振动噪声领域的专业英语词汇

振动噪声领域的专业英语词汇
振动噪声领域的专业英语词汇

【转载】振动噪声领域的专业英语词汇

2007-03-20 00:15

1 振动信号的时域、频域描述

振动过程 (Vibration Process)

简谐振动 (Harmonic Vibration)

周期振动 (Periodic Vibration)

准周期振动 (Ouasi-periodic Vibration)

瞬态过程 (Transient Process)

随机振动过程 (Random Vibration Process)

各态历经过程 (Ergodic Process)

确定*过程 (Deterministic Process)

振幅 (Amplitude)

相位 (Phase)

初相位 (Initial Phase)

频率 (Frequency)

角频率 (Angular Frequency)

周期 (Period)

复数振动 (Complex Vibration)

复数振幅 (Complex Amplitude)

峰值 (Peak-value)

平均绝对值 (Average Absolute Value)

有效值 (Effective Value,RMS Value)

均值 (Mean Value,Average Value)

傅里叶级数 (FS,Fourier Series)

傅里叶变换 (FT,Fourier Transform)

傅里叶逆变换 (IFT,Inverse Fourier Transform) 离散谱 (Discrete Spectrum)

连续谱 (Continuous Spectrum)

傅里叶谱 (Fourier Spectrum)

线*谱 (Linear Spectrum)

幅值谱 (Amplitude Spectrum)

相位谱 (Phase Spectrum)

均方值 (Mean Square Value)

方差 (Variance)

协方差 (Covariance)

自协方差函数 (Auto-covariance Function)

互协方差函数 (Cross-covariance Function)

自相关函数 (Auto-correlation Function)

互相关函数 (Cross-correlation Function)

标准偏差 (Standard Deviation)

相对标准偏差 (Relative Standard Deviation)

概率 (Probability)

概率分布 (Probability Distribution)

高斯概率分布 (Gaussian Probability Distribution) 概率密度 (Probability Density)

集合平均 (Ensemble Average)

时间平均 (Time Average)

功率谱密度 (PSD,Power Spectrum Density)

自功率谱密度 (Auto-spectral Density)

互功率谱密度 (Cross-spectral Density)

均方根谱密度 (RMS Spectral Density)

能量谱密度 (ESD,Energy Spectrum Density)

相干函数 (Coherence Function)

帕斯瓦尔定理 (Parseval''s Theorem)

维纳,辛钦公式 (Wiener-Khinchin Formula)

2 振动系统的固有特*、激励与响应

振动系统 (Vibration System)

激励 (Excitation)

响应 (Response)

单自由度系统 (Single Degree-Of-Freedom System) 多自由度系统 (Multi-Degree-Of- Freedom System) 离散化系统 (Discrete System)

连续体系统 (Continuous System)

刚度系数 (Stiffness Coefficient)

自由振动 (Free Vibration)

自由响应 (Free Response)

强迫振动 (Forced Vibration)

强迫响应 (Forced Response)

初始条件 (Initial Condition)

固有频率 (Natural Frequency)

阻尼比 (Damping Ratio)

衰减指数 (Damping Exponent)

阻尼固有频率 (Damped Natural Frequency)

对数减幅系数 (Logarithmic Decrement)

主频率 (Principal Frequency)

无阻尼模态频率 (Undamped Modal Frequency)

模态 (Mode)

主振动 (Principal Vibration)

振型 (Mode Shape)

振型矢量 (Vector Of Mode Shape)

模态矢量 (Modal Vector)

正交* (Orthogonality)

展开定理 (Expansion Theorem)

主质量 (Principal Mass)

模态质量 (Modal Mass)

主刚度 (Principal Stiffness)

模态刚度 (Modal Stiffness)

正则化 (Normalization)

振型矩阵 (Matrix Of Modal Shape)

模态矩阵 (Modal Matrix)

主坐标 (Principal Coordinates)

模态坐标 (Modal Coordinates)

模态分析 (Modal Analysis)

模态阻尼比 (Modal Damping Ratio)

频响函数 (Frequency Response Function)

幅频特* (Amplitude-frequency Characteristics)

相频特* (Phase frequency Characteristics)

共振 (Resonance)

半功率点 (Half power Points)

波德图(Bodé Plot)

动力放大系数 (Dynamical Magnification Factor)

单位脉冲 (Unit Impulse)

冲激响应函数 (Impulse Response Function)

杜哈美积分(Duhamel’s Integral)

卷积积分 (Convolution Integral)

卷积定理 (Convolution Theorem)

特征矩阵 (Characteristic Matrix)

阻抗矩阵 (Impedance Matrix)

频响函数矩阵 (Matrix Of Frequency Response Function) 导纳矩阵 (Mobility Matrix)

冲击响应谱 (Shock Response Spectrum)

冲击激励 (Shock Excitation)

冲击响应 (Shock Response)

冲击初始响应谱 (Initial Shock Response Spectrum)

冲击剩余响应谱 (Residual Shock Response Spectrum)

冲击最大响应谱 (Maximum Shock Response Spectrum)

冲击响应谱分析 (Shock Response Spectrum Analysis)

3 模态试验分析

模态试验 (Modal Testing)

机械阻抗 (Mechanical Impedance)

位移阻抗 (Displacement Impedance)

速度阻抗 (Velocity Impedance)

加速度阻抗 (Acceleration Impedance)

机械导纳 (Mechanical Mobility)

位移导纳 (Displacement Mobility)

速度导纳 (Velocity Mobility)

加速度导纳 (Acceleration Mobility)

驱动点导纳 (Driving Point Mobility)

跨点导纳 (Cross Mobility)

传递函数 (Transfer Function)

拉普拉斯变换 (Laplace Transform)

传递函数矩阵 (Matrix Of Transfer Function)

频响函数 (FRF,Frequency Response Function)

频响函数矩阵 (Matrix Of FRF)

实模态 (Normal Mode)

复模态 (Complex Mode)

模态参数 (Modal Parameter)

模态频率 (Modal Frequency)

模态阻尼比 (Modal Damping Ratio)

模态振型 (Modal Shape)

模态质量 (Modal Mass)

模态刚度 (Modal Stiffness)

模态阻力系数 (Modal Damping Coefficient)

模态阻抗 (Modal Impedance)

模态导纳 (Modal Mobility)

模态损耗因子 (Modal Loss Factor)

比例粘*阻尼 (Proportional Viscous Damping)

非比例粘*阻尼 (Non-proportional Viscous Damping)

结构阻尼 (Structural Damping,Hysteretic Damping) 复频率 (Complex Frequency)

复振型 (Complex Modal Shape)

留数 (Residue)

极点 (Pole)

零点 (Zero)

复留数 (Complex Residue)

随机激励 (Random Excitation)

伪随机激励 (Pseudo Random Excitation)

猝发随机激励 (Burst Random Excitation)

