电偶极子电势电场matlab模拟

电偶极子电势电场matlab模拟
电偶极子电势电场matlab模拟

利用matlab 绘制电偶极子在3维空间电势、电场的分布 电偶极子(electric dipole )是两个相距很近的等量异号点电荷组成的系统,具体模型如图1所示,两点电荷+q 和-q 相距为d ,且r >>d 。本文主要对电偶极子在空间中产生的电势,电场分布进行计算机模拟。

图1 电偶极子 1 电偶极子的电势、电场计算

应用叠加原理,得场中任意点P 的点位为

012114q φπεr r ??=- ???

应用关系式=-E φ?,可以求得位于原点的电偶极子在离它r 远处产生的电场强度。 2 电偶极子电势、电场分布在matlab 中的模拟

电势分布模拟,源程序如下:

q=1;

d=2;

e0=8.854187817*10.^-12;

x=-3:0.1:3;

y=-3:0.1:3;

[x,y]=meshgrid(x,y);

z=q.*(1./sqrt((y-1).^2+x.^2)-1./sqrt((y+1).^2+x.^2))./(4*pi*e0);

mesh(x,y,z);

运行结果如下:

电场分布,源程序如下:

q=1;

d=2;

e0=8.854187817*10.^-12;

x=-3:0.1:3;

y=-3:0.1:3;

[x,y]=meshgrid(x,y);

z=q.*(1./sqrt((y-1).^2+x.^2+0.01)-1./sqrt((y+1).^2+x.^2+0.01))./(4*pi*e0); contour(x,y,z);

[px,py]=gradient(z);

hold on

streamslice(x,y,px,py,'k')

运行结果如下:

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

带电球体电场与电势的分布

带电球体电场与电势的分布 王峰 (南通市启秀中学物理学科 江苏 南通 226006) 在高三物理复习教学中,遇到带电体的内、外部场强、电势的分布特点问题时,我们一般以带电金属导体为例,指出其内部场强处处为零,在电势上金属体是一个等势体,带电体上的电势处处相等;但对带电金属导体的内、外部场强、电势的大小的分布特点及带电绝缘介质球的内、外部电场、电势的大小分布很少有详细说明;而在电场一章的复习中,常常会遇到此类问题,高三学生已初步学习了简单的微积分,笔者在此处利用微积分的数学方法,来推导出上述问题的答案,并给出相应的“r E -”和“r -?”的关系曲线图,供大家参考。 本文中对电场、电势的分布推导过程均是指在真空环境....中,即相对介电常数10=ε; 对电势的推导均取无穷远处为电势零参考点的,即0=∞U 。 1、 带电的导体球:因为带电导体球处于稳定状态时,其所带电荷全部分布在金属球体的表面,所以此模型与带电球壳模型的电场、电势分布的情况是一致的。 电场分布: 1.1.1内部(r

静电场——电场强度和电势

库仑定律 电场强度 1、实验定律 a 、库仑定律条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k 进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr )。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b 、电荷守恒定律 c 、叠加原理 2、电场强度 a 、电场强度的定义 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b 、不同电场中场强的计算 决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出 ⑴点电荷:E = k 2r Q ⑵证明:均匀带电环,垂直环面轴线上的某点电场强度E = 2322)R r (k Qr + ⑶证明:均匀带电球壳a.内部某点电场强度大E 内= 0 b.外部外部距球心为r 处场强为E 外 = k 2r Q c.如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2)E = 2313r R r k 34-πρ ,其中ρ为电荷体密度。

⑷证明:无限长均匀带电直线(电荷线密度为λ):E = r k 2λ ⑸证明:无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 3.电通量和高斯定理 (1)电通量:在电场中穿过任意曲面的电场线的总条数称为穿 过该面的电通量,用 Ф 表示。 E 与平面S 垂直时,Ф=ES E 与平面S 有夹角θ时,θcos ES Φe = (2 该曲面所包围的所有电荷电量的代数Σq i 和除以 ε0 ,荷无关. 练习:用高斯定理证明上述(3)、(4)、(5)内的结论 练习 1.半径为R 的均匀带电球面,电荷的面密度为σ,试求球心处的电场 强度。 ⊥E

