转向驱动桥毕业设计

转向驱动桥毕业设计

【篇一:驱动桥毕业设计】

摘要

驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车

轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是

增矩、降速,承受作用于路面和车架或车身之间的力。它的性能好

坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效

率高的单级减速驱动桥已经成为未来载重汽车的发展方向。

本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次

设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总

体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。数据确定后,利用autocad建立二维图,再

用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳

进行有限元分析。

关键词:驱动桥;cad;catia;有限元分析

abstract

drivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have a

direct impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks.

this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differential

mechanism,half shaft and axle housing,then check the

strength and life of them.after confirming the parameters,

using autocad to establish 2 dimensional model,then using

catia establish 3 dimensional model. finally using the analysis module in catia to finite element analysis for the axle housing. key words: drive axle;cad;catia;finite element analysis

目录

1 绪论 (1)

1.1 驱动桥简介 (1)

1.2 国内外研究现状 (2)

1.3 驱动桥设计要求 (2)

2 驱动桥设计 (4)

2.1 主减速器设计 (5)

2.1.1 主减速器的结构形式 (5)

2.1.2 主减速器基本参数选择与计算载荷的确定 (7)

2.1.3 小结 (17)

2.2 差速器设计 (17)

2.2.1 对称锥齿轮式差速器工作原理 (17)

2.2.2 对称式圆锥行星齿轮差速器的结构 (18)

2.2.3 对称式圆锥行星齿轮差速器的设计 (18)

2.2.4 小结 (23)

2.3 驱动半轴的设计 (23)

2.3.1 结构形式分析 (23)

2.3.2 全浮式半轴的结构设计 (24)

2.3.3 全浮式半轴的强度计算 (25)

2.3.4 半轴的结构设计及材料与热处理 (25)

2.3.5 半轴花键的强度计算 (26)

2.4 驱动桥壳的设计 (27)

2.4.1 整体式桥壳的结构 (27)

2.4.2 桥壳的受力分析与强度计算 (28)

2.4.3 小结 (29)

3 catia三维建模 (30)

3.1 catia软件介绍 (30)

3.2 主减速器建模 (31)

3.2.1 主动锥齿轮三维建模 (31)

3.2.2 主减速器壳三维建模 (34)

3.2.3 轴承三维建模 (34)

3.3 差速器建模 (35)

3.3.1 齿轮的三维建模 (35)

3.3.2 半轴齿轮的建模 (36)

3.3.3 从动齿轮建模 (36)

3.4 半轴三维建模 (38)

3.5 驱动桥壳三维建模 (38)

3.6 轮胎三维建模 (39)

3.7 主减速器及行星齿轮建模 (40)

3.8 驱动桥三维建模 (40)

4 驱动桥壳的有限元分析 (41)

4.1 驱动桥壳的约束及受力分析 (41)

4.2 计算方法的局限性 (41)

4.3 驱动桥壳的静强度分析 (41)

4.3.1 静强度分析 (41)

4.3.2 结果分析 (43)

4.4 小结 (44)

结论 (45)

致谢 (46)

参考文献 (47)

附录a (48)

附录b (55)

