin()sin()2a b a b a b =++- ⑤sin sin 2sin cos 22 q f q f q f +-+=. 三、课下练习: 课本142P 2 ; 143P A 组 1, 2, 3, 4;B 组 1; 146P 8;147P 5.

三角函数周期最值

正弦函数、余弦函数的性质(一) 周期 【基础知识梳理】 1.正弦函数x y sin =与余弦函数x y cos =都是周期函数 都是它们的周期,且它们的最小正周期都是 ; 2.正弦型函数)sin(?ω+=x A y 和余弦型函数)cos(?ω+=x A y (0,0≠>ωA )的周期T= . 【典型例题】 【例1】1.函数x y sin =的周期为( ) A. π2 B.π C. 2π D.4π 2.设函数f (x )=3si ∈(-∞,+∞),且以 为最小正周期 若 则 的值为 【巩固练习】 1.求下列函数的周期: (1)y=3cosx ,x ∈R ; (2)y=sin2x, x ∈R ; (3)y=2sin(21x-6π),x ∈R ; (4))4 31cos(2π-=x y ; (5))3 21sin(π+-=x y 。 2.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈ 时 则 等于 A. 21- B. 21 C.23- D.23 3.若函数f (x )=sin ωx 的周期为π,则ω= . 4.函数y =|cos x|的最小正周期是( ) A.π2 B.π C.2π D.4 π 5.函数y=5si 的最小正周期为 A.π2 B.π5 C.25π D.5 2π

最值 【基础知识梳理】 1.正弦函数x y sin =在x = 时, 1max =y ; 在x = 时, 1min -=y 。 2.余弦函数x y cos =在x = 时, 1max =y ; 在x = 时, 1min -=y 。 【典型例题】 【例1】求下列函数的最值及取得最大值、最小值时的自变量x 的集合: (1))42sin(3π+ =x y ; (2))6 21cos(23- π-=x y ; (3)2)1(sin 2+-=x y 。 【例2】求函数2sin 5sin 22-+-=x x y 的最大值和最小值。

三角函数的求值、化简与证明(教案)

三角函数的求值、化简与证明 教学目标 1、 掌握两角和与差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式,能正 确运用三角公式进行三角函数的化简证明求值; 2、 培养学生分析问题解决问题的能力,培养热爱数学。 教学重点 掌握两角和与差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。 教学难点 能正确运用三角公式进行三角函数的化简证明求值 教学过程 一、知识归纳 1、两角和与差公式: ()sin sin cos cos sin αβαβαβ±=± ()cos cos cos sin sin αβαβαβ±= , ()t a n t a n t a n 1t a n t a n αβαβαβ±±= 2、二倍角公式:sin 22sin cos ααα=, 22t a n t a n 21t a n αα α=- 22cos 2cos sin ααα=-22cos 1α=-212sin α=- 公式变形:1sin cos sin 22 ααα= 21cos 2sin 2αα-=,21cos 2cos 2αα+= 3、三角函数式化简的一般要求: ①函数名称尽可能少, ②项数尽可能少,③次数尽可能低,尽可能求出值 ④尽量使分母不含三角函数,⑤尽量使被开方数不含三角函数 4、求值问题的基本类型及方法: (1)“给角求值”一般所给的角都是非特殊角,解题时应注意观察非特殊角与特殊角之间的 关系。 (2)“给值求值”即给出某些角的的三角函数式的值,求另一些角的三角函数值,解题关键 在于变角,使其角相同。 (3)“给值求角”关键是变角,把所求的角用含已知角的式子表示。 5、证明三角恒等式的思路和方法: ①思路:利用三角公式进行化名,化角,使等式两端化“异”为“同”。 ②证明三角不等式的方法: 比较法、配方法、反证法、分析法,利用函数单调性,利用正余弦函数的有界性,利用 单位圆三角函数线及判别法等。 二、典例分析: 题型一:三角函数式的化简 例1:化简 : 22221sin sin cos cos cos 2cos 22 αβαβαβ?+?-? 分析:化简时使角尽量少,幂次尽量低,不含切割函数,时时要注意角之间的内在联系。

求三角函数最小正周期的五种方法

求三角函数最小正周期的五种方法 一、定义法 直接利用周期函数的定义求出周期。 例1. 求函数(m≠0)的最小正周期。 解:因为 所以函数(m≠0)的最小正周期 例2. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 二、公式法 利用下列公式求解三角函数的最小正周期。 1. 或的最小正周期。 2. 的最小正周期。

3. 的最小正周期。 4. 的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4. 求函数的最小正周期。 解:因为, 所以函数的最小正周期为。 三、转化法 对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。 例5. 求函数的最小正周期。 解:因为

所以函数的最小正周期为。 例6. 求函数的最小正周期。 解:因为 其中, 所以函数的最小正周期为。 四、最小公倍数法 由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。 注: 1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。 2. 对于正、余弦函数的差不能用最小公倍数法。 例7. 求函数的最小正周期。 解:因为csc4x的最小正周期,的最小正周期,由于和 的最小公倍数是。 所以函数的最小正周期为。 例8. 求函数的最小正周期。

解:因为的最小正周期,最小正周期,由于和的最小公倍数是, 所以函数的最小正周期为T=。 例9. 求函数的最小正周期。 解:因为sinx的最小正周期,的最小正周期, sin4x的最小正周期,由于,的最小公倍数是2。 所以函数的最小正周期为T=。 五、图像法 利用函数图像直接求出函数的周期。 例10. 求函数的最小正周期。 解:函数的图像为图1。 图1 由图1可知:函数的最小正周期为。

相关文档
最新文档