基于matlab的电路仿真

基于matlab的电路仿真 杨泽辉51130215 %基于matlab的电路仿真 %关键词: RC电路仿真, matlab, GUI设计 % 基于matlab的电路仿真 %功能:产生根据输入波形与电路的选择产生输出波形 close all;clear;clc; %清空 figure('position',[189 89 714 485]); %创建图形窗口,坐标(189,89),宽714,高485;Na=['输入波形[请选择]|输入波形:正弦波|',... '输入波形:方形波|输入波形:脉冲波'];%波形选择名称数组; Ns={'sin','square','pulse'}; %波形选择名称数组; R=2; % default parameters: resistance 电阻值 C=2; % default parameters: capacitance电容值 f=10; % default parameters: frequency 波形频率 TAU=R*C; tff=10; % length of time ts=1/f; % sampling length sys1=tf([1],[1,1]); % systems for integral circuit %传递函数; sys2=tf([1,0],[1,1]); % systems for differential circuit a1=axes('position',[0.1,0.6,0.3,0.3]); %创建坐标轴并获得句柄; po1=uicontrol(gcf,'style','popupmenu',... %在第一个界面的上方创建一个下拉菜单'unit','normalized','position',[0.15,0.9,0.2,0.08],... %位置 'string',Na,'fontsize',12,'callback',[]); %弹出菜单上的字符为数组Na,字体大小为12, set(po1,'callback',['KK=get(po1,''Value'');if KK>1;',... 'st=char(Ns(KK-1));[U,T]=gensig(st,R*C,tff,1/f);',... 'axes(a1);plot(T,U);ylim([min(U)-0.5,max(U)+0.5]);',... 'end;']); %pol触发事件:KK获取激发位置,st为当前触发位置的字符串,即所选择的波形类型; %[U,T],gensing,产生信号,类型为st的值,周期为R*C,持续时间为tff, %采样周期为1/f,U为所产生的信号,T为时间; %创建坐标轴al;以T为x轴,U为y轴画波形,y轴范围。。。 Ma=['电路类型[请选择]|电路类型:积分型|电路类型:微分型']; %窗口2电路类型的选择数组; a2=axes('position',[0.5,0.6,0.3,0.3]);box on; %创建坐标轴2; set(gca,'xtick',[]);set(gca,'ytick',[]); %去掉坐标轴的刻度 po2=uicontrol(gcf,'style','popupmenu',... %在第二个窗口的位置创建一个下拉菜单,同1 'unit','normalized','position',[0.55,0.9,0.2,0.08],... 'string',Ma,'fontsize',12,'callback',[]); set(po2,'callback',['KQ=get(po2,''Value'');axes(a2);',... %po2属性设置,KQ为选择的电路类型,'if KQ==1;cla;elseif KQ==2;',... %1则清除坐标轴,2画积分电路,3画微分电路 'plot(0.14+0.8i+0.02*exp(i*[0:.02:8]),''k'');hold on;',... 'plot(0.14+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.8i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot([0.16,0.82],[0.2,0.2],''k'');',... 'plot([0.16,0.3],[0.8,0.8],''k'');',... 'plot([3,4,4,3,3]/10,[76,76,84,84,76]/100,''k'');',... 'plot([0.4,0.82],[0.8,0.8],''k'');',... 'plot([0.6,0.6],[0.8,0.53],''k'');',... 'plot([0.6,0.6],[0.2,0.48],''k'');',... 'plot([0.55,0.65],[0.53,0.53],''k'');',... 'plot([0.55,0.65],[0.48,0.48],''k'');',... 'text(0.33,0.7,''R'');',...

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

真空中的静电场(电势)

图1-1 班号: 姓名: 学号: 成绩: 2.真空中的静电场2(电场与电势) 一、选择题 1. 关于静电场中某点电势值的正负,下列说法正确的是:[ ] A. 电势值的正负取决于置于该点的试探电荷的正负; B. 电势值的正负取决于电场力对试探电荷做功的正负; C. 电势值的正负取决于电势零点的选取 ; D. 电势值的正负取决于产生电场的电荷的正负。 2.在下列关于静电场的表述中,正确的是:[ ] A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动; B .带负电的点电荷,在电场中从a 点移到b 点,若电场力作正功,则a 、b 两点的电势关系为U a >U b ; C .由点电荷电势公式r q U 0π4ε= 可知,当r →0时,则U →∞; D .在点电荷的电场中,离场源电荷越远的点,其电势越低; E .在点电荷的电场中,离场源电荷越远的点,电场强度的量值就越小。 3. 如图1-1所示,图中实线为某电场中的电场线,虚线表示等势面,a 、b 、c 为电场中的三个点,由图可以看出:[ ] A .c b a E E E >>,c b a U U U >>; B .c b a E E E <<,c b a U U U <<; C .c b a E E E >>,c b a U U U <<; D .c b a E E E <<,c b a U U U >>。 4. 在静电场中,若电场线为均匀分布的平行直线,则在该电场区域内电场线方向上任意两点的电场强度E 和电势U 相比较:[ ] A. E 相同,U 不同; B. E 不同,U 相同; C. E 不同,U 不同; D. E 相同,U 相同。

真空中的静电场(电势)