1 绪论

1.1 驱动桥简介

汽车驱动桥处于汽车传动系的末端,主要由主减速器、差速器、半

轴和驱动桥壳组成。其基本功用是将万向传动装置传来的发动机转

矩通过主减速器、差速器、半轴等传到驱动车轮,实现降低转速、

增大转矩;通过主减速器圆锥齿轮副改变转矩的传递方向;通过差

速器实现两侧车轮差速作用,保证内、外侧车轮以不同转速转向?1?。驱动桥的类型有断开式驱动桥和非断开式驱动桥两种。驱动车轮采

用独立悬架时,应选用断开式驱动桥;驱动车轮采用非独立悬架时,则应选用非断开式驱动桥。

汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的

需要。在一般汽车的机械式传动中,有了变速器(有时还有副变速器

和分动器)还不能完全解决发动机特性和行驶要求间的矛盾和结构布

置上的问题。首先因为绝大多数的发动机在汽车上是纵向安置的,

为使其转矩能传给左右驱动车轮,必须由驱动桥的主减速器来改变

转矩的传递方向,同时还得由驱动桥的差速器来解决左右驱动车轮

间的转矩分配问题和差速问题。其次是因为变速器的主要任务仅在

于通过选择适当的档位数及各档传动比,以使内燃机的转速一转矩

特性能适应汽车在各种行驶阻力下对动力性与经济性的要求,而驱

动桥主减速器(有时还有轮边减速器)的功用则在于当变速器处于最高

档位(通常为直接档,有时还有超速档)时,使汽车有足够的牵引力、

适当的最高车速和良好的燃油经济性。为此,则要将经过变速器、

传动轴传来的动力,经过驱动桥的主减速器进行进一步增大转矩,

降低转速的变化。因此,要想使汽车传动系设计的合理,首先必须

恰当选择好汽车的总传动比,并恰当的将它分配给变速器和驱动桥。后者的减速比称为主减速比。当变速器处于最高档位时,汽车的动

力性和燃油经济性主要取决于主减速比。在汽车的总体布置设计时

应根据该车的工作条件及发动机、传动系、轮胎等有关参数,选择

合适的主减速比来保证汽车具有良好的动力性和燃油经济性。采用

优化设计方法可得到发动机与传动系数的最佳匹配。由于发动机功

率的提高,汽车整车质量的减小和路面状况的改善,主减速比有往

小发展的趋势。选择主减速比时要考虑到使汽车即能满足高速行驶

的要求,又能在常用车速范围内降低发动机转速、减小嫌料消耗量,提高发动机寿命并改善振动及嗓声的特性等?2?。

【篇二:四驱越野车转向驱动桥的毕业设计】

摘要

随着汽车工业的发展和汽车技术的提高,驱动桥的设计和制造工艺

都在日益完

善。驱动桥和其他汽车总成一样,除了广泛采用新技术外,在结构

设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发

展及生产组织专业化目标前进。应采用能以几种典型的零部件,以

不同方案组合的设计方法和生产方式达到驱动桥产品的系列化或变

形的目的,或力求做到将某一类型的驱动桥以更多或增减不多的零件,用到不同的性能、不同吨位、不同用途并由单桥驱动到多桥驱

动的许多变形汽车上。

本说明书中,根据给定的参数,首先对主减速器进行设计。主要是

对主减速器

的结构,以及几何尺寸进行了设计。主减速器的形式主要有单级主

减速器和双级主减速器。而主减速器的齿轮形式主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。本次设计采用的是整体

式单级主减速器,齿轮形式采用双曲面齿轮。其次,对差速器的形

式进行选择,差速器的形式主要分为普通对称式圆锥行星齿轮差速

器和防滑差速器两种。本次设计采用普通对称式圆锥行星齿轮差速器。最后,对半轴的结构、支承形式,以及桥壳的形式和特点进行

了分析设计。本次设计采用全浮式半轴支承和整体式驱动桥壳。

关键词:驱动桥主减速器差速器半轴驱动桥壳

四驱越野车转向驱动桥的设计

abstract

with the development of the automotive industry and vehicle technology to improve

the design and manufacturing process of the drive axle are increasingly improved. drive axle and other automotive assembly, in addition to the widespread adoption of new technology in the structural design, the direction of development and production organizations increasingly toward standardization of parts, components universal product series professional goal. parts should be used in several typical drive axle product series or deformation of the purpose of portfolio design and production methods, or that we could achieve a certain type of drive axle to more or deletion few parts, used different performance, many of the different tonnage, different purposes by a single bridge driver to multi-bridge-driven deformation of the car.

this manual, according to the given parameters, the first main gear box design. the structure of the main gear box, and the geometric dimensions of the design. the main gear box in the form of single-stage main gear box and two-stage main gear box. final drive gear mainly in the form of spiral bevel gears, hypoid gears, cylindrical gears, worm and other forms. this design is integral single-stage main gear box, gear forms of hypoid gears. secondly, in the form of differential selection, differential forms are divided into ordinary symmetric cone planetary gear differential and limited slip differential two. the design uses a common symmetric cone planetary gear differential. finally, on the structure of the axle, supporting forms, and the axle housing forms and characteristics of the analysis and design. the design uses a full floating axle shaft bearing and the overall drive axle housing.

keywords: drive axlemain reducerdifferentialaxledrive axle housing

2

1前言

转向驱动桥在四驱越野车中是指具有转向功能的驱动桥。其主要功能一是把分

动器传出的功率经其减速后传递给车轮使车轮转动;二是通过转向器把方向盘所受的转矩传递给转向杆从而使车轮转向。

改革开放以来, 随着汽车工业的飞速发展,人民生活水平的提高,高速公路、

高等级公路的不断建设,汽车正逐渐进入家庭,成为人们生活的一部分。

同时随着我国加入世界贸易组织,通用、福特、日产、丰田??一批世界一流汽车生产企业纷纷进入中国,市场竞争日趋激烈.入世后,技术竞争将是我国汽车工业面临的最大挑战。

本课题是结合科研进行工程设计。由于四驱越野车的普及,因而对于转向驱动

桥是非常需要的。为了让越野车能更好的适应野外的行驶,对于转向驱动桥提出了以下要求:

b.方向盘向各边能转动2.5圈

c.前轮采用麦弗逊悬架

在王琪老师和李书伟老师的指导下,首先进行了方案论证。经过讨论与研究,

对于桥壳部分改变了以前的非断开式,最终确定对于主减速器部分仍采用整体式而两端分别装一球面滚轮式万向节。在转向节部分采用球笼式万向节,转向器采用循环球式转向器。由于转向驱动桥最终要于其它部分组合在一起组成四驱车,所以整个设计过程要考虑最终的组装。我们根据厂方提供的数据首先对驱动桥进行了详细的分析。然后根据分析的结果,计算各部分的轴向力、扭矩、传动比以及功率。进而对各部分进行设计。