稳态正弦激励 (Steady State Sine Excitation)

正弦扫描激励 (Sweeping Sine Excitation)

锤击激励 (Impact Excitation)

频响函数的H1 估计 (FRF Estimate by H1)

频响函数的H2 估计 (FRF Estimate by H2)

频响函数的H3 估计 (FRF Estimate by H3)

单模态曲线拟合法 (Single-mode Curve Fitting Method) 多模态曲线拟合法 (Multi-mode Curve Fitting Method)

模态圆 (Mode Circle)

剩余模态 (Residual Mode)

幅频峰值法 (Peak Value Method)

实频-虚频峰值法 (Peak Real/Imaginary Method)

圆拟合法 (Circle Fitting Method)

加权最小二乘拟合法 (Weighting Least Squares Fitting method) 复指数拟合法 (Complex Exponential Fitting method)

1.2 振动测试的名词术语

1 传感器测量系统

传感器测量系统 (Transducer Measuring System)

传感器 (Transducer)

振动传感器 (Vibration Transducer)

机械接收 (Mechanical Reception)

机电变换 (Electro-mechanical Conversion)

测量电路 (Measuring Circuit)

惯*式传感器 (Inertial Transducer,Seismic Transducer)

相对式传感器 (Relative Transducer)

电感式传感器 (Inductive Transducer)

应变式传感器 (Strain Gauge Transducer)

电动力传感器 (Electro-dynamic Transducer)

压电式传感器 (Piezoelectric Transducer)

压阻式传感器 (Piezoresistive Transducer)

电涡流式传感器 (Eddy Current Transducer)

伺服式传感器 (Servo Transducer)

灵敏度 (Sensitivity)

复数灵敏度 (Complex Sensitivity)

分辨率 (Resolution)

频率范围 (Frequency Range)

线*范围 (Linear Range)

频率上限 (Upper Limit Frequency)

频率下限 (Lower Limit Frequency)

静态响应 (Static Response)

零频率响应 (Zero Frequency Response)

动态范围 (Dynamic Range)

幅值上限 Upper Limit Amplitude)

幅值下限 (Lower Limit Amplitude)

最大可测振级 (Max.Detectable Vibration Level)

最小可测振级 (Min.Detectable Vibration Level)

信噪比 (S/N Ratio)

振动诺模图 (Vibration Nomogram)

相移 (Phase Shift)

波形畸变 (Wave-shape Distortion)

比例相移 (Proportional Phase Shift)

惯*传感器的稳态响应 (Steady Response Of Inertial Transducer)

惯*传感器的稳击响应 (Shock Response Of Inertial Transducer)

位移计型的频响特* (Frequency Response Characteristics Vibrometer)

加速度计型的频响特* (Frequency Response Characteristics Accelerometer) 幅频特*曲线 (Amplitude-frequency Curve)

相频特*曲线 (Phase-frequency Curve)

固定安装共振频率 (Mounted Resonance Frequency)

安装刚度 (Mounted Stiffness)

有限高频效应 (Effect Of Limited High Frequency)

有限低频效应 (Effect Of Limited Low Frequency)

电动式变换 (Electro-dynamic Conversion)

磁感应强度 (Magnetic Induction, Magnetic Flux Density)

磁通 (Magnetic Flux)

磁隙 (Magnetic Gap)

电磁力 (Electro-magnetic Force)

相对式速度传 (Relative Velocity Transducer)

惯*式速度传感器 (Inertial Velocity Transducer)

速度灵敏度 (Velocity Sensitivity)

电涡流阻尼 (Eddy-current Damping)

无源微(积)分电路 (Passive Differential (Integrate) Circuit)

有源微(积)分电路 (Active Differential (Integrate) Circuit)

运算放大器 (Operational Amplifier)

时间常数 (Time Constant)

比例运算 (Scaling)

积分运算 (Integration)

微分运算 (Differentiation)

高通滤波电路 (High-pass Filter Circuit)

低通滤波电路 (Low-pass Filter Circuit)

截止频率 (Cut-off Frequency)

压电效应 (Piezoelectric Effect)

压电陶瓷 (Piezoelectric Ceramic)

压电常数 (Piezoelectric Constant)

极化 (Polarization)

压电式加速度传感器 (Piezoelectric Acceleration Transducer)

中心压缩式 (Center Compression Accelerometer)

三角剪切式 (Delta Shear Accelerometer)

压电方程 (Piezoelectric Equation)

压电石英 (Piezoelectric Quartz)

电荷等效电路 (Charge Equivalent Circuit)

电压等效电路 (Voltage Equivalent Circuit)

电荷灵敏度 (Charge Sensitivity)

电压灵敏度 (Voltage Sensitivity)

电荷放大器 (Charge Amplifier)

适调放大环节 (Conditional Amplifier Section)

归一化 (Uniformization)

电荷放大器增益 (Gain Of Charge Amplifier)

测量系统灵敏度 (Sensitivity Of Measuring System)

底部应变灵敏度 (Base Strain Sensitivity)

横向灵敏度 (Transverse Sensitivity)

地回路 (Ground Loop)

力传感器 (Force Transducer)

力传感器灵敏度 (Sensitivity Of Force Transducer)

电涡流 (Eddy Current)

前置器 (Proximitor)

间隙-电压曲线 (Voltage vs Gap Curve)

间隙-电压灵敏度 (Voltage vs Gap Sensitivity)

压阻效应 (Piezoresistive Effect)

轴向压阻系数 (Axial Piezoresistive Coefficient)

横向压阻系数 (Transverse Piezoresistive Coefficient)

压阻常数 (Piezoresistive Constant)

单晶硅 (Monocrystalline Silicon)

应变灵敏度 (Strain Sensitivity)

固态压阻式加速度传感器 (Solid State Piezoresistive Accelerometer) 体型压阻式加速度传感器 (Bulk Type Piezoresistive Accelerometer) 力平衡式传感器 (Force Balance Transducer)

电动力常数 (Electro-dynamic Constant)

机电耦合系统 (Electro-mechanical Coupling System)

2 检测仪表、激励设备及校准装置

时间基准信号 (Time Base Signal)

李萨茹图 (Lissojous Curve)

数字频率计 (Digital Frequency Meter)

便携式测振表 (Portable Vibrometer)

有效值电压表 (RMS Value Voltmeter)

峰值电压表 (Peak-value Voltmeter)

平均绝对值检波电路 (Average Absolute Value Detector)

峰值检波电路 (Peak-value Detector)

准有效值检波电路 (Quasi RMS Value Detector)

真有效值检波电路 (True RMS Value Detector)

直流数字电压表 (DVM,DC Digital Voltmeter)

数字式测振表 (Digital Vibrometer)

A/D 转换器 (A/D Converter)

D/A 转换器 (D/A Converter)

相位计 (Phase Meter)

电子记录仪 (Lever Recorder)

光线示波器 (Oscillograph)