图1-1 班号: : 学号: 成绩: 2.真空中的静电场2(电场与电势) 一、选择题 1. 关于静电场中某点电势值的正负,下列说确的是:[ ] A. 电势值的正负取决于置于该点的试探电荷的正负; B. 电势值的正负取决于电场力对试探电荷做功的正负; C. 电势值的正负取决于电势零点的选取 ; D. 电势值的正负取决于产生电场的电荷的正负。 2.在下列关于静电场的表述中,正确的是:[ ] A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动; B .带负电的点电荷,在电场中从a 点移到b 点,若电场力作正功,则a 、b 两点的电势关系为U a >U b ; C .由点电荷电势公式r q U 0π4ε= 可知,当r →0时,则U →∞; D .在点电荷的电场中,离场源电荷越远的点,其电势越低; E .在点电荷的电场中,离场源电荷越远的点,电场强度的量值就越小。 3. 如图1-1所示,图中实线为某电场中的电场线,虚线表示等势面,a 、b 、c 为电场中的三个点,由图可以看出:[ ] A .c b a E E E >>,c b a U U U >>; B .c b a E E E <<,c b a U U U <<; C .c b a E E E >>,c b a U U U <<; D .c b a E E E <<,c b a U U U >>。 4. 在静电场中,若电场线为均匀分布的平行直线,则在该电场区域电场线方向上任意两点的电场强度E 和电势U 相比较:[ ] A. E 相同,U 不同; B. E 不同,U 相同; C. E 不同,U 不同; D. E 相同,U 相同。

电势能电势电势差知识要点归纳

电势能电势电势差 一.静电力做功的特点 在任何电场中,静电力移动电荷所做的功,只与初末位置及移送电荷的电荷量有关,而与电 荷运动路径无关。 带电体电场静电力电势能变化 相似对比: 地球重力场重力重力势能变化 二.电势能:电荷在电场中具有势能,这种势能叫做电势能。 1.系统性:电势能属于电荷与电场构成系统所具有的能量。 2.相对性:与零势能位置的选取有关。 三.静电力做功与电势能变化的关系: 1.静电力做正功,电荷的电势能减小,电场力做多少正功,电势能就减少多少。 2.静电力做负功,电荷的电势能增加,克服电场力做多少正功,电势能就增加多少。 W AB=E PA-E PB= -ΔE P 四.电势能大小的确定: 电荷在某点的电势能等于静电力把它从该点移送到零势能位置时静电力所做的功。(一般选取 无穷远或大地为零势能位置) 五.电势 1.定义:电荷在电场中某一点的电势能与它的电荷量的比值,叫做这一点的电势。 2.定义式: q E p = ? 3.单位:伏特(V) 1V=1J/C 4.量性:标量,只有大小,没有方向,但有正负 5.物理意义:1)在数值上等于单位正电荷从电场中某点移送到零势能位置时静电力所做的功; 2)在数值上等于单位正电荷在某点的电势能。 说明:1)?可用E P/q计算,但?与E P和q无关,?与电场有关。 2)应用 q E p = ?计算时,各量带正负号。 3)当ε=0时,?=0;?>0表示该点的电势比零电势高;?<0表示该点的电势比零电势低。 4)零电势位置的选取具有相对性,因此电势的值与零电势的位置选取有关(一般将大地或 无穷远处的电势默认为零) 5)电势变化的规律:顺着电场线的方向电势降低 6)? q E p =,? 和 与q E p 有关,由q和?共同决定 六.电势差: 1.定义1:电场中两点电势的差值叫做电势差,也叫电压。 B A AB U? ?- = 定义2:电荷在电场中由一点A移动到另一点B,电场力所做的功W AB与电荷量q的比值叫 做AB两点间的电势差。 q W U AB AB = 2.单位:伏特(V) 1V=1J/C 3.量性:标量,但有正负之分 说明:1)无关 和 与 但 计算 可用q W U , q W U AB AB AB AB 2) B A AB B A B A AB ;U UAB U? ? ? ? ? ?< < = = > >表示 表示 表示0 ; 3)?的大小与零电势位置有关,但U AB与零电势位置无关 4)应用 q W U AB AB =时,各量要带正负号 5) BA AB U U- = 七.等势面 1.定义:电场中电势相等的点构成的面 2.等势面的特点: ①在同一等势面上各点电势相等,所以在同一等势面上移动电荷,电场力不做功 ②电场线跟等势面一定垂直,并且由电势高的等势面指向电势低的等势面。 ③任意两个等势面不相交,不相切 ④等势面是为描述电场而假想的面,不是电场中实际存在的面 ⑤等差等势面密集的地方,电场线也密集(电场强度大);等差等势面稀疏的地方,电场线 也稀疏(电场强度小) 3.等势面的作用:1)由等势面描绘电场线,判断电场中电势的高低。 2)等势面可描述电场能的性质,同一电荷在同一等势面上不同点具有相 同的电势能。 3)在两个等势面间移动同一个电荷,电场力做功相等。