转向驱动桥改变了以往的非断开式桥壳,使其更适和在一些非平坦路面上行驶。本课题新颖实用,在技术上有较大改进,具有较强的竞争力。本转向驱动桥将具有很大的市场前景。

四驱越野车转向驱动桥的设计

2总体方法论证

2.1转向驱动桥分析

已知条件:

外行尺寸(长x宽x高):3600x1550x1500(mm)

前轴距:2230mm; 轮距:1300mm ;后轮距:1300mm ; 总质量:1.5t;

载重量:2.1t ;vmin:5km/h ; vmax: 140km/h; 最大爬坡度:60%; 2.2 结构方案的确定

2.2.1驱动桥的分析

驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式

驱动桥和断开式驱动桥。

a.非断开式驱动桥

普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛

用在各种汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同

特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及

半轴等传动部件安装在其中。它的一个缺点是簧下质量大点。

b.断开式驱动桥

断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所

以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又

称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置

在车架横粱或车厢底板上,或与脊梁式车架相联。两侧的驱动车轮

由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。

2.2.2转向器的分析

根据所采用的转向传动副的不同,转向器的结构型式有多种。常见

的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。

对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使

用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使

用条件的适应性以及转向器的其他性能、寿命、制造工艺等。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用

极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉

上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的

冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。

2.2.3转向节的分析

万向节按其在扭转方向上是否有明显的弹性,可分为刚性万向节和

挠性万向节。在前者中,动力是靠零件的铰链式联接传递的,而在

后者中则靠弹性零件传递,且有缓冲减振作用。刚性万向节又可分

为不等速万向节、准等速万向节和等速万向

4

节。

2.3本车桥的结构

由于该车悬架采用麦弗逊悬架因此驱动桥应采用断开式驱动桥。

对于转向器由于该车是四驱越野车,经常在坏路或无路地带行驶应

选用极限可逆转向器。可选用循环球式转向器。当正效率高时驾驶

员可以轻便的转动转向盘;当逆效率高时使驾驶员更好的感觉路况,但为了减轻在不平路面上行驶时驾驶员的疲劳,车轮与路面之间的

作用力传至转向盘上要尽可能小,防止打手又要求效率尽可能低。

因此应在车的转向横拉杆上装一减振器使其吸收路面的冲击消除打

手现象。

而对于转向节由于其转向要一定的角度根据角度选择球笼式birfield 型。对于主减速两侧的万向节用球面滚轮式万向节。

【篇三:转向驱动桥设计】

四川理工学院毕业设计(论文)

乘用车断开式驱动桥设计

学生:张万军学号:05011030234

专班级:05级2班指导教师:郭翠霞

四川理工学院机电工程系

二oo九年六月

附表2:

四川理工学院毕业设计(论文)任务书

设计(论文)题目:某乘用车断开式驱动桥设计系:机械学院专业:机械设计与制造班级:学号:学生:张万军指导教师:郭

翠霞接受任务时间2009年3月2日

教研室主任(签名)系主任(签名)

1.毕业设计(论文)的主要内容及基本要求 (1)基本设计参数

设计数据参看桑塔纳轿车(2)主要内容及基本要求

根据车辆技术参数确定驱动桥设计方案,对所设计的驱动桥进行计

算说明及校核,完成驱动桥总装配图,最后完成总装配图一张,主

要零件图2-3张,设计说明书一份。

2.指定查阅的主要参考文献及说明

[1]臧杰,阎岩.汽车构造[m].机械工业出版社,2005,8. [2]王望予主编.汽车设计[m].机械工业出版社,2004,8. [3] 刘泽九.轴承应用手册[s]. 北京.机械工业出版社1996.3

[4]《汽车工程手册编辑》委员会.汽车工程手册[s]. 北京.人民交通出版社.2001.5 [5]刘涛主编.汽车设计[m].北京大学出版社,2008,1.

