小波变换的直观解释

小波变换的若干直观解释

唐常杰

川大计算机学院

说明:

1假定听者已经听说过或阅读过小波,但觉得缺乏直观感觉,本PPT的直观解释仅仅为了辅助理解,不能取代严格的描述和证明

2仅仅是讲稿草案,还不成熟,待修改

小波简史(与石油勘探中人工地震技术相关)

n由法国石油信号处理的工程师J.Morlet在1974提出

n通过物理直观和信号处理实际需要的建立反演公式,未得认可。

n1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家

https://www.360docs.net/doc/587867333.html,grange,https://www.360docs.net/doc/587867333.html,place以及A.M.Legendre的认可

n七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备

n J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年

小波简史

n比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》推动小波普及

n它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,

n通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(MultiscaleAnalysis),

n解决了Fourier变换不能解决的许多困难问题

n被誉为“数学显微镜”

小波特点与应用

n压缩比高,速度快

n压缩后能保持信号与图象的特征不变

n传递中可以抗干扰。

n基于小波分析的压缩方法:小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。n小波在信号分析中的应用

n边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测。n工程应用。

n包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学

启示与哲理

复杂由简单构成。宇宙基本法则

实数域内有意义的曲线都可以分解为若干个正弦曲线的叠加。

傅立叶变换与分形的原理同源。

大自然只”懂”自然数。

自然对象的比较,都是整数倍的。分数是人类思维的抽象结果。

H要分析一个较小的对象,要用比它更小的尺子。否则“测不准”。

H尺子不一定要求平直,可用鸡蛋或米粒作尺子度量包装箱W大小例如W=3*鸡蛋+1024*米粒, 是可以理解和交流的,客观的。

H用紫外光波可以量度比紫外光波长尺寸大的对象。

H用一组尺度小的小波作尺子,可以度量比它大的波形

H使用有限宽度基函数进行变换的方法。这些基函数在频率上,在位置上变化,

H这些有限宽度的波被称为“小波”(Wavelet)

H相应变换被称为“小波变换”(Wavelet transforms)

n 向量内积

n 对于R n 上的两个向量X=(x 1,x 2,…,x n ) 和Y=(y 1,y 2,…,y n ),其Euclidean 内积为:

n |X|.|Y|Cos(β)

复习:向量内积

?==n

j j

j y x Y X 1

,

复习:向量内积的多种直观解释

n1.相关系数, β= 0, 90, 180

n2.加权, x1+x2+…+x n=1 , 是Y的分量的加权平均n 3.度量相似性和投影大小,

n v=2i+0j+4K, 用坐标向量k作尺子去度量它,4,说明与k比较相似,用坐标向量j作尺子去度量,为0,完全不像j。

n正交坐标基底上分解向量特别简单,

n向量表达为基底向量的线性组合

n即在坐标基上各分量的组合

复习:函数看作向量,作内积

n L 2空间

n 对于a ≤t ≤b ,空间L 2([a,b])表示所有平方可积的函数组成的空间,

n L 2内积

n 空间L 2([a,b])表上的L 2

内积定义为

])

,([,)()(,22b a L g f dt t g t f g f b

a L ?=ò;{}

ò¥

2|)(|;],[:]),([

Fourier 级数(0a

a f(x)k k k +=?ò-=p

p p kx x f b k )sin()(21ò-=p p p dx x f a )(210

ò-=p p p dx kx x f a k

)cos()(21其

中:n ?f 在第k 维上量上的偶函数分量

坐标基底的单位性和正交性

ò-??

?íì==3==p p p 其它00211)cos()cos(1k n k n dx kx nx ò-?íì==p p p

其01)sin()sin(1

n dx kx nx ò-=p

p p 0

)sin()cos(1

dx kx nx n

理解波与倍频波正交

n例如SIn(x) 和Sin(2x)正交:黑板上画图,

n Sin(x) 正的部分sin(2x)加权成为正负相抵的两部分

n所以构建小波正交基时喜欢倍频和2^k倍频

n音乐:低音C0:130.5, 中音C1,261, 高音C2:522 倍频,….

n8度,中间12个半音,成为等比级数,公比为2(1/12)

n高低合唱时,频率相差2K 倍,唱的人并不觉得难,不干扰,因为正交。

n唱和声时,两个声部不是倍频,不正交,唱低音部的觉得比较难,会受到差频的影响

Fourier 级数应用(变换处理的思想见下页)

)