matlab电路仿真

Matlab电路仿真软件包-simpowersystems 1.入门 1.1.SymPowerSystem是什么 1.1.1.介绍 在Matlab提供的simulink仿真环境下,与其他建模产品结合在一起,用于对电子、机械系统进行建模。要学会使用SymPowerSystem,应首先学会使用Simulink仿真。1.1.2.设计中的仿真的作用(略) 1.1.3.SymPowerSystem仿真库 你可迅速将SymPowerSystem投入使用。该库包含了许多典型的功率设备模型,例如,变压器、导线、机械、能源电子等。这些仿真模型来源于产品手册,基于工程实际。 SymPowerSystem包含一个主要的库:powerlib。powerlib库显示了所有包含的模块和模块名称。 1.1.4.SymPowerSystem中的非线性模块(略) 1.1.5.仿真时需要的环境: Maltab 和Simulink

1.2.如何使用该指南 1.2.1.对于新用户 将学会如下知识和技能: (1)使用该库创建和仿真电子电路模型 (2)将一个电子电路于simulink模块连接在一起 (3)分析电子电路的稳定状态和频率响应 (4)离散化模型,以便加快仿真速度 (5)使用矢量图仿真方法 (6)构建自定义的非线性仿真模型 1.2.2.对于经验丰富的模块用户(略) 1.2.3.所有用户(略) 1.3.创建和仿真简单的电路 1.3.1.介绍 SymPowerSystem允许你对包含线性或非线性的电子电路进行建模和仿真。在本章节中,您将学习到: (1)浏览SymPowerSystems的powerlib库 (2)如何利用SymPowerSystem创建一个简单的电路 (3)如何将电路与simulink模块互联。 下述电路是即将创建的电路:

MATLAB电路仿真实例

题14.14 图(a)所示电路,已知 V )2cos(15S t u =二端口网络阻抗参数矩阵 Ω?? ????=46j 6j 10Z 求ab 端戴维南等效电路并计算电压o u 。 u -+o u 图题14.14 (一)手动求解: 将网络N 用T 型电路等效,如图(b)所示 S U +-o U 等效阻抗 Ω=-+-?+ -=4.6j615j6j6)15(6j 6j 4i Z 开路电压 V 2j302 15j6j6105j6OC =?∠?+-+=U V 1482 18.3j46.42j3j4j4Z j4OC o ?∠=+?=?+=U U i

所以 )1482cos(18.3o ?+=t u V (二)Matlab 仿真: ⒈分析:本次仿真需输入各阻抗Zl 、Z1、Z2、Z3、Z4以及激励源Us 的参数值,仿真结果需输出开路电压Uoc 、等效阻抗Zi 以及电感两端电压U0的幅值和相位信息,并绘制Uoc ,U0的值随时间变化的波形曲线。其中各元件与原图的对应关系如下图所示: ⒉编辑M 文件的源程序如下: clear %清空自定义变量 z1=4-6j;z2=6j;z3=10-6j;z4=5;us=15*exp(j*0);zl=4j;%输入各元件参数 zi=z1+(z2*(z3+z4)/(z2+z3+z4));%等效阻抗zi 的计算表达式uoc=us*z2/(z2+z3+z4);%开路电压uoc 的计算表达式u0=zl/(zi+zl)*uoc;%电感两端电压uo 的计算表达式disp('The magnitude of zi is'); %在屏幕上显示“The magnitude of zi is ”disp(abs(zi)) %显示等效阻抗zi 的模disp('The phase of zi is'); %在屏幕上显示“The phase of zi is ”disp(angle(zi)*180/pi)%显示等效阻抗zi 的辐角 disp('The magnitude of uoc is'); %在屏幕上显示“The magnitude of uoc is ” disp(abs(uoc))%显示开路电压uoc 的模

真空中的静电场(电势)

图1-1 班号: 姓名: 学号: 成绩: 2.真空中的静电场2(电场与电势) 一、选择题 1. 关于静电场中某点电势值的正负,下列说法正确的是:[ ] A. 电势值的正负取决于置于该点的试探电荷的正负; B. 电势值的正负取决于电场力对试探电荷做功的正负; C. 电势值的正负取决于电势零点的选取 ; D. 电势值的正负取决于产生电场的电荷的正负。 2.在下列关于静电场的表述中,正确的是:[ ] A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动; B .带负电的点电荷,在电场中从a 点移到b 点,若电场力作正功,则a 、b 两点的电势关系为U a >U b ; C .由点电荷电势公式r q U 0π4ε= 可知,当r →0时,则U →∞; D .在点电荷的电场中,离场源电荷越远的点,其电势越低; E .在点电荷的电场中,离场源电荷越远的点,电场强度的量值就越小。 3. 如图1-1所示,图中实线为某电场中的电场线,虚线表示等势面,a 、b 、c 为电场中的三个点,由图可以看出:[ ] A .c b a E E E >>,c b a U U U >>; B .c b a E E E <<,c b a U U U <<; C .c b a E E E >>,c b a U U U <<; D .c b a E E E <<,c b a U U U >>。 4. 在静电场中,若电场线为均匀分布的平行直线,则在该电场区域内电场线方向上任意两点的电场强度E 和电势U 相比较:[ ] A. E 相同,U 不同; B. E 不同,U 相同;