摘要

本文主要是桑塔纳2000汽车的转向驱动桥。对于乘用车的前驱,既要满足转向的要求,又要满足驱动的要求。因此,为该车前轮设

计转向驱动桥是很又必要的。要满足这两项要求该车桥的半轴分为

内外两半,通过万向节连接,实现等角速传动转矩。而主销也分为

上下两段以满足转向的要求。本文主要对转向驱动桥各个部件进行

设计、计算、校核,同时绘出了转向驱动桥的装配图,外半轴、主

减速器的主从动齿轮的零件图。本次设计过程丰富了我的知识,使

我对汽车零件的设计又了一个更深层次的了解。

关键词:转向驱动桥;底盘;主减速器;

abstract

ththis article mainly describes steering driving axle of the all-terrain vehicle santana2000. santana2000, this kind of all-terrain vehicle uses a four-wheel drive. the front wheel of this vehicle not only must atisfiedly steering request, but also must satisfy the actuation the request. therefore, it is vital to design changes driving axle for this vehicle front wheel. the shaft divides into two parts, which are inside one and outside one. the joint connects the two parts to satisfy the constant angular velocity driving torque. and the pin also divides into two

part ,to satisfy the request of steering. this article mainly design the various parts of the steering driving axle, such as designing, the computation, the examination. the process of this design has eiched my knowledge, and enabled me a deeper understanding of the design of automobile components and parts.

key words: steering driving axle ,chassis, main gear box

目录

要 ....................................................................................................... . (Ⅰ)

abstract ............................................................................................. .................. Ⅱ第1章绪

论 ....................................................................................................... .. (1)

1.1 第一章驱动桥结构方案拟

定 ......................................................................... 3 1.2 第二章主减速器设计 . (5)

2.1.1 确定主减速器传动

比 (5)

2.1.2 确定主减速器型

式 .............................................................................. 6 2.1.3 主减速器齿轮类型 (6)

2.1.4 主减速器锥齿轮支承型

式 ..................................................................... 7 2.2.1 主减速器计

算载荷的确定 ..................................................................... 8 2.2.2

主减速器基本参数的选

择 ..................................................................... 9 1.2.3 主减速器齿

轮的几何尺寸计算 .............................................................. 12 2.2.4 主减速器齿轮的强度计算 ....................................................................

14 2.2.5 强度计算后的尺寸调

整 ....................................................................... 16 2.3 准双曲面齿

轮材料 ............................................................................... 16 2.4 主减速器的润滑 .................................................................................. 17 1.2 第三章差速器设

计 (18)

3.1 差速器结构型式的选

择 ......................................................................... 18 3.2 对称式圆锥行星齿轮差速器的结构 .......................................................... 18 3.3 对称式圆锥行星齿轮差速器的设

计 .......................................................... 19 3.3.1 差速器齿轮的基本参数选择 ................................................................. 19 3.3.2 差速器齿轮的几何计算 .. (21)

3.3.3 差速器齿轮的强度计

算 ....................................................................... 24 1.2 第四章半轴设计 (26)

4.1. 半轴结构型式的选

择 ............................................................................ 26 4.2 半轴的设计计算 .................................................................................. 26 4.3 半轴杆部直径的初

选 ............................................................................ 26 4.4 半轴的强度计算 .................................................................................. 26 4.5 半轴的材料与热处

理 ............................................................................ 27 1.2 第五章万向节设计 (29)

5.1 万向节的结构选

择 ............................................................................... 29 5.1 万向节的设计计算 . (29)

驱动桥壳毕业设计

驱动桥壳毕业设计 【篇一:驱动桥毕业设计111】 某型重卡驱动桥设计 摘要 驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车 轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是 增矩、降速,承受作用于路面和车架或车身之间的力。它的性能好 坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效 率高的单级减速驱动桥已经成为未来载重汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次 设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总 体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。数据确定后,利用autocad建立二维图,再 用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳 进行有限元分析。 关键词:驱动桥;cad;catia;有限元分析 abstract drivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have a direct impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks. this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.after confirming the

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

驱动桥壳设计

驱动桥壳设计 驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求: 1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力. 2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性. 3)保证足够的离地间隙. 4)结构工艺性好,成本低. 5)保护装于其上的传动部件和防止泥水浸入. 6)拆装,调整,维修方便. 一.驱动桥壳结构方案分析 驱动桥壳大致可分为可分式、整体式 和组合式三种形式。 1.可分式桥壳 可分式桥壳(图5—29)由一个垂直接 合面分为左右两部分,两部分通过螺栓联 接成一体。每一部分均由一铸造壳体和一 个压入其外端的半轴套管组成,轴管与壳 体用铆钉连接。 这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。 2.整体式桥壳

整体式桥壳(图5—30) 的特点是整个桥壳是一根空 心梁,桥壳和主减速器壳为两 体。它具有强度和刚度较大, 主减速器拆装、调整方便等优 点。 按制造工艺不同,整体式 桥壳可分为铸造式(图5— 30a)、钢板冲压焊接式(图5 —30b)和扩张成形式三种。铸 造式桥壳的强度和刚度较大, 但质量大,加:上面多,制造 工艺复杂,主要用于中、·重型货车上。钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。 3)组合式桥壳 组合式桥壳(图5—31)是将主 减速器壳与部分桥壳铸为一体,而 后用无缝钢管分别压入壳体两端, 两者间用塞焊或销钉固定。它的优 点是从动齿轮轴承的支承刚度较 好,主减速器的装配、调整比可分 式桥壳方便,然而要求有较高的加 工精度,常用于轿车、轻型货车中。 二.驱动桥壳强度计算