60sin(3.0)3cos(2)sin(t t t f(x)++=(1)滤除噪声变换--去掉高频项—再变回去

)

3cos(2)sin(t t f(x)+=(2)数据压缩变换--去掉小系数项—再变回去

))

sin cos (0(kx b (kx)a

a f(x)k k k ++=?对于给定的域值,去掉小于域值的a k 和

b k ,然后进行合成和还原

用空间变换处理对象运算的思想

log(xy)= log(x)+ log(y) 积像像和1-1射

积像像和:保持一定性质。1-1射:还可以变回去。

像空间中比源空间更易处理,变X / 为+—,

倒车镜(拓扑变换)相邻关系保持,

拉氏变换,变微积分为乘除

科幻小说中,坐时光机器倒流若干年,杀敌人的祖辈。

前提:变换保持父子关系,母子关系,敌我关系等等有些变换忽略了不需要的,突出了需要的,处理后再变回去。

Fourier 级数应用局限性

(1)基底:周期性的正弦和余弦函数。

适合于处理近似周期性的波动信号。

(2)无限区间上用,

对于具有显著局域性且在有限区间持续周期较短的波动信号,难于处理。

傅氏级数的系数公式

n 把积分分区间变成(-∞,+∞),得到傅立叶变换见下页ò-=p

p

p dx kx x f b k )sin()(21ò-=p p p dx x f a )(210

ò-=p p p dx kx x f a k

)cos()(21

傅立叶变换(是傅氏级数的极限)·傅立叶变换Fourier Transform

dt e t f F t j ò+¥

¥--=

w w )()(主信号函数

?加权,保证远处变小,收敛

源空间:振幅随

时间变化的波

傅立叶变换的缺点

傅立叶变换的缺点

Gabor ’:短时傅立叶变换Short Time Fourier Transform 信号在观察窗口内. 这一思想启发的

尺子不一定要求平直,作尺子的波,不一定要求是正弦波:度量包装箱W 大小例如W=3*鸡蛋+1024*米粒,

例如唐山地震= a*海城地震+ b*邢台地震

一般用小的对象去度量大的对象,引入小波

ò--='

'

2'')]()([),(dt e t t g t x f t STFT ft j x p

Fourier àGaborà

基于小波变换的图像融合

基于小波变换的图像融合 摘要:图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一一幅新的图像的过程,其的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可靠性,通过对多幅图像间的互补信息的处理来提高图像的清晰度。本文的研究重点是基于小波变换实现图像的初步融合,完成将两幅不同的图像进行合并以形成一幅新的图像。关键词:图像融合,小波变换,融合算法,图像信息 Abstract The image fusi on is a procedure that comb ine more tha n two images in order to get a new image, and it ' s main purpose of image fusi on of multiple images is enhance the reliability of image through deal with the ultra data of the in itial image, and improve the defi niti on of the image through deal with the compleme ntary in formatio n of the images. The key point of this article is realized the image fusi on based on the wavelet tran sform and comb ines two images to get a new image. Key Words : image fusion, wavelet transform, fusion algorithm, image in formatio n 一、引言 图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一幅新的图像的过程。在众多的图像融合技术,基于小波变换的图像融合方法已成为现今的个热点,图像融合技术是数据融合技术的一种特定情形,它是以图像的形式来表达具 体的信息,它对人的视觉产生作用。图像融合具体来说是根据某一算法,将所获得的针对同一目标场景的多幅配准后的图像进行综合处理,从而得到一幅新的、满足某种条件的、对目标或场景的描述更为准确、更为全面、更为可靠的图像。融合后的图像应该比原始图像更加清晰可靠和易于分辨。图像融合充分利用了多个原始图像所包含的冗余信息和互补信息,能够起到扩大传感范围、提高系统可靠性和图像信息利用率的作用。 二、小波变换图像融合 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种 改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier 分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又 一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域 变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier变换不能解决的许多困难问题。 近些年来,小波变换倍受科技界的重视,它不仅在数学上已形成了一个新的分支,