图1-2 -2σ x +σ 图1-3 C. E 不同,U 不同; D. E 相同,U 相同。 5.空间某区域静电场的电场线分布如图1-2所示,现将一带负电的点电荷由a 点经任意路径移到b 点,则在下列说法中,正确的是:[ ] A .电场强度b a E E >,电场力作正功; B .电势b a U U <,电场力作负功; C .电势能b a W W <,电场力作正功; D .电势能b a W W <,电场力作负功。 6.在下列有关静电场的表述中,正确的是:[ ] A .电场强度E = 0的点,电势也一定为零; B .同一条电场线上各点的电势不可能相等; C .在电场强度处处相等的空间内,电势也处处相等; D .在电势处处相等的一个三维区域内地方,电场强度也都处处相等。 7.半径为1R 、2R 的同心薄球面上,分别均匀带电1q 和2q ,其中2R 为外球面半径,2q 为外球面所带电荷量,设两球面间的电势差为U ?,则:[ ] A .U ?随1q 的增减而增减; B .U ?随2q 的增减而增减; C .U ?不随1q 的增减而改变; D .U ?不随2q 的增减而改变。 8.如图1-3所示,A 、B 是真空中两块相互平行的无限大均匀带电薄板,其电荷面密度分别为σ+和σ2-,若选A 板为零电势面,并取x 正方向向右,则图中a 点的电势为:[ ] A . 023εσd ; B .0 2εσd -; C .0 23εσd -; D .0。 9.两块分别均匀带电+q 和―q 的平行平板,间距为d ,板面积均为S ,平板厚度忽略不计,若两板的线度远大于d ,则两板间的相互作用力F 与两板间的电压U 的关系是:[ ] A .U F ∝; B .U F 1 ∝ ;

matlab电路仿真

SHANDONG UNIVERSITY OF TECHNOLOGY 数学 软件结业 论文 题目: 电路仿真方法研究 学 院: 电气与电子工程学院 专 业: 电气工程及其自动化 学生姓名: 武奥 学 号: 14110302044 指导教师: 周世祥 2015年11 月

目录 摘要 (Ⅰ) 目录 (Ⅲ) 第一章引言 (1) 1.1课题的背景和意义 (1) 1.2深度学习的前世今生 (2) 第二章自编码器模型构建 (4) 2.1入门 (4) 1.1. 2.2 SymPowerSyste是什么5 2.引言 2.1.1.1 课题的背景和意义 随着计算机技术和互联网的发展,人类开始步入大数据时代,我们需要从海量的数据中找到自己感兴趣或者对自己有用的信息,这就要求计算机能在短时间内检索出满意的结果。伴随着搜索引擎的发展我们在文字检索方面已经取得了值得骄傲的成就,但是在更加直观,更加方便的图片检索方面仍然有待发展。试想一下,如果我们能通过图片检索到自己想要的信息我们的生活将会更加便利,我们只要对着自己感兴趣的东西扫一扫就能获得我们需要的信息。 要实现上述目标就要求计算机能像人的视觉系统一样能识别图片、对图片进行分类处理。然而,每幅图片的信息量就很大,要从海量的图片中进行识别处理数据量可想而知,而且并不是图片中的所有信息都是有用的。 -III-

这就需要我们对图片进行降维处理和特征提取。虽然已有的降维方法在理论支持上很成熟,但是基于线性的方法并不适合图像识别而且实际效果也不尽人意。深度学习算法是2006年提出的一种新的方法,虽然缺乏理论支持但在实际应用中取得良好效果。 深度学习算法在计算机视觉、图像识别方面已经开始普遍使用,相对于以前的方法准确率大大提高。除了在图像识别领域,深度学习在语音识别、自然语言处理等方面也有突破性进展:2012年11月,在中国天津举行的“21世纪的计算机大会”上微软公开演示了一个全自动同声传译系统,微软首席研究员的英文演讲被后台的计算机自动识别、翻译、合成并转换成和演讲者音色相近的中文发音,这背后的关键技术就是深度学习算法。深度学习研究的日益成熟和完美应用一定可以给我们的生活带来极大的便利和智能化。 -IV-

第一章静电场第4节电势能和电势(详细答案)