SUV乘用车驱动桥设计

SUV乘用车驱动桥设计 The Design of Drive Axle for SUV Passenger Car 摘要 驱动桥的基本功用是将传动轴或变速器传来的转矩增大并适当降低转速后分配给左、右驱动车轮,其次驱动桥要承受路面和车架或车身之间的垂直力、纵向力和横向力,以及制动力和反作用力矩等。转向驱动桥在驱动桥的基础上增添了转向的功能,使汽车按照驾驶员的要求行驶。转向驱动桥的组成包括主减速器、差速器、半轴、等速万向节和驱动桥壳。驱动桥是汽车传动系中主要总成之一。驱动桥的设计是否合理直接关系到汽车使用性能的好坏,驱动桥是汽车中的重要部件,它承受着来自路面和悬架之间的一切力和力矩,是汽车中工作条件最恶劣的总成之一,如果设计不当会造成严重的后果。 本设计主要内容包括转向驱动桥各部件的设计、计算和校核,并且绘制了转向驱动桥的装配图,主减速器的从动齿轮、半轴齿轮和万向节等主要部件的零件图。 关键词:驱动桥,主减速器,差速器,车轮传动装置,驱动桥壳

Abstract The basic function of the Drive Axle is increasing torque which is from drive shaft or transmission and reducing the speed ,then drive it to the left and right driving wheel; secondly Drive Axle still withstand the vertical force ,longitudinal force and transverse force between the road and bridge or the body frame ,and braking force , reaction torque ,etc. Steering Drive Axle adds the function of shift under the basic of the Drive Axle, so that the car can run according to the driver. Steering Drive Axle include the main drive component, Differential, Half Axel, universal, Drive Axle Housing, etc. Drive Axle is one of the main assemble of the automotive power train. Whether the design of the Drive Axle is reasonable or not, affect the use of the cars. Drive Axle is the important part of the cars, it withstands the all force and torque between the road and the suspension and its working condition is the worst in cars. If the design is not right it will cause serious consequences. This article mainly includes the various parts of the Steering Drive Axle’s design, computation and examination, While the use of CAD software to map out the Steering Drive Axle assembly drawing, the driven gear of the main gear box, gear half shaft, outer axle’s parts diagram, and make their drawings. CAD as a computer-aided design of high-end software, with its powerful assembly management, functional simulation, manufacturing, data management, and is widely used to make parts of the assembly to meet the requirements. Key words: Drive Axle ,Main gear box ,Differential ,Half Axel ,Drive Axle Shell

轻型货车驱动桥的毕业设计

摘要 轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要。驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载货汽车显得尤为重要。为满足目前当前载货汽车的快速、高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。 本文首先确定主要部件的结构型式和主要设计参数,在分析驱动桥各部分结构形式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案,采用传统设计方法对驱动桥各部件主减速器、差速器、半轴、桥壳进行设计计算并完成校核。最后运用AUTOCAD完成装配图和主要零件图的绘制。 关键词:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT . Pickup trucks take a large proportion of commercial vehicles production, and the drive axle is one of the most important structure. Drive axle is the one of automobile four important assemblies, Its performance directly influence on the entire automobile, especially for the truck .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development of automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance. In this paper, first of all determine the structure of major components and the main design parameters, the analysis of the various parts of the structure of the bridge drive type, the form of the development process and its advantages and disadvantages of the past, determined on the basis of the design program, using the traditional design method of various parts of the drive axle Main reducer, differential, axle, axle housing was designed to calculate and complete the check. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components. Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

汽车转向器毕业设计

汽车转向器毕业设计 【篇一:毕业设计汽车转向系统】 摘要 本设计课题为汽车前轮转向系统的设计,课题以机械式转向系统的齿轮齿条式转向器设计及校核、整体式转向梯形机构的设计及验算 为中心。首先对汽车转向系进行概述,二是作设计前期数据准备, 三是转向器形式的选择以及初定各个参数,四是对齿轮齿条式转向 器的主要部件进行受力分析与数据校核,五是对整体式转向梯形机 构的设计以及验算,并根据梯形数据对转向传动机构作尺寸设计。在转向梯形机构设计方面。运用了优化计算工具matlab进行设计 及验算。matlab强大的计算功能以及简单的程序语法,使设计在参数变更时得到快捷而可靠的数据分析和直观的二维曲线图。最后设 计中运用autocad和catia作出齿轮齿条式转向器的零件图以及装配图。 关键词:转向机构,齿轮齿条,整体式转向梯形,matlab梯形abstract the title of this topic is the design of steering system. rack and pinion steering of mechanical steering system and integrated steering trapezoid mechanism gear to the design as the center. firstly make an overview of the steering system. secondly take a preparation of the data of the design. thirdly, make a choice of the steering form and determine the primary parameters and design the structure of rack and pinion steering. fourthly, stress analysis and data checking of the rack and pinion steering. fifthly, design of steering trapezoid mechanism, according to the trapezoidal data make an analysis and design of steering linkage. in the design of integrated steering trapezoid mechanism the computational tools matlab had been used to design and checking of the data. the powerful computing and intuitive charts of the matlab can give us accurate and quickly data. in the end autocad and catia were used to make a rack and pinion steering parts diagrams and assembly drawings keywords: steering system,mechanical type steering gear and gear rack, integrated steering trapezoid,matlab trapezoid