振子 (Galvonometer)

磁带记录仪 (Magnetic Tape Recorder)

DR 方式(直接记录式) (Direct Recorder)

FM 方式(频率调制式) (Frequency Modulation)

失真度 (Distortion)

机械式激振器 (Mechanical Exciter)

机械式振动台 (Mechanical Shaker)

离心式激振器 (Centrifugal Exciter)

电动力式振动台 (Electro-dynamic Shaker)

电动力式激振器 (Electro-dynamic Exciter)

液压式振动台 (Hydraulic Shaker)

液压式激振器 (Hydraulic Exciter)

电液放大器 (Electro-hydraulic Amplifier)

磁吸式激振器 (Magnetic Pulling Exciter)

涡流式激振器 (Eddy Current Exciter)

压电激振片 (Piezoelectric Exciting Elements)

冲击力锤 (Impact Hammer)

冲击试验台 (Shock Testing Machine)

激振控制技术 (Excitation Control Technique)

波形再现 (Wave Reproduction)

压缩技术 (Compression Technique)

均衡技术 (Equalization Technique)

交越频率 (Crossover Frequency)

综合技术 (Synthesis Technique)

校准 (Calibration)

分部校准 (Calibration for Components in system)

系统校准 (Calibration for Over-all System)

模拟传感器 (Simulated Transducer)

静态校准 (Static Calibration)

简谐激励校准 (Harmonic Excitation Calibration)

绝对校准 (Absolute Calibration)

相对校准 (Relative Calibration)

比较校准 (Comparison Calibration)

标准振动台 (Standard Vibration Exciter)

读数显微镜法 (Microscope-streak Method)

光栅板法 (Ronchi Ruling Method)

光学干涉条纹计数法 (Optical Interferometer Fringe Counting Method)

光学干涉条纹消失法 (Optical Interferometer Fringe Disappearance Method) 背靠背安装 (Back-to-back Mounting)

互易校准法 (Reciprocity Calibration)

共振梁 (Resonant Bar)

冲击校准 (Impact Exciting Calibration)

摆锤冲击校准 (Ballistic Pendulum Calibration)

落锤冲击校准 (Drop Test Calibration)

振动和冲击标准 (Vibration and Shock Standard)

迈克尔逊干涉仪 (Michelson Interferometer)

摩尔干涉图象 (Moire Fringe)

参考传感器 (Reference Transducer)

3 频率分析及数字信号处理

带通滤波器 (Band-pass Filter)

半功率带宽 (Half-power Bandwidth)

3 dB 带宽 (3 dB Bandwidth)

等效噪声带宽 (Effective Noise Bandwidth)

恒带宽 (Constant Bandwidth)

恒百分比带宽 (Constant Percentage Bandwidth)

1/N 倍频程滤波器 (1/N Octave Filter)

形状因子 (Shape Factor)

截止频率 (Cut-off Frequency)

中心频率 (Centre Frequency)

模拟滤波器 (Analog Filter)

数字滤波器 (Digital Filter)

跟踪滤波器 (Tracking Filter)

外差式频率分析仪 (Heterodyne Frequency Analyzer) 逐级式频率分析仪 (Stepped Frequency Analyzer)

扫描式频率分析仪 (Sweeping Filter Analyzer)

混频器 (Mixer)

RC 平均 (RC Averaging)

平均时间 (Averaging Time)

扫描速度 (Sweeping Speed)

滤波器响应时间 (Filter Response Time)

离散傅里叶变换 (DFT,Discrete Fourier Transform) 快速傅里叶变换 (FFT,Fast Fourier Transform)

抽样频率 (Sampling Frequency)

抽样间隔 (Sampling Interval)

抽样定理 (Sampling Theorem)

抗混滤波 (Anti-aliasing Filter)

泄漏 (Leakage)

加窗 (Windowing)

窗函数 (Window Function)

截断 (Truncation)

频率混淆 (Frequency Aliasing)

乃奎斯特频率 (Nyquist Frequency)

矩形窗 (Rectangular Window)

汉宁窗 (Hanning Window)

凯塞-贝塞尔窗 (Kaiser-Bessel Window)

平顶窗 (Flat-top Window)

平均 (Averaging)

线*平均 (Linear Averaging)

指数平均 (Exponential Averaging)

峰值保持平均 (Peak-hold Averaging)

时域平均 (Time-domain Averaging)

谱平均 (Spectrum Averaging)

重叠平均 (Overlap Averaging)

栅栏效应 (Picket Fence Effect)

吉卜斯效应 (Gibbs Effect)

基带频谱分析 (Base-band Spectral Analysis)

选带频谱分析 (Band Selectable Sp4ctralAnalysis)

细化 (Zoom)

数字移频 (Digital Frequency Shift)

抽样率缩减 (Sampling Rate Reduction)

功率谱估计 (Power Spectrum Estimate)

相关函数估计 (Correlation Estimate)

频响函数估计 (Frequency Response Function Estimate) 相干函数估计 (Coherence Function Estimate)

冲激响应函数估计 (Impulse Response Function Estimate) 倒频谱 (Cepstrum)

功率倒频谱 (Power Cepstrum)

幅值倒频谱 (Amplitude Cepstrum)

倒频率 (Quefrency)

4 旋转机械的振动测试及状态监测

状态监测 (Condition Monitoring)

故障诊断 (Fault Diagnosis)

转子 (Rotor)

转手支承系统 (Rotor-Support System)

振动故障 (Vibration Fault)

轴振动 (Shaft Vibration)

径向振动 (Radial Vibration)

基频振动 (Fundamental Frequency Vibration)

基频检测 (Fundamental Frequency Component Detecting) 键相信号 (Key-phase Signal)

正峰相位 (+Peak Phase)

高点 (High Spot)

光电传感器 (Optical Transducer)

同相分量 (In-phase Component)

正交分量 (Quadrature Component)

跟踪滤波 (Tracking Filter)

波德图 (Bode Plot)

极坐标图 (Polar Plot)

临界转速 (Critical Speed)

不平衡响应 (Unbalance Response)

残余振幅 (Residual Amplitude)

方位角 (Attitude Angle)

轴心轨迹 (Shaft Centerline Orbit)

正进动 (Forward Precession)

同步正进动 (Synchronous Forward Precession)

反进动 (Backward Precession)

正向涡动 (Forward Whirl)

反向涡动 (Backward Whirl)

油膜涡动 (Oil Whirl)

油膜振荡 (Oil Whip)

轴心平均位置 (Average Shaft Centerline Position)

复合探头 (Dual Probe)

振摆信号 (Runout Signal)

电学振摆 (Electrical Runout)

机械振摆 (Mechanical Runout)

慢滚动向量 (Slow Roll Vector)

振摆补偿 (Runout Compensation)

故障频率特征 (Frequency Characteristics Of Fault)

重力临界 (Gravity Critical)