第4节 电势能和电势 1.静电力做功与电势能变化的关系 静电力做正功,电荷的电势能一定减少,静电力做负功时,电荷的电势能一定增加,静电力做的功是电荷电势能变化的量度,若电荷在电场中从A 点移动到B 点,则W AB =E PA -E PB . 2.电荷在电场中某点的电势能,等于把它从该点移动到零势能位置时电场力做的功,若规定电荷在B 点的电势能为零,E PB =0则E PA =W AB . 3.电势反映了电场的能的性质.电势与电势能的关系是:φ=E P q .电势的大小仅由电场本身决定,与电荷q 的大小、电性无关.电势是标量,但有正负之分,电势降落最快的方向就是电场线的方向. 4.电场中电势相等的各点构成的面叫等势面,等势面的性质有: (1)在等势面上移动电荷,电场力不做功,说明电场力方向与电荷移动方向垂直,即等势面必定与电场线垂直. (2)沿着电场线的方向,电势降低,显然,电场线总是由电势高的等势面指向电势低的等势面. 5.下列说法正确的是( ) A .电荷从电场中的A 点运动到了 B 点,路径不同,电场力做功的大小就可能不同 B .电荷从电场中的某点开始出发,运动一段时间后,又回到了该点,则说明电场力做功为零 C .正电荷沿着电场线运动,电场力对正电荷做正功,负电荷逆着电场线运动,电场力对负电荷做正功 D .电荷在电场中运动,因为电场力可能对电荷做功,所以能量守恒定律在电场中并不成立 答案 BC 解析 电场力做的功和电荷的运动路径无关,所以选项A 错误;电场力做功只和电荷的初末位置有关,所以电荷从某点出发又回到了该点,电场力做功为零,B 正确;正电荷沿电场线的方向运动,则正电荷受到的电场力和电荷的位移方向相同,故电场力对正电荷做正功,同理,负电荷逆着电场线的方向运动,电场力对负电荷做正功,C 正确;电荷在电场中运动,虽然有电场力做功,但是电荷的电势能和其他形式的能间的转化满足能量守恒定律,D 错. 6.外力克服电场力对电荷做功时( ) A .电荷的动能一定增大 B .电荷的动能一定减小 C .电荷一定从电势能大处移到电势能小处 D .电荷一定从电势能小处移到电势能大处 答案 D 7.如图1所示,Q 是带正电的点电荷,P 1、P 2为其电场中的两点.若E 1、E 2为P 1、P 2两点的电场强度的大小,φ1、φ2为P 1、P 2两点的电势,则( ) 图1 A .E 1>E 2,φ1>φ2 B .E 1>E 2,φ1<φ2 C .E 1φ2 D . E 1

Matlab电气仿真

大连海事大学 题目:电气系统的计算机辅助设计 姓名: 学号: 学院:轮机工程学院 专业班级:电气工程及其自动化(4)班 指导老师:郑忠玖王宁 设计任务(一) 一、实验目的: 1、掌握Matlab/Simulink 电气仿真的基本步骤; 2、掌握Matlab/Simulink中SimPowerSystems 工具箱的基本建模方法; 3、利用Matlab/Simulink 在整流电路方面的仿真设计。 二、实验原理: 220V 50HZ交流电源经变压器降压,输出交流24V 50HZ就是交流电。经单相桥式整流电路加LC滤波电路后,由于电感与电容的作用,输出电压与电流无法突变,使输出电压波形在一定的电压附近形成正弦脉动。

三、实验内容: 1、单相桥式整流 (1)设计要求: a)单相桥式整流加LC滤波电路,电源为220V,50Hz; b)整流电路输入为24V; c)负载为10Ω阻性负载; d)滤波电感L=100mH,滤波电容C=200uF; (2)设计电路图: (3)仿真结果波形图:

time v o l t a g e /c u r r e n t 单项桥式整流加LC 滤波电路VT3输出波形 00.0050.010.0150.020.025 0.030.0350.040.0450.05-35-30 -25 -20 -15-10-5 5 time v o l t a g e /c u r r e n t 单项桥式整流加LC 滤波电路VT4输出 (4) 仿真结果分析: 1. 在变压器输出正弦波的正半周期,二极管VT1与二极管VT4导通, 二极管VT2与二极管VT3被施以反压而截止; 在变压器输出正弦波 time v o l t a g e 单相桥式整流加LC 滤波电路输出波形