驱动桥设计_毕业设计论文

驱动桥设计 摘要 现代工程车辆技术追求高效节能、高舒适性和高安全性等目标。前一项目标与环境保护密切相关,是当代全球性热门话题,后两项目标是车辆朝着高性能化方向发展必须研究和解决的重要课题。转向系统的高性能化是指其能够根据车辆的运行状况和驾驶员的要求实行多目标控制,以获得良好的转向轻便性、较好的路感和较快的响应性。 汽车转向系统是影响汽车操纵稳定性、行驶安全性和驾驶舒适性的关键部分。在追求高效节能\高舒适性和高安全性的今天,电控液压助力转向系统作为一种新的汽车动力转向系统,以其节能、环保、更佳的操纵特性和转向路感,成为动力转向技术研究的焦点。 本文通过查阅相关的文献,介绍了EHPS系统的结构组成和工作原理,在参考现有车型的结构数据的基础上,设计计算转向系的主要参数,确定转向器的结构参数和动力转向部分结构参数,在分析其助力特性的基础上,设计合理的助力特性曲线,并通过MATLAB作出助力特性图,同时提出一种基于车速和转向盘转动角速度的控制策略,根据EHPS系统的特点,通过AMESim和Simulink建立整个系统的模型。通过联合仿真可以得出EHPS系统比HPS系统能提供更好的助力特性和转向路感。 关键词:EHPS;助力特性;结构设计;AMESim与Simulink建模 ABSTRACT

High effective energy saving,high comfort performance and high security are thegoals of contemporary.The first goal closely concerns with environment protecting,is also the popular topic around the world.The last two goals are the important subjects must be researched and solved in making automobile high performance.To make the steering system high performance is that the system can carry out mufti-goals control according to the vehicle states and drive requirements to acquire the steering handiness,better road feeling,better anti-interfering performance and faster response. The motor turing system is the essential part which affects the automobile operation stability,the travel security and the driving comfortablet.Nowadays we pursue highly effective energy conservation,the high comforrtableness and high secure.The electrically hydraulic power steering (EHPS) taking as one kind of new automobile power steering system,it takes the power steering engineering research the focal point by its energy conservation,the environmental protection,the better handling characteristic and changes the road feeling. According to consult relevant literature, this paper introduces the structure and the principle of EHPS, bases the further study of EHPS on the structural parameter date of a certain type of the light lorry, calculates the main parameters of steering system and power steering and devises the hydraulic circuit of EHPS. On the basis of the analysis of EHPS, this paper designs a reasonable EHPS power curve, including plotting the curve with the technique of MATLAB. Taking into account the steady steering and emergency steering, it advances the control strategy plan based on speed, steering wheel angle velocity, the steering wheel torque. Based on the structural characteristics of EHPS, this paper proposed AMESIM and SIMULINK joint simulation of the entire EHPS system. Accord to the result we can know that EHPS can offer more secure handle, more saving energy and way feeling. Key words:EHPS;Characteristics of power; Structure design; AMESim and Simulink Modeling

奥迪驱动桥毕业设计

奥迪A4L汽车驱动桥的结构设计学院机械与车辆学院 专业:姓名:指导老师: 车辆工程 吴伟铭学号: 职称: 090403011005 郭新民教授 中国·珠海 二○一三年五月

诚信承诺书 本人郑重承诺:本人承诺呈交的毕业设计《奥迪A4L汽车驱动桥的结构设计》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。 本人签名: 日期:年月日

奥迪A4L汽车驱动桥的结构设计 摘要 汽车驱动桥的功用就是将万向传动装置输入的发动机动力进行传递,从而实现降低速度,增大转矩的目的。在改变动力传递方向后,将动力分配到左,右两个驱动轮。使汽车能够正常速度行驶,同时允许左右车轮以不同的转速旋转。驱动桥由主减速器,差速器,半轴,万向传动装置等组成。目前,发动机前横置前轮驱动形式的传动系统已经广泛应用于很多轿车当中,由于在这样的系统当中的变速器,主减速器和差速器组成一个整体,省去了传动轴,同时也缩短了传动路线,提高了传动系统中的机械效率。在这样的一体式传动中,它可以同时完成变速,差速和驱动车轮的功能。这种结构被称为变速驱动桥。并且由于驱动的是转向轮,所以也被称为转向驱动桥。此种驱动桥不仅结构紧凑,也减轻了传动系统的质量。 关键词:主减速器;差速器;万向节;半轴;结构设计。