对中 (Alignment)

双刚度转子 (Dual Stiffness Rotor)

啮合频率 (Gear-mesh Frequency)

间入简谐分量 (Interharmonic Component)

边带振动 (Side-band Vibration)

三维频谱图 (Three Dimensional Spectral Plot)

瀑布图 (Waterfall Plot)

级联图 (Cascade Plot)

阶次跟踪 (Order Tracking)

阶次跟踪倍乘器 (Order Tracking Multiplier)

监测系统 (Monitoring System)

适调放大器 (Conditional Amplifier) 趋势分析 (Trend Analysis)

倒频谱分析 (Cepstrum Analysis)

直方图 (Histogram)

确认矩阵 (Confirmation Matrix)

通频幅值 (Over-all Amplitude)

幅值谱 (Amplitude Spectrum)

相位谱 (Phase Spectrum)

报警限 (Alarm Level)

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

机械振动习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动; (b) 周期振动和周期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为 0.20 cm,周期为 0.15 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在 82 Hz 时具有最大加速度 50 g,求其振动的振幅。 1-4 一简谐振动频率为 10 Hz,最大速度为 4.57 m/s,求其振幅、周期和最大加速度。1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos n t + B cos (n t + ) = C cos (n t + ' ),并讨论=0、/2 和三种特例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大? 1-7 计算两简谐运动x1 = X1 cos t和x2 = X2 cos ( + ) t之和。其中<< 。如发生拍的现象,求其振幅和拍频。 1-8 将下列复数写成指数A e i 形式: (a) 1 + i3 (b) 2 (c) 3 / (3 - i ) (d) 5 i (e) 3 / (3 - i ) 2 (f) (3 + i ) (3 + 4 i ) (g) (3 - i ) (3 - 4 i ) (h) ( 2 i ) 2 + 3 i + 8 2-1 钢结构桌子的周期=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。 已知周期的变化=0.1 s。求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。 2-2 如图2-2所示,长度为 L、质量为 m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O 用刚度为k的弹簧相连,求系统的振动微分方程。 图2-1 图2-2 图2-3 2-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分方程。 2-5 求图2-5所示弹簧-质量-滑轮系统的振动微分方程。

船舶电气设备复习总结

1、交直流接触器在电磁机构上的区别:交流接触器的线圈铁芯和衔铁由硅钢片叠成;直流接触器的线圈铁芯和衔铁可用整块钢。交流接触器的吸引线圈因具有较大的交流阻抗,故线圈匝数比较少,采用较粗的漆包铜线绕制;直流接触器的线圈匝数较多,绕制的漆包线较细。交流接触器的电磁铁芯上必须装有短路环,以消除工作时的振动和噪声;直流接触器的电磁铁芯上无短路环。 2、锚机和绞缆机属于短时工作制;要求电动机具有较大的起动力矩和堵转力矩 3、船舶起货机电力拖动的控制要求:提高生产率; 对调速范围的要求, 起货电动机在运行过程中,既有空钩高速,又有重载低速,要求较广的调速范围;对电动机型式的要求, 电动机:选用防水式、重复短期工作制、转动惯量小的专用电动机。直流起货机:一般采用起动力矩大而机械特性软的复励电动机以承受冲击负载,并且能适应轻载高速、重载低速的工况。交流起货机:宜选用起动力矩大、转差率高而起动电流较小的深槽式(或双笼式)的变极调速笼式异步电动机,也可选用绕线式异步电动机。对控制电路的要求:自动起动的分级调速环节,并且能设置保护。 4、三级制动:主令手柄从中、高速档回零后,SA2(或SA3)以及SA9断开,KMF(或KMB)和KT2线圈失电,但KT2延时断开的常开触点与KMF(或KMB)自锁触点继续维持KMF(或KMB)线圈通电,而零位时KM1线圈保持通电,故低速绕组接通,使n>n1进行回馈制动。由于电磁制动器衔铁延时释放时间小于KT2延时时间,所以有一段时间为电气与机械联合制动;KT2释放后为机械制动。 5、自动延时起动:主令手柄处于零档或低速档时,KT3得电,与线圈KM3串联的常闭触点断开,KM3不能马上得电,电机只能处于中速档;同时,KM2得电,使其常闭触点断开,KT3断电,KT3常闭触点延时闭合,使得KM3得电,进入高速档。 6、防止货物自由跌落控制:落货下降时,电动机处于电气制动状态。起货机在下降各档起动时,电动机电磁转矩与货物重力形成的负载力矩方向相同,使转速不断提高,直至转速高于同步转速进入再生制动状态=起动时先接通低速绕组后电磁制动器才能通电松闸,即将KMF或KMB的常开触点串入线圈KB回路中=用于控制KM1线圈的主令触点SA4上并联了KM1的常开触点和KM2常闭触点串联而成的支路,以及控制KM2线圈的主令触点SA4上并联了KM2的常开触点和KM1常闭触点串联而成的支路,所以在换档过程中,即使主令控制器处于两档的中间位置,电动机总有一个绕组通电=KB线圈回路串入KT5延时断开的常开触点,若KM1、KM2、KM3不能吸合则KT5失电,KB线圈延时断电,电磁制动器不能通电松闸。 7、“逆转矩”控制:由于两个转向控制接触器KMF、KMB之间有互锁,都需要经KT2延时后才能释放,因此无论主令手柄从上升高速档快速扳至下降高速档(或反之),都会经过停车电器制动过程,再经自动延时起动,防止了电机高速运行时进入反接制动状态,实现了“逆转矩”控制。 8、收躺锚链,拉紧锚链,拔锚出土,提锚出水,拉锚入孔

噪音与振动控制方案

施工现场噪音与振动控制方案 为认真贯彻落实《建设工程文明施工管理规定》和《扬尘污染防治管理办法》以及重大工程建设的有关文明施工管理规定,实现文明施工现场达到相关标准,特编制本施工噪声与振动控制专项方案。 一、编制依据 1、《中华人民共和国环境噪声污染防治法》; 2、《建筑施工场界噪声限值》GB 12523-90 3、《江苏省环境保护条例》; 4、《江苏省建设工程文明施工管理规定》; 5、《江苏省重大工程文明施工管理考核办法(试行)》 二、工程概况 丹徒新城恒顺大道改造工程位于宜城大道以东,G312以西区域,整体呈东西向。路线起于与宜城大道交叉,向东南方向延伸,下穿S86镇江支线后,往东止于园区二路(盛园路)交叉,路线全长3328.911m。道路等级为城市次干路,规划红线宽度50m,设计速度为50km/h。 1.责任人: (1)项目经理负责噪声控制管理工作的领导,全面管理项目的噪声预防和控制。(2)项目工程师、施工员和班组长负责实施施工过程中的噪声控制。 (3)项目技术员负责噪声控制情况的检查和噪声的监控与监测工作。 三、组织保证措施 一般噪声源:土方阶段:挖掘机、装载机、推土机、运输车辆、破碎钻等。结构阶段:汽车泵、振捣器、混凝土罐车、支拆模板与修理、支拆脚手架、钢筋加工、电刨、电锯、人为喊叫、哨工吹哨、搅拌机、水电加工等。装修阶段:拆除脚手架、石材切割机、砂浆搅拌机、空压机、电锯、电刨、电钻、磨光机等。 1.施工时间应安排在 6:00—22:00 进行,因生产工艺上要求必须连续施工或特殊需要夜间施工的,必须在施工前到工程所在地的区、县建设行政主管部门提出申请经批准后,并在环保部门备案后方可施工。项目部要协助建设单位做好周边居民工作。 2.施工场地的强噪声设备宜设置在远离居民区的一侧。尽量选用环保型低噪声振捣器,振捣器使用完毕后及时清理与保养。振捣混凝土时禁止接触模板与钢筋,并做到