区分电势,电势能,电场线,电场强度

一、电势能 1.定义:电荷在电场中某点的电势能,等于静电力把它从该点移动到零电势能位置时电场力所有做的功。 2.电势能的单位:焦耳,符号为J。 3.电势能零点的选取,若要确定电荷在电场中的电势能,应先确定电场中电势能的零位置。零势能处可任意选择,常取无限远处或大地的电势能为零点。 4.电荷在电场中某点具有的电势能等于将该点电荷由该点移到电势零点电场力所做的功。电势能反映电场和处于其中的电荷共同具有的能量。 5.静电力做功与电势能变化的关系:电场力做多少功,电势能就变化多少。 6. 如何比较电荷在电场中A、B两点具有的电势能高低: 将电荷由A点移到B点根据电场力做功情况判断,电场力做正功,电势能减小,电荷在A点电势能大于在B点的电势能,反之电场力做负功,电势能增加,电荷在A点的电势能小于在B点的电势能。二、电势

1.定义:在电场中,某点电荷的电势能跟它所带的电荷量之比叫做这点的电势。电势是从能量角度上描述电场的物理量(电场强度则是从力的角度描述电场) 。 2.电势符号是φ,单位是伏特,符号:V。 3.电势只有大小,没有方向,是标量。 4.物理意义: (1)由电场中某点位置决定,反映电场能的性质。 (2)与检验电荷电量、电性无关。 (3)表示将1C正电荷从参考点移到零势点电场力做的功。 5.电势是一个相对量,其参考点是可以任意选取的。在具体应用中,常取标准位置的电势为零。电势只不过是和标准位置相比较得出的结果。我们一般取地球时,常取无限远处为标准位置。 6.电势的特点:不管是正电荷的电场线还是负电荷的电场线,只要顺着电场线的方向总是电势减小的方向,逆着电场线总是电势增大的方向。 7.等势面:电场中电势相等的点构成的面。

真空中的静电场(电势)

班号: 姓名: 学号: 成绩: 2.真空中的静电场2(电场与电势) 一、选择题 1. 关于静电场中某点电势值的正负,下列说法正确的是:[ ] A. 电势值的正负取决于置于该点的试探电荷的正负; B. 电势值的正负取决于电场力对试探电荷做功的正负; C. 电势值的正负取决于电势零点的选取 ; D. 电势值的正负取决于产生电场的电荷的正负。 2.在下列关于静电场的表述中,正确的是:[ ] A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动; B .带负电的点电荷,在电场中从a 点移到b 点,若电场力作正功,则a 、b 两点的电势关系为U a >U b ; C .由点电荷电势公式r q U 0π4ε= 可知,当r →0时,则U →∞; D .在点电荷的电场中,离场源电荷越远的点,其电势越低; E .在点电荷的电场中,离场源电荷越远的点,电场强度的量值就越小。 3. 如图1-1所示,图中实线为某电场中的电场线,虚线表示等势面,a 、b 、c 为电场中的三个点,由图可以看出:[ ] A .c b a E E E >>,c b a U U U >>;

图1-2 B .c b a E E E <<,c b a U U U <<; C .c b a E E E >>,c b a U U U <<; D .c b a E E E <<,c b a U U U >>。 4. 在静电场中,若电场线为均匀分布的平行直线,则在该电场区域内电场线方向上任意两点的电场强度E 和电势U 相比较:[ ] A. E 相同,U 不同; B. E 不同,U 相同; C. E 不同,U 不同; D. E 相同,U 相同。 5.空间某区域静电场的电场线分布如图1-2所示,现将一带负电的点电荷由a 点经任意路径移到b 点,则在下列说法中,正确的是:[ ] A .电场强度b a E E >,电场力作正功; B .电势b a U U <,电场力作负功; C .电势能b a W W <,电场力作正功; D .电势能b a W W <,电场力作负功。 6.在下列有关静电场的表述中,正确的是:[ ] A .电场强度E = 0的点,电势也一定为零; B .同一条电场线上各点的电势不可能相等; C .在电场强度处处相等的空间内,电势也处处相等; D .在电势处处相等的一个三维区域内地方,电场强度也都处处相等。 7.半径为1R 、2R 的同心薄球面上,分别均匀带电1q 和2q ,其中2R 为外球面半径,2q 为外球面所带电荷量,设两球面间的电势差为U ?,则:[ ] A .U ?随1q 的增减而增减; B .U ?随2q 的增减而增减;

MATLAB电路仿真实例

题14.14 图(a)所示电路,已知 二端口网络阻抗参数矩阵 求ab 端戴维南等效电路并计算电压。 (一) 手动求解: 将网络N 用T 型电路等效,如图(b)所示 等效阻抗 开路电压 V )2cos(15S t u =Ω??????=46j 6j 10Z o u u -+o u (a)图题14.14 S U +-o U Ω=-+-?+-=4.6j615j6j6)15(6j 6j 4i Z V 2j30215j6j6105j6OC =?∠?+-+=U V 148218.3j46.42j3j4j4Z j4OC o ?∠=+?=?+=U U i