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

基于图像的小波变换

基于图片的小波变换 研硕13-13张佳浩 0 引言 在经典的信号分析理论中,傅里叶理论是应用最广泛、效果最好的一种分析手段。但它只是一种纯频域的分析方法,不能提供局部时间段上的频率信息。随后的短时傅里叶变换STFT,虽然可以同时分析时域和频域信息,但是由于STFT的固定时窗,对于分析时变信号是不利的。这是因为时变信号中的高频一般持续时间很短,而低频持续时间比较长,所以都希望对高频信号采用大的时窗,对低频信号采用小的时窗进行分析。小波变换正是在这样的背景下发展起来的。近年来,小波变换作为一种变换域信号处理方法,得到了非常迅速的发展,在信号分析、图像处理、地震勘探和非线性科学等诸多领域得到了广泛的运用。小波理论为各种信号及图像处理方法提供了一种统一的分析框架,成为当前信号与图像处理等众多领域的研究热点。当前对数字图像进行多分辨率观察和处理时,离散小波变换(DWT)是首选的数学工具。除了具有有效、高度直观的描述框架以及多分辨率图像存储之外,DWT还有利于我们深入了解图像时域和频域特性。 1 小波变换 小波变换是一种窗口大小固定不变,但其形状可以改变的局部化分析方法。小波变换在信号的高频部分可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号(如语音、图像等)中提取信息。 小波变换分为以下两种: 1.1 连续小波变换 引言中提到的短时傅里叶变换(STFT),其窗口函数是通过函数 时间轴的平移与频率限制得到的,由此得到的时频分析窗口具有固定的大小。对于非平稳信号而言,需要时频窗口具有可调的性质,即要求在高频部分具有较好的时间分辨率特性,而在 低频部分具有较好的频率分辨率特性。为此,特引入窗口函数,并定义平方可积分函数的连续小波变换为: (1) 式中:a称为尺度参数;b称为平移参数。很显然,并非所有函数都能保证式(1)中的变换对于所有均有意义;另外,在实际应用中,尤其是信号处理以及图像处理的应用中,变 换只是一种简化问题、处理问题的有效手段,最终目的需要回到对原问题的求解,因此还要保证连续小波变换存在逆变换。同时,作为窗口函数,为了保证时间窗口与频率窗口具有快速衰 减特性,经常要求函数具有如下性质: 式中:C为与x,ω无关的常数;ε>0。 1.2 离散小波变换

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波变换与PCNN在图像处理中的比较与结合

收稿日期:2005-10-25 基金项目:国家自然科学基金(60572011/f010204),“985”特色项目计划基金(LZ985-231-582627),甘肃省自然科学基金(YS021-A22-00910) 小波变换与PC NN 在图像处理中的比较与结合 田 勇,敦建征,马义德,夏春水,吴记群 (兰州大学信息科学与工程学院,甘肃兰州 730000) 摘 要: 主要介绍了小波变换和PCNN 的基本原理,结合它们在图像处理中的应用,比较说明了小波变换和PCNN 各自的优缺点.通过分析表明,将小波变换和PCNN 技术相结合在图像处理中会产生更好的效果. 关键词: 小波变换;脉冲耦合神经网络(PCNN);图像处理 中图分类号: TN 911.73 文献标识码: A 文章编号:1004-0366(2006)04-0053-03 The Comparison Between Wavelet Transform and PC NN in Image Processing and Their Combination TIAN Yo ng ,DUN Jian-zheng,M A Yi-de,X IA Chun-shui,W U J i-qun (School of Information Science &Engineering ,L anzhou University ,Lanzhou 730000,China ) Abstract : The ba sic principles of w av elet transfo rm and PCNN a re first https://www.360docs.net/doc/587867333.html, bining their applicatio ns in the image processing ,w e analy ze their adva ntag es and draw backs respectiv ely.From the analysis ,it is co ncluded tha t w e will g et better effects if we co mbine the tw o techniques tog ether in the imag e processing . Key words : wav elet transform;pulse co upled neural netw o rk(PCNN);image processing 小波变换可对函数或信号进行多尺度的细化分析,解决了傅立叶变换不能解决的许多问题,被认为是时间——尺度分析和多分辨率分析的一种新技术[1] .目前,它已被广泛应用于分形、信号处理、图像处理、地震勘探、语音识别等应用领域[1~4].脉冲耦合神经网络PCNN (Pulse Co upled Neural Netw ork,PCNN)是一种不同于传统人工神经网络的新型神经网络.PCNN 有着生物学的背景,是根据对动物的大脑视觉皮层同步脉冲发放所获得的实验结果[5~8] ,建立起来的一种神经网络数学模型.PCNN 在图像处理中的应用已经取得巨大成果[9~12].PCNN 在旋转、平移、尺度不变性等方面起着重要的作用.而小波变换的长处在于它能够生成含有输入信息显著特征的系数并且能够对信号进行由粗及精的逐级多分辨率分析.我们发现小波变换和PCNN 有许多相似点,只是在性能和本质特征上有一些差别. 1 小波变换理论简介 [13~16] 小波(wav elet)即小区域的波.“小”是指在时域 具有紧支集或近似紧支集;“波”指小波具有正负交替的波动性.连续小波函数的确切定义为:设J (t )为一平方可积函数,即J (t )∈L 2(R ),若J (k )(其傅里叶变换)满足容许条件(Admissible Co nditio n) C J =∫ R |J (k )|2 |k |d k <∞(1) 则称J (t )为一个基本小波或母小波(M other Wav elet). 小波函数具有多样性,实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波.常用的小波有:Haar 小波,Daubechies (dbN )小波系,Bio rthog onal(biorN r.Nd)小波系,Coiflet(coifN )小波系,Sy mletsA (sym N )小波系,M orlet 小波,M exican Hat 小波,M eyer 小波,Battle-Lemarie 小 第18卷 第4期2006年12月 甘肃科学学报Journal of Gans u Sciences Vol.18 No.4 Dec.2006