论船舶噪声及控制

论船舶噪声的控制 提要 船舶噪声对人体和环境的污染和危害已经得到世界各国和相关组织日益广泛的关注。船舶噪声的污染源主要是由于船舶动力装置及其它辅助装置自身振动及吸排气引起的。介绍了船舶的噪声源,以及传播的途径,提出应采取通过声源控制来降低船舶噪声级。 前言 如今,噪声污染已经成为与空气污染和水污染并列的世界三大主要污染之一,它日益成为人们普遍关心的问题。船舶环境,尤其机舱环境就存在较为严重的噪声污问题,对船员的身体、生活、休息和工作都存在很大的影响,甚至会产生心理和生上的疾病;过强的噪声还会使船上的一些精密仪器设备工作不正常、精度降低、使用寿命缩短。 1970年国际劳工组织(ILO)在日内瓦召开的海事特别会议上通过了“关于船员、设备 工作区有害噪声规定的建议”,建议各国政府制定限制船舶噪声的规则。目前一些造船和航运国家都制定了船舶噪声标准,作为船舶特殊环境下的健康保护标准。 1船舶噪声概述 1.1船舶噪声的度量 描述噪声可采用两种方法:一是对噪声进行客观量度,即将噪声作为物理扰动,用描述声波客观特性的物理量来反映;二是对噪声进行主观评价,因为噪声涉及人耳的听觉特性,根据听者感觉的刺激来描述。 噪声的客观度量用声压、声强和声功率等物理量表示。声压和声强反映了声场中声的强弱,声功率反映了声源辐射噪声的大小。声压、声强和声功率等物理量的变化范围非常大,可以在六个数量级以上,同时由于人体听觉对声信号强弱刺激的反应不是线性的,而是成对数比例关系,所以实际应用中采用对数标度,以分贝(dB)为单位,即分别为声压级、声强级和声功率级等无量纲的量来度量噪声。 级是物理量相对比值的对数。分贝是级的一种无量纲单位。对于声强、声功率等反映功率和能量的物理量,分贝数等于两个量比值的常用对数乘以10 。如两个声功率值分别为W1 和W2 ,则分贝数为n=101g(W1/W2)。 对于声压、质点振动速度等描述声场、电磁场等的物理量,分贝数等于两个量比值的常用对数乘以20 。当两个声压值分别为P1 和P2 时,声压级为n=201g(P1/P2)。采用级进行噪声计量,可以使数值变化缩小到适当范围,与人耳的感觉接近。

发动机台架振动噪声试验规范

发动机台架 振动噪声 试验规范 湖南大学 先进动力总成技术研究中心

1.适用范围 本标准适用于缸径100mm以内,功率在150kW以内的往复活塞式发动机。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1859-2000 往复式内燃机辐射空气噪声测量工程法及简易法。 GB/T 往复式内燃机性能第1部分:标准基准状况,功率、燃油消耗和机油消耗的标定及试验方法。 GB/T 往复式内燃机性能第3部分:试验测量。 3.试验目的 在发动机消声室试验台架上进行发动机振动噪声测试,评价发动机振动噪声水平。 4.测试设备 传声器应该符合GB/T3785规定的1级仪器要求,其测量装置必须至少覆盖20Hz~20000Hz的频率范围。 加速度传感器应该符合GB/T3785规定的1级仪器要求,其测量仪器频率范围至少为10Hz~2000Hz,并应包括发动机最低稳定转速到lO倍最高转速的激励频率。传声器、加速度传感器在测量前必须进行标定。 测量前后,仪器应该按照规定进行校准,两次校准值不应超过1dB。 发动机转速的测试仪器的准确度应优于1%。 5.安装条件和运转工况 发动机工作条件 测试前确保发动机为工作正常且油位、水位正常。 在测量过程中,发动机的所有运行条件,应该符合制造厂家的规定。测量开始前,发动机应该稳定在正常工作温度范围内。 发动机状态 发动机不带空气滤清器和排气消声器,引出进、排气噪声。

噪声与振动复习题及答案

噪声与振动复习题及参考答案(40题) 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 一、填空题 1.在常温空气中,频率为500Hz的声音其波长为。 答:0.68米(波长=声速/频率) 2.测量噪声时,要求风力。 答:小于5.5米/秒(或小于4级) 3.从物理学观点噪声是由;从环境保护的观点,噪声是 指。 答:频率上和统计上完全无规的振动人们所不需要的声音 4.噪声污染属于污染,污染特点是其具有、、。 答:能量可感受性瞬时性局部性 5.环境噪声是指,城市环境噪声按来源可分 为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声 其它噪声 6.声压级常用公式Lp= 表示,单位。 答: Lp=20 LgP/P° dB(分贝) 7.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得 8.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在 Hz 范围内必定有峰值。 答:低频性高频性 2000-5000 9.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比 为;工程频谱测量常用的八个倍频程段是 Hz。 答:2 2-1/3 63,125,250,500,1K,2K,4K,8K 10.由于噪声的存在,通常会降低人耳对其它声音的,并使听阈,这种现象称为掩蔽。 答:听觉灵敏度推移 11.声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准。 答:电声声 12.我国规定的环境噪声常规监测项目为、和;选测项目有、和。 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声 夜间道路交通噪声高空噪声 13.扰民噪声监测点应设在。 答:受影响的居民户外1米处