所以 V (二) Matlab 仿真: ⒈分析:本次仿真需输入各阻抗Zl 、Z1、Z2、Z3、Z4以及激励源Us 的参数值,仿真结果需输出开路电压Uoc 、等效阻抗Zi 以及电感两端电压U0的幅值和相位信息,并绘制Uoc ,U0的值随时间变化的波形曲线。 其中各元件与原图的对应关系如下图所示: ⒉编辑M 文件的源程序如下: clear %清空自定义变量 z1=4-6j;z2=6j;z3=10-6j;z4=5;us=15*exp(j*0);zl=4j; %输入各元件参数 zi=z1+(z2*(z3+z4)/(z2+z3+z4)); %等效阻抗zi 的计算表达式 uoc=us*z2/(z2+z3+z4); %开路电压uoc 的计算表达式 u0=zl/(zi+zl)*uoc; %电感两端电压uo 的计算表达式 disp('The magnitude of zi is'); %在屏幕上显示“The magnitude of zi is ” disp(abs(zi)) %显示等效阻抗zi 的模 disp('The phase of zi is'); %在屏幕上显示“The phase of zi is ” disp(angle(zi)*180/pi) %显示等效阻抗zi 的辐角 disp('The magnitude of uoc is'); %在屏幕上显示“The magnitude of uoc is ” disp(abs(uoc)) %显示开路电压uoc 的模 disp('The phase of uoc is'); %在屏幕上显示“The magnitude of uoc is ” ) 1482cos(18.3o ?+=t u

静电场-电场强度与电势的关系电场中的功能关系

电场强度与电势的关系电场中的功能关系 要点一 电场强度与电势的关系 即学即用 1.如图所示,ABCD 是匀强电场中一正方形的四个顶点,已知A 、B 、C 三点的电势分别为?A =15 V, ?B =3 V, ?C =-3 V,由此可得D 点电势?D = . 答案 9 V 要点二 电场中的功能关系 即学即用 2.(2009·延吉模拟)如图所示,长为L ,倾角为θ的光滑绝缘斜面处于电场中,一带电荷量为+q ,质量为m 的小球,以初速度v 0由斜面底端的A 点开始沿斜面上 滑 , 到 达 斜 面 顶 端 的 速 度 仍 为 v 0, 则 ( ) A.小球在B 点的电势能一定小于小球在A 点的电势能 B.A 、B 两点的电势差一定为q mgL C.若电场是匀强电场,则该电场的场强可能是q mg D.若电场是匀强电场,则该电场的场强的最大值一定是q mg 答案 AC 题型1 圆周运动、动能定理相关知识与电场相结合问题 【例1】如图所示,在方向竖直向下的匀强电场中,一绝缘轻细线一端固定于O 点, 另一端系一带正电的小球在竖直平面内做圆周运动.小球的电荷量为q ,质量为m ,绝缘细线长为L ,电场的场强为E .若带电小球恰好能通过最高点A ,则在A 点时小球的速度v 1为多大?小球运动到最低点B 时的速度v 2为多大?运动到B 点时细线对小球的拉力为多大? 答案 L g m qE )(+ L g m qE )( 5+ 6(mg +qE ) 题型2 用能量守恒观点研究电场中的带电体

【例2】在一个水平面上建立x轴,过原点O垂直于x轴平面的右侧空间有一 匀强电场,场强大小E=6×105 N/C,方向与x轴正方向相同.在O处放一个 电荷量q=-5×10-6 C,质量m=10 g的绝缘物块,物块与水平面间的动摩擦因数 =0.2,沿x轴正方向给物块一个初速度v0=2 m/s,如图所示.求物块最终停止时的位置及整个过程运动的路程.(g取10 m/s2) 答案距O点左方0.2 m处 1 m 题型3 电学中的力学方法 【例3】如图所示,矩形区域MNPQ内有水平向右的匀强电场,虚线框外为真空 区域;半径为R、内壁光滑、内径很小的绝缘半圆管ADB固定在竖直平面内, 直径AB垂直于水平虚线MN,圆心O恰在MN的中点,半圆管的一半处于电 场中.一质量为m,可视为质点的带正电小球从半圆管的A点由静止开始滑入 管内,小球从B点穿出后,能够通过B点正下方的C点.重力加速度为g,小球在C点处的加速度大小为5g/3.求: (1)小球在B点时,对半圆轨道的压力大小. (2)虚线框MNPQ的高度和宽度满足的条件. 答案 (1)7mg/3 (2)H>5R/2 L>2R 1.如图所示,带正电的点电荷固定于Q点,电子在库仑力作用下,做以Q为焦点的 椭圆运动.M、P、N为椭圆上的三点,P点是轨道上离Q最近的点.电子在从M 经P到达N点的过程中 ( ) A.速率先增大后减小 B.速率先减小后增大 C.电势能先减小后增大 D.电势能先增大后减小 答案AC

相关文档
最新文档