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 C =0.2247

利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强 专业:通信工程姓名:李厚福指导教师:王建华 摘要:中国有句谚语“百闻不如一见”,可见视觉信息的重要性。图像是人们获得信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的最主要载体也是图像,因此图像的增强处理受到越来越多的人们关注。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为空间域增强和频率域增强两大类。但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文对小波变换理论、小波阈值滤波和增强的方法,小波阈值滤波及增强中的阈值函数和阈值的选取做了理论上的研究,重点研究利用小波变换对图像进行增强处理。关键词:小波变换,图像增强,噪声,信号

第一章绪论 1.1课题研究的意义 图像是人们获取信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的主要载体也是图像。对于生活中的指纹识别,视频监控,生活拍照,医学拍照等无不与图像有着紧密的关系。所以图像增强的目的是改善图像的视觉效果,这对人们的生活有着重要的意义。 图像增强作为基本的图像处理技术,其目的是要改善图像的视觉效果。针对给定图像的应用场合,通过处理设法有选择的突出便于人或机器分析有用的信息,将原来模糊的图像变得清晰,抑制一些没有的信息,得以改善图像质量,丰富信息量,加强图像判读和识别效果,以提高图像的使用价值。 图像增强有很多种方法,传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。对于其性质随实践是稳定不变的信号,傅立叶变换是理想的工具。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波变换。小波变换是傅立叶变换的发展与延拓,它对不同频率成分在时域上的取样步长具有调节性,高频则小,低频则大。具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。小波变换解决了傅立叶变换不能解决的许多困难问题,运用到图像增强方面有很重要的现实意义。

matlab中图像小波变换的应用实例

matlab中图像小波变换的应用实例如下: 1 一维小波变换的Matlab 实现 (1) dwt 函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D) 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组Lo_D、Hi_D 对信号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L) X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量cA 和细节分量cD 经小波反变换重构原始信号X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器Lo_R 和Hi_R 经小波反变换重构原始信号X 。 X=idwt(cA,cD,'wname',L) 和X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号X 中心附近的L 个点。 2 二维小波变换的Matlab 实现 二维小波变换的函数 ------------------------------------------------- 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