Structure design of the Audi A4L automotive drive axle Abstract Function of automotive driving axle is the universal gear entered the engine power delivery, to achieve lower speed, increase the torque of purpose. After changing the direction of power transmission, assigned to the left and right two drive wheels.Normal speed of the vehicle, while allowing for left and right wheels to rotate different rotational speeds.Drive axle final drive, differential, axle shaft, universal joints and other components.At present, the engine front transverse front wheel drive transmission system has been widely applied to many cars, due to such systems of transmission, final drive and differential form a whole, eliminating the drive shaft, but also shorten the transmission route, increases mechanical efficiency of the transmission system.In one drive, it can be completed at variable speed, differential and drive the wheels feature.This structure is referred to as variable-speed transaxle.And because the driver is steering wheel, also known as steering axle.This axle is not only compact and greatly reduced the quality of the transmission system. Keywords: final drive;Differ ential;Universal joints;Half shaft;Structural design.

车辆工程毕业设计81轿车前轮主动转向系统机械结构设计

第1章绪论 主动转向系统保留了传统转向系统中的机械构件,包括转向盘、转向柱、齿轮齿条转向机以及转向横拉杆等。其最大特点就是在转向盘和齿轮齿条转向机之间的转向柱上集成了一套双行星齿轮机构,用于向转向轮提供叠加转向角。主动转向系统通过一组双行星齿轮机构实现了独立于驾驶员的转向叠加功能,完美地解决了低速时转向灵活轻便与高速时保持方向稳定性的矛盾,并在此基础上通过转向干预来防止极限工况下车辆转向过多的趋势,进一步提高了车辆的稳定性。同时,该系统能方便地与其他动力学控制系统进行集成控制,为今后汽车底盘一体化控制奠定了良好的基础。 与常规转向系统的显著差别在于,主动转向系统不仅能够对转向力矩进行调节,而且还可以对转向角度进行调整,使其与当前的车速达到完美匹配。其中的总转角等于驾驶员转向盘转角和伺服电机转角之和。低速时,伺服电机驱动的行星架转动方向与转向盘转动相同,叠加后增加了实际的转向角度,可以减少转向力的需求。高速时,伺服电机驱动的行星架转动方向与转向盘转动相反,叠加后减少了实际的转向角度,转向过程会变得更为间接,提高了汽车的稳定性和安全性。 1.1转向系统综述 1、蜗杆曲柄销式转向器 它是以蜗杆为主动件,曲柄销为从动件的转向器。蜗杆具有梯形螺纹,手指状的锥形指销用轴承支承在曲柄上,曲柄与转向摇臂轴制成一体。转向时,通过转向盘转动蜗杆、嵌于蜗杆螺旋槽中的锥形指销一边自转,一边绕转向摇臂轴做圆弧运动,从而带动曲柄和转向垂臂摆动,再通过转向传动机构使转向轮偏转。这种转向器通常用于转向力较大的载货汽车上。 2、循环球式转向器 循环球式:这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向。这是一种古典的机构,现代轿车已大多不再使用,但又被最新方式的助力转向装置所应用。它的原理相当于利用了螺母与螺栓在旋转过程中产生的相对移动,而在螺纹与螺纹之间夹入了钢球以减小阻力,所有钢球在一个首尾相连的封闭的螺旋曲线

汽车驱动桥设计

汽车驱动桥设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

车辆工程专业课程设计 学院机电工程学院班级 12级车辆工程 姓名黄扬显学号 成绩指导老师卢隆辉 设计课题某型轻型货车驱动桥设计 2015 年 11 月 15 日 整车性能参数(已知) 驱动形式: 6×2后轮 轴距: 3800mm 轮距前/后: 1750/1586mm 整备质量 4310kg 额定载质量: 5000kg 空载时前轴分配轴荷45%,满载时前轴分配轴荷26% 前悬/后悬: 1270/1915mm 最高车速: 110km/h 最大爬坡度: 35% 长宽高: 6985 、2330、 2350 发动机型号: YC4E140—20 最大功率: 3000rmp 最大转矩: 380N·m/1200~1400mm 变速器传动比: 倒档传动比: 轮胎规格:—20 离地间隙: >280mm

1总体设计 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 驱动桥设计应当满足如下基本要求: 1)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。 2)外形尺寸要小,保证有必要的离地间隙。 3)齿轮及其它传动件工作平稳,噪声小。 4)在各种转速和载荷下具有高的传动效率。