发动机结构振动及噪声预测

发动机结构振动及噪声预测 作者:奇瑞发动机工程研究邓晓龙 发动机是影响汽车NVH性能的最主要的因素,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,已经成为发动机开发的基本流程,是发动机自主研发过程中的重要工作。 国内外对发动机结构噪声的预测做了大量研究,中低频结构噪声预测方法已趋成熟。结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等。噪声预测技术的发展使得发动机在设计阶段进行噪声评价成为可能。 本文探讨了适于进行动力总成振动及结构噪声预测的方法;建立了动力总成各主要部件的有限元模型,通过AVL EXCITE软件进行了动力学分析,并计算发动机的振动响应。进行NVH的性能提升的最重要的就是首先要找到主要振动及噪声源,并开展有针对性的工作。为了更明确发动机的主要声源,采用自编软件,根据表面振动速度结果进行了主要表面的辐射声功率排序,最后进行结构噪声预测。 发动机结构振动预测 进行发动机结构振动及噪声预测,涉及到大量的研究工作,主要工作包括各部件有限元建模、子结构模态提取,EXCITE模型搭建,主要激励计算,动力学分析,振动响应计算,表面辐射声源排序,声边界元建模和空间声场预测等工作。 1. 动力总成有限元模型 动力总成有限元模型包括缸体、框架、缸盖、油底壳、缸套、进气歧管、排气歧管、气门室罩盖、4个悬置支架、变速器壳体、变速器传动轴及齿轮等。由于研究的动力总成的4个悬置支架中有3个是安装在变速器上,所以加入变速器壳体的有限元模型,这样可以更准确地模拟动力总成的振动情况,特别是怠速工况下的振动。图1所示为动力总成的有限元网格。同样需建立曲轴组件的有限元网格,曲轴组件包括曲轴、飞轮、扭转减振器、皮带轮和正时齿轮等部件。

船舶噪声污染与控制

目录 1、绪论1 1.1内河运输的发展情况1 1.2内河航运船舶特点以及噪音污染现状1 2、船舶噪声概述2 2.1船舶噪声分类及其特性2 2.2大型船舶与内河小型船舶的噪音污染情况对比3 2.3船舶噪声传递途径4 3、船舶噪声对生物的影响4 4、船舶噪声的控制4 4.1声源控制是噪声控制中最根本和最有效的手段4 4.2传递途径中的控制是最常用的方法5 4.2.1用吸声、隔声等工艺来降低船舶噪音5 4.2.2用绿化来降低船舶噪音5 4.3接收器噪声防护设备提供的被动保护也是重要手段6 5、建议与总结6 参考文献7

船舶噪音 摘要:船舶噪声是一种污染,对人体和环境的污染和危害已经得到世界各国和相关组织日益广泛的关注。本文通过对我国内河船舶噪声污染现状的探讨,试从船舶噪声的特性和传播途径分析,提出控制船舶噪声的措施。 关键词:船舶噪声;特性;分析;控制措施 1、绪论 1.1内河运输的发展情况 如今,噪声污染已经成为与空气污染和水污染并列的世界三大主要污染之一,它日益成为人们普遍关心的问题。今年来,各国的运输业都在进一步降低运费和能耗而努力。内河运输以其量大廉价的优势受到人们的重视。随着运输经济的迅速发展,现代化的内河已经不再遵循“尽多、尽快”的运输原则,而是以“最大运量和最低运价”为目标。这以前提对目前的运输战略决策产生了决定性的影响。由于各国水路运输的自然条件差异和其他制约因素,各国内河水运所占地位及在总运输量占有的比重也各不相同。其中,中国被公认为是目前内河航运业四大中心之一,虽然其相对比例看起来很少,但是其中包含的运货量却相当的大。为了适应国民经济的快速发展的需要,我国今年来大力发展内河航运,取得了长足的进展。尤其是随着西部大开发战略的实施,内河水运将临近一个新的发展高峰。但是,内河水运的蓬勃发展也必然会带来一系列的相关问题。其中船舶的噪声污染已经越来越严重,必须予以足够的重视。对于船舶,船舶噪器噪声不仅影响船内各种仪器、设备的正常使用,而且还会影响船舶的安全性、隐蔽性、可用性和居住性等。为此,船舶在设计时必须注意采取控制噪声的措施,对于已建成的船舶,如不能满足标准要求,也需要采取必要的降噪措施。 1.2内河航运船舶特点以及噪音污染现状

《城市轨道交通噪声与振动控制技术政策》(征求意见稿)

附件2 城市轨道交通噪声与振动控制技术政策 (征求意见稿) 一、总则 (一)为贯彻《中华人民共和国环境保护法》、《中华人民共和国环境噪声污染防治法》等法律法规,防治环境污染,保证人们正常生活、工作和学习的声与振动环境质量,保护既有文物古迹,保障影响区域内的精密仪器的正常使用,促进城市轨道交通噪声与振动污染防治技术进步,制定本技术政策。 (二)本技术政策为指导性文件,供各有关单位在环境保护工作中参照采用;本技术政策提出了防治城市轨道交通噪声与振动污染可采取的技术路线和技术方法,包括合理规划、优化设计、源头控制、传播过程消减、敏感目标防护等方面的内容。 (三)本技术政策中的城市轨道交通设施是指以钢轮钢轨为导向的轨道交通设施,不包括其他形式的城市轨道交通设施。 (四)城市轨道交通噪声与振动污染防治应遵循以下原则: 1.坚持合理规划、预防为主的原则。科学预估拟建轨道交通设施的潜在环境噪声与振动污染影响及可控程度,通过合理规划和采用有效的防控措施,避免或降低轨道交通噪声与振动对敏感目标的影响。 2.坚持源头控制与综合治理相结合的原则。对已开通运行的城市轨道交通设施,应采取源头控制为主,传播途径消减和建筑物防护

为辅的控制措施,确保城市轨道交通噪声与振动符合周围环境要求。 3.坚持安全可靠,技术适用,经济合理的原则。重视措施的安全性和可靠性,优先考虑与控制需求相匹配的技术,同时兼顾经济成本、使用寿命、维护成本、次生影响等因素。 二、合理规划 (五)城市轨道交通线网规划应与城市发展总体规划相协调,鼓励将城市轨道交通噪声与振动污染作为线网规划决策的依据。 (六)城市轨道交通线路应与声与振动功能区划相适应,优先规划在4类区,鼓励沿既有交通干线或规划交通干线布置。 (七)城市轨道交通线路的走向应与既有建筑物留有充足的防护距离或控制条件;城市轨道交通线网规划用地控制范围内不宜新建建筑物,无法避免时,应采取相应的措施,以消除城市轨道交通引起的不利影响。 (八)合理规划城市轨道交通沿线土地利用性质,优先以商业、工业用地为主,减少居住、文教用地。 三、优化设计 (九)对于轨道交通噪声与振动污染较严重的线路或路段,应增设比选方案,结合潜在的环境噪声与振动污染影响和可控程度,对线路走向、敷设方式、车辆类型等进行比选优化。 (十)规范采用环境噪声与振动影响预测模型或预测模拟方法,结合项目阶段、建筑物使用功能和区域特点,针对性开展预测,提高预测精度。 (十一)在选用减振降噪措施时应科学预估其因安装、施工、