基于小波变换的图像处理综述

Value Engineering 1小波变换的定义 小波分析是对Fourier 分析的一个重要补充和完善。因此,小波变换的定义应该是尽可能的由少数几个函数生成的;而理想的小波基应该是类似于Fourier 分析的。小波分析主要可以分为两个变换,即连续小波变换和离散小波变换。 2小波分析处理图像的发展 小波分析是一个不断发展的过程,经历“应用-理论-应用”的循环过程。小波分析是多学科交叉理论的结晶,包含泛函数分析、数值分析、分形理论、信息论、调和理论以及逼近论和时频分析等。并提出一种自适应的时-频局部化方法,可在时-频域任意转换,可聚焦任意信号的时段和频段,称为数学中的“望远镜”和“显微镜”。小波变换是Fourier 变换的深层次发展,是近年来工程领域关注的热点,将小波分析用于无损检测、医学CT 、构件探伤等。小波起源就与信号处理密不可分,1984年,法国工程师J.Morlet 和Grossman 对地质信号的分界提出了伸缩、平移的概念,首次提出”Wavelets ”一词。1985年,法国大数学家Meyer 提出光滑正交小波的理念,证明一维小波的存在性,构造出小波函数,是小波数学理论的先驱。随后与他的学生Lemarie 提出多尺度分析的思想。1988年,比利时数学家Ingrid Daubechies 构造出具有紧支撑的有限光滑小波函数,并撰写的《小波十讲(Ten Lectures on Wavelets )》为小波研究和应用领域的专家学者提供了系统的小波理论讲解。1989年,Mallat 在多分辨的基础上,构造mallat 算法进行分解和重构,打开了小波应用的大门。1990年,Latto 和Tenenbaum 将小波分析用于偏微分方程求解,为小波分析的普及、发展及应用提供了动力。 3小波在图像处理中的主要应用:3.1图像变换小波变换具有捕获点奇异性的能力, 而一维信号中的奇异性主要表现为点奇异性,因此,利用小波变换处理一维信号可以取得很好的效果。图像变换相当于是对数字图像阵列的预处理。因为图像阵列维数相对较大,能够直接进行处理复杂度高、计算繁复,就需要一种算法将它变换,减少计算量,小波变换亦能达到良好去除冗余度的效果。 3.2图像压缩 数字图像的压缩目的即减少图像所需的比特数,经小波变换,通过时间域压缩图像的压缩比比传统的压缩方法高,速度快,而压缩后要能够保持信号与图像的特征基本是不变的,这也是一种有损压缩,但是在传递中抗干扰能力相对较强。Shappro 推倒出离散正交小波变换,提出“嵌入”式的“零树”小波编码图像压缩方法,相比于其它图像编码方法压缩比高、无方块效应。目前,基于小波变换的基础发展起来的图像编码方法称为新的静止图像压缩标准。而基于小波变换分析的压缩方法比较成功的是格型矢量量化小波系数编码,小波包最优基方法,多级树集合分裂算法(SPIHT ),小波域多尺度ARMA 模型纹理方法等。 3.3图像增强与恢复 图像去噪方法分空域滤波、频域滤波和最优线性滤波法。Donoho 和Johnstone 在高斯噪声模型下,应用多维独立正态变量决策理论,提出了小波阈值去噪方法和改进的信号去噪的软阈值方法和硬阈值方法,推导出VisuShrink 阈值公式及SureShrink 阈值公式,从理论上证明该阈值是渐进最优的。Weaver 等人通过分析小波变换高频、低频系数的相关特性,提出基于小波变换域内高、低系数相关的去噪方法。图像复原即利用模糊理论、粗糙集理论等去模糊,研究表明,模糊图像是由降质函数与清晰图像卷积得到,通过分析使图像模糊的因素,如高斯噪声、脉冲噪声、白噪声等,建立图像退化模型,根据采集图像提供的资料恢复清晰的图像。 3.4图像分割 —————————————————————— —作者简介:黄奎(1990-),男,重庆人,硕士,研究方向为水工结构工程。 基于小波变换的图像处理综述 Overview of Image Processing Based on Wavelet Transform 黄奎HUANG Kui (重庆交通大学, 重庆400074)(Chongqing Jiaotong University ,Chongqing 400074,China ) 摘要:小波分析主要广泛应用在科学研究和工程技术中。虽然在现阶段的小波理论相对成熟,近些年关于小波理论的应用和研 究也在不断的发展和更新。小波变化在图像处理领域中的应用也囊括图像与处理的所有方面。本文通过介绍小波变换的起源,将小波 应用在图像处理中的压缩、还原图像、边缘检测和图像分割,宏观剖析小波的研究现状历史、发展动向及优势。 Abstract:The wavelet analysis is widely used in scientific research and engineering technology.Although the wavelet theory is relatively mature at this stage,the application and researches on the wavelet theory in recent years is also in constant development and renewal.The application of wavelet transform in image processing covers all aspects of image processing.Through the introduction of the origin of wavelet transform,and by applying wavelet in image compression,image restoration,edge detection and image segmentation,this article analyzes the research situation,development trend and advantage of wavelet. 关键词:小波分析;图像;应用;边缘检测;宏观剖析Key words:wavelet analysis ;image ;application ;edge detection ;macro analysis 中图分类号:TP391文献标识码:A 文章编号:1006-4311(2015)08-0255-02·255· DOI:10.14018/https://www.360docs.net/doc/587867333.html,13-1085/n.2015.08.143

相关文档
最新文档