5)在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 6)与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。 7)结构简单,加工工艺性好,制造容易,拆装,调整方便。 非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 断开式驱动桥 断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。 2 主减速器设计 主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面

转向驱动桥主减速器设计_需要修改

8 转向驱动桥主减速器设计 8.1 主减速器的结构形式 8.1.1 确定主减速器传动比0i 在汽车总体设计时,就可以确定主减速比0i 、载荷和最小离地间隙。主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。本设计中,主传动比是已知确定的,其值111.40 i 。 8.1.2 确定主减速器型式 主减速器的结构形式较多,有单级、双级、双速、轮边减速器等。单级主减速器具有简单简单,质量小,容易制造,结构紧凑,成本低和效率高等优点,广泛应用于传动比小于7的中、小型汽车上。由已知,0i =4.44<7,故而采用单级主减速器。如图8.1所示。 图8.1 中央单级主减速器 8.1.3 主减速器的齿轮类型 主减速器的齿轮有弧齿锥齿轮,准双曲面齿轮,圆柱齿轮等形式。准双曲面齿轮的小轮轴线相对于大轮轴线不相交也不平行,有下偏移和上偏移两种。这种结构可以使整车质心降低,提高了行车的稳定性。在工作中,准双曲面齿轮运转更加平稳,噪声较低,承裁能力高,其广泛应用于乘用车、轻型货车上。 所以,本设计选用准双曲面齿轮传动。

1—螺母; 2—后桥凸缘; 3—油封; 4—前轴承; 5—主动锥齿轮调整垫片; 6—隔套; 7—垫片; 8—位置调整垫片; 9—后轴承;10—主动锥齿轮 图8..2 主动锥齿轮及调整装置零件图 8.1.4 主减速器主,从动锥齿轮的支承形式 图8.3 主动锥齿轮悬臂式支承图8.4 主动锥齿轮跨置式 图8.5 从动锥齿轮支撑形式 主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。乘用车常采用结构简单、质量较小、成本较低的悬臂式,跨置式支承较悬臂式承载能力可提高10%左右(如图示),但结构较复杂,所以本设计采用悬臂式支承结构(如图2-3

汽车转向系统EPS设计(论文)

汽车转向系统EPS设计

毕业设计外文摘要

目录 错误!未定义书签。 1 引言?1 1.1汽车转向系统简介?1 1.2汽车转向系统的设计思路 (3) 1.3EPS的研究意义?4 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 11 3 电助力转向系统的设计? 3.1 动力转向机构的性能要求..................................... 11 3.2 齿轮齿条转向器的设计计算...................................... 11 3.3 转向横拉杆的运动分析[9]21? 3.4 转向器传动受力分析......................................... 22 4转向传动机构优化设计?24 4.1传动机构的结构与装配.......................................... 24 4.2利用解析法求解出内外轮转角的关系............................ 25 4.3 建立目标函数?27

5控制系统设计? 29 29 5.1 电助力转向系统的助力特性? 30 5.2 EPS电助力电动机的选择? 5.3 控制系统框图设计........................................... 3132 结论? 致谢................................................ 错误!未定义书签。参考文献......................................... 错误!未定义书签。

驱动桥设计

5.4 差速器的设计 汽车行驶时,左右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎负荷、胎面磨损程度不同以及制造误差等因素的影响,也会引起左右车轮因滚动半径不同而使左右车轮行程不等。如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性恶化。为了防止这些现象的发生,汽车左右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器按其结构特征不同,分为齿轮式、凸轮式、、蜗轮式和牙嵌自由轮式等多种形式。 5.4.1 差速器结构形式的选择 从经济性和平稳性考虑,后桥选用结构简单、紧凑、工作平稳,制造方便,用于公路汽车也很可靠地普通对称式圆锥行星齿轮差速器。 5.4.2 差速器齿轮主要参数选择 1.行星齿轮数目的选择 行星齿轮数目定为n=4 2.行星齿轮球面半径b R (mm )的确定 圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径b R ,它就是行星齿轮的安装尺寸,实际上代替了差速器圆锥齿轮的节锥距,在一定程度上表征了差速器的强度。球面半径可根据经验公式来确定: 3d b b T K R = 式中:b K --------行星齿轮球面半径系数,b K =2.5~3.0,对于有四个行星齿轮的轿车和公路载货汽车取最小值, d T -----------计算转矩,Nm 所以:7.2=b R 6.967.458263=mm, 3.节锥距的确定mm A 7.940=mm R b 6.96= 4.行星齿轮齿数1Z 和半轴齿轮齿数2Z 的选择 为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮尽量少,但一般不小于10,半轴齿轮齿数采用14~25,后桥半轴齿轮与行星齿轮的齿数比多在 1.5~ 2.0范围内。在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数之

相关文档
最新文档