船舶噪声论文

根据中国船级社于2013年4月26日发布的《关于实施船上噪声等级规则的通知》的通函,国际海事组织(IMO)第91界海安会(MSC91)通过了第338号关于SOLAS修正案的决议。自2014年7月1日起生效,决议通过的《船上噪声等级规则》(以下简称“《规则》”),以保护人员免受噪声的伤害。 《规则》一旦生效,其高标准,严要求,强制性的特点将给造船业带来新的挑战和压力。 过去,SOLAS仅仅对机舱的噪声值做了强制规定,因此,国内的造船厂过去对船舶噪声控制工作不够重视。 对噪声的控制主要有三种途径:声源控制、传播途径中的控制、接收方的被动保护。过去常用的手段是在传播途径中的控制,例如,吸声、隔声、隔振等;这些方法经过长期实践证明效果并不好。 面对将要生效的《规则》,我们针对噪声的产生、传播、接收三个方向共同提出了以下措施,以达到降低噪声,符合规范的目的。 第一、声源控制 船舶上的三个主要噪声源是主机、辅机和螺旋桨。短期内,应在设计建造期间,选用低噪声的主机、辅机及螺旋桨;长期来看,我们需要设计出具有自主知识产权的,工作稳定,噪声低,振动小的新一代主机和辅机,同时要设计出更合理线型的螺旋桨,并在长期的实践中建立起船舶噪声数据库,通过舱室的合理布置,轴系的合理安排来进一步降噪。 第二、传播途径中的控制

在传播途径中降噪的方法有多种;例如,在舱室天花板和四壁表面敷设吸声材料和吸声结构,或所在室内空间悬挂吸声体;采用刚性和不吸声的钢板、铝板等做成隔声壁,为提高隔声效果,可采用双层壁,还可采用隔声罩和隔声室等措施对噪声源隔声;对于振动设备,安装单层或双层弹性支承的减震器进行隔震。 第三、接收方的被动保护 接收器噪声防护设备提供的被动保护也是重要手段。尤其在目前,对大型主机采取的声振控制措施尚不完善,需要对船员采取保护措施防止听力受害,如船员可以带上护耳器(耳罩或耳塞)、防声头盔或在隔声间(如机舱集控室)内值班工作,就可以减少噪音的伤害。 通过对以上方法的总结,我们可以发现:对造船企业而言,《规则》的主要实施难点有以下几点: 一、对噪声源设备和船舶声学设计提出了更高要求 二、增加了设计、建造过程中的相关成本 三、要求船上起居处所具有更加优良的隔声性能 四、增加了设计阶段的噪声分析开支 五、控制噪声超标更为困难。 可以预见,在不远的未来,船舶的建造和航行的标准将越来越高,被动的接受标准的要求对我国的造船业的发展极为不利,只有不断促进技术创新,提高自身技术水平,将自己化为规则和标准的推动者甚至是制定者,才能在未来的世界造船和航运中立于不败之地!

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

《噪声与振动控制技术手册》已由化学工业出版社出版发行

第5期高晓进:金属夹心CFRP复合材料超声检测方法531 参考文献 [1]张锐, 陈以方, 付德永. 复合材料手动扫描超声特征成像检测[J]. 材料工程, 2003(4): 34-35. ZHANG Rui, CHENG Yifang, FU Deyong. Manual scan ultrasonic feature imaging testing of composite material[J]. Journal of Materials Engineering, 2003(4): 34-35. [2]葛邦, 杨涛, 高殿斌, 等. 复合材料无损检测技术研究进展[J]. 玻 璃钢/复合材料, 2009(6): 67-71. GE Bang, YANG Tao, GAO Dianbin, et al. Advances of nondestructive testing of composite materials[J]. Fiber Reinforced Plastics/Composites, 2009(6): 67-71. [3]王耀先. 复合材料结构设计[M]. 北京: 化工工业出版社, 2011. W ANG Yaoxian. Structure design of composites[M]. Beijing: Chemical Industry Press, 2011. [4]彭金涛, 任天斌. 碳纤维增强树脂基复合材料的最新应用现状[J]. 中国胶粘剂, 2014, 23(8): 48-52. PENG Jintao, REN Tianbin. The latest application status of carbon fiber reinforced resin matrix composites[J]. China Adhesives, 2014, 23(8): 48-52. [5]李威, 郭权锋. 碳纤维复合材料在航天领域的应用[J]. 中国光学, 2011, 4(3): 201-212. LI Wei, GUO Quanfeng. Application of carbon fiber composites to cosmonautic fields[J]. Chinese Journal of Optics, 2011,4(3): 201-212. [6]魏建义. 航空复合材料无损检测应用研究[J]. 现代制造技术与装 备, 2016, (230): 82-83. WEI Jianyi. Research on nondestructive testing of aviation composite materials[J]. Modern Manufacturing Technology and Equipment, 2016, (230): 82-83. [7]沈建中, 林俊明. 现代复合材料的无损检测技术[M]. 北京: 国防 工业出版社, 2016: 109-112. SHEN Jianzhong, LIN Junming. Nondestructive testing technology of modern composite materials[M]. Beijing: National Defense Industry Press, 2016: 109-112. [8]史亦韦. 超声检测[M]. 北京: 机械工业出版社, 2009: 85-88. SHI Yiwei. Ultrasonic testing[M]. Beijing: China Machine Press, 2009: 85-88. [9]徐浪, 潘勤学, 王超, 等. 碳纤维-铝多层结构胶接质量的超声检 测[J]. 计测技术, 2015, 35(3): 34-35. XU Lang, PAN Qinxue, W ANG Chao, et al. Bonding test of carbon fibers by ultrasonic[J]. Metrology & Measurement Technology, 2015, 35(3): 34-35. [10]张祥林, 谢凯文, 姜迎春. 复合材料板-板粘接结构超声检测[J]. 无损探伤, 2011, 35(4): 18-21. ZHANG Xianglin, XIE Kaiwen, JIANG Yingchun. Ultrasonic testing of composite plate bonding structure[J]. Nondestructive Testing, 2011, 35(4): 18-21. [11]郑晖, 林树青. 超声检测[M]. 北京: 中国劳动社会保障出版社, 2008: 32-35. ZHENG Hui, LIN Shuqing. Ultrasonic testing[M]. Beijing: China Labor Social Security Press, 2008: 32-35. [12]杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2001: 131-140. DU Gonghuan, ZHU Zhemin, GONG Xiufen. Acoustic Foundation[M]. Nanjing: Nanjing University Press, 2001: 131-140. 《噪声与振动控制技术手册》已由化学工业出版社出版发行由中船第九设计研究院工程有限公司牵头,联合清华大学、北京市劳动保护科学研究所组织编写的《噪声与振动控制技术手册》(主编吕玉恒,副主编燕翔、魏志勇、邵斌、孙家麒、冯苗锋)已由化学工业出版社于2019年9月出版发行。全书约260万字、1700页,由18个单元及5个附录等组成,荟萃了本世纪以来噪声与振动控 制行业的部分最新成果。全书主要内容包括:基础知识;噪声源数据库;噪声的生理效应、 危害以及噪声标准;听力保护;噪声与振动测量方法和仪器;噪声源的识别、预测及控制方 法;声源降噪与低噪声产品;经典而常用的隔声、吸声、消声、隔振、阻尼减振、室内声学 等;有源噪声控制以及国内外噪声与振动控制技术新进展等。本手册还提供了300多种常用 的声学设备和材料的性能、参数等,列举了40多个噪声与振动控制污染治理成功案例,附 录中给出了本行业已出版的书籍、标准、生产厂家、科研设计教学单位的部分名录等,是一 本大型、综合、实用的工具书,也是参与编著的10个单位、27名作者多年来工作实践成果 汇编。本手册可为读者提供科学、严谨、新颖、可信赖的专业知识和应用技术,可供工程设 计、环境保护、职业安全卫生、基本建设等领域从事研究开发、生产制造、监测评价、工程 管理等工程技术人员以及有关专业师生使用、参考。 中船第九设计研究院工程有限公司冯苗锋

车用发动机设备噪声形成原因及控制措施(新编版)

车用发动机设备噪声形成原因及控制措施(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0038

车用发动机设备噪声形成原因及控制措施 (新编版) 1.噪声的主要危害 噪声污染不仅对人们的自我感觉和工作能力产生消极的影响,而且能导致健康严重失调、疲劳、早期失聪、高血压、神经疾病等。 2.车用发动机噪声的形成与对策 发动机噪声主要包括燃烧噪声、机械噪声、进排气噪声、冷却风扇及其他部件发出的噪声。燃烧噪声是在可燃混合气体燃烧时,因气缸内气体压力急剧上升冲击发动机各部件,使之振动而产生的噪声。柴油中的十六烷值不合适或喷油时间过于提前,会引起发动机工作粗暴,使噪声急剧增大。汽油机由于过热、汽油品质不良和点火提前角过大等原因造成高频爆炸声、敲缸。 发动机内部的燃烧过程和结构振动所产生的噪声,是通过发动

机外表面以及与发动机外表面刚性连接结构的振动向大气辐射的,因此称为发动机表面噪声。根据发动机表面噪声产生的机理,又可分为燃烧噪声和机械噪声。燃烧噪声主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关;机械噪声是发动机工作时各运动件之间及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般来说,低转速时,燃烧噪声占主导地位,高转速时,机械噪声占主导地位。 降低燃烧噪声,需改善燃烧条件,提高燃烧质量,以达到圆滑的压力波形。采用合理布置火花塞和气门以及采用合适的燃烧室型式和冷却方式即可以达到最有效的燃烧。在燃油方面,汽油的辛烷值越高,点火质量及抗爆振性能越好;对柴油机来说,要选择合适的十六烷值的柴油,如果达不到,可加入点火加速剂,提高点火质量,这样可有效地防治因燃油燃烧引起的噪声。 机械噪声包括活塞敲击声、气门机构冲击声、正时齿轮运转声等。减小活塞敲击声,可采取减小活塞与缸壁之间的间隙和使活塞

噪声与振动

1040 2-=Ll L 噪声定义:(环境保护角度):凡是妨碍人正常生产和学习的声音或对人交流干扰的声音。 噪声来源:1、工业噪声源;2、交通噪声源;3、建筑工地噪声源;4、商业噪声源。 世界四大污染:水污染,大气污染,固体废弃物污染,噪声污染。 噪声特点:区别于物理化学污染,噪声与振动源消失后没有延迟。 机械振动的三种方式:简谐振动;阻尼振动;受迫振动。 阻尼振动:(1)两种方式:摩擦阻尼、辐射阻尼; 阻尼振动方程: 受迫振动:(1)方程:错误!未找到引用源。 受迫振动的三种控制方式:1、ω>>ω0 质量控制;2、ω<<ω0 弹性控制;3、ω≈ω0 阻尼控制。 波长、波速和频率之间的关系:v=f λ 声强:单位时间内垂直于传播方向上单位面积上通过的声能。 声压:空气压强在大气压强附近的起伏变化部分。 声强级: 声压级:错误!未指定书签。 听阈声压:错误!未找到引用源。 (在1000Hz 纯音情况下)痛阈声压:20Pa (在1000Hz 纯音情况下) 声功率级:错误!未指定书签。 声压与声强的关系: I=p 2/(ρ0×C) ρ0:空气密度 1.29kg/m 3; C :声速 340m/s 。 频谱分析:由于噪声是一个混合音,在噪声控制过程中了解噪声源所发生的频谱特性,掌握噪声成分及大小,详细分析噪声的频率组成及各频率声压的大小。 高频噪声:1000Hz 以上;中频噪声:300~1000Hz ;低频噪声:500Hz 以下。可听音范围内:20~20000Hz 1/3倍频带与倍频带之间的关系:1:21/3:22/3:2 声强的叠加:I 总=I 1+I 2+…+I n ;声压的叠加:P 总2=P 12+P 22+…P n 2 加速度级: 错误!未指定书签。 a ref =10-6m/s 2 点声源在自由场距离加倍,声压级衰减6dB; 线声源在自由场距离加倍,声压级衰减3dB 。 声压衰减系数由经典(空气)吸收和分子吸收两部分组成。 声屏障:在声源与接收者之间插入足够大面密度板或墙使噪声产生大的附加衰减,使透过的噪声减少。 永久性听阈位移(职业性耳聋):1、慢性噪声耳聋;2、爆震性噪声耳聋。 听力损失判定标准:一耳或两耳听损在500,1000,2000Hz 三个倍频带上的均值。(取好耳,两个耳朵听力损失值相差>25dB 进行5dB 的修正,即对好耳朵加5dB 的修正) 听力损失四个等级:①正常<25dB ;②轻度聋25~40dB ;③中度聋40~70dB ;④重度聋>70dB 。 响度级:以1000Hz (2×10-5Pa) 纯音为基础声音,调整其声压级使大量受试者判断,如果噪声与该纯音听起来一样响,此时纯音压级就是响声的响度级phon(方)。 响度:①取40phon 为1响;②响度与响度级之间的关系 ;③响度级升高10pho n ,响度加倍。 四种计权声级:A 计权:模拟40方等响曲线 A 声级;B 计权:模拟70方等响曲线 B 声级;C 计权:模拟100 方等响曲线 C 声级;D 计权:标准化计权网络(测飞机的) D 声级。 各种统计声级:等效连续声级;L N 累计分布声级(L 10 峰值噪声;L 50 中值噪声;L 90 背景噪声);L dn 日夜等效声级;L den 公共环境等效声级;L NP 噪声污染级;L AE 声暴露级 噪声控制的工程技术方式:吸声技术;消声技术;隔声技术。 噪声作业分级:0级:安全作业 I <0;I 级:轻度伤害 0

相关文档
